Biochar from Biosolids Pyrolysis: A Review
Abstract
:1. Introduction
1.1. Biosolids Characteristics, Composition and Use in Agriculture
1.2. Properties of Biosolids and Land Application
1.3. Heavy Metals, Organic Pollutants and Pathogens in Biosolids
2. Management Alternatives for Biosolids
2.1. Incineration
2.2. Landfilling
2.3. Pyrolysis
3. Biochar from Biosolids
3.1. Biochar Properties according to Preparation Method
3.2. Biochar Properties Using Pyrolysis under N2 or CO2 Atmospheres
3.3. Biochar Physico-Chemical Properties according to Pyrolysis Temperature
3.4. Effect of Biochar from Sewage Sludge on Plant Yield and Soil Nutrients
3.5. Effects on Soil Biological Properties
3.6. Effects on Organic Pollutants
3.7. Effect on Greenhouse Gas Emissions from Soils
3.8. Heavy Metal Content and Mobility
3.9. Biochar Combination with Composting
3.10. Use of Biochar as a Growing Media
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Directive, C. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off. J. Eur. Comm. 1999, 182, 1–19. [Google Scholar]
- European Communities. Disposal and Recycling Routes for Sewage Sludge Part 3—Scientific and Technical Report; Office for Official Publications of the European Communities: Luxembourg, 2001; p. 70. ISBN 92-894-1800-1. [Google Scholar]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for the treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Khomjakov, D.M. Modern Possibilities of Recycling and the Use of Sewage Sludge to Restore the Fertility of Agricultural Lands; Lomonosov Moscow State University: Moscow, Russia, 2009; p. 7. [Google Scholar]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sust. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Directive, C. Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Off. J. Eur. Comm. 1986, 181, 6–12. [Google Scholar]
- USEPA. Biosolids Generation, Use and Disposal in the United States; USEPA Office of Solid Waste: Washington, DC, USA, 1999.
- McGrath, S.P.; Chang, A.C.; Page, A.L.; Witter, E. Land application of sewage sludge: Scientific perspectives of heavy metal loading limits in Europe and the United States. Environ. Rev. 1994, 2, 108–118. [Google Scholar] [CrossRef]
- Organic Contaminants in Sewage Sludge for Agricultural Use. Available online: http://ec.europa.eu/environment/archives/waste/sludge/pdf/organics_in_sludge.pdf (accessed on 3 May 2018).
- Hernández-Apaolaza, L.; Guerrero, F. Comparison between pine bark and coconut husk sorption capacity of metals and nitrate when mixed with sewage sludge. Bioresour. Technol. 2008, 99, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Tuck, C.O.; Perez, E.; Horvath, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed. Waste Manag. 2003, 23, 859–870. [Google Scholar] [CrossRef]
- Kowaljow, M.J.; Mazzarino, M.J.; Satti, P.; Jimenez-Rodrigues, C. Organic and inorganic fertilizer effects on a degraded Patagonian rangeland. Plant Soil 2010, 332, 135–145. [Google Scholar] [CrossRef]
- Werle, S.; Wilk, R.K. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew. Energy 2010, 35, 1914–1919. [Google Scholar] [CrossRef]
- Cooper, J.; Lombardi, R.; Boardman, D.; Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 2011, 57, 78–86. [Google Scholar] [CrossRef]
- Yuan, Z.; Pratt, S.; Batstone, D.J. Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol. 2012, 23, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Samaras, P.; Papadimitriou, C.A.; Haritou, I.; Zouboulis, A.I. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime. J. Hazard. Mater. 2008, 154, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-Domínguez, N.; Rigueiro-Rodríguez, E.; Bianchetto, E.; Mosquera-Losada, M.R. Effect of lime and sewage sludge fertilisation on tree and understory interaction in a silvopastoral system. Agric. Ecosyst. Environ. 2014, 188, 72–79. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.R.; Rigueiro-Rodríguez, A.; Ferreiro-Domínguez, N. Residual effects of lime and sewage sludge inputs on soil fertility and tree and pasture production in a Pinus radiata D. Don silvopastoral system established in a very acidic soil. Agric. Ecosyst. Environ. 2012, 161, 165–173. [Google Scholar] [CrossRef]
- Tian, G.; Granato, T.C.; Cox, A.E.; Pietz, R.I.; Carlson, C.R.; Abedin, Z. Soil carbon sequestration resulting from long-term application of biosolids for land reclamation. J. Environ. Qual. 2009, 38, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Donner, E.; Scheckel, K.; Sekine, R.; Popelka-Filcoff, R.S.; Bennett, J.W.; Brunetti, G.; Naidu, R.; McGrath, S.P.M.; Lombi, E. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing. Environ. Pollut. 2015, 205, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Eljarrat, E.; Caixach, J.; Rivera, J. Decline in PCDD and PCDF levels in sewage sludges from Catalonia (Spain). Environ. Sci. Technol. 1999, 33, 2493–2498. [Google Scholar] [CrossRef]
- Buckley-Golder, D.; Coleman, P.; Davies, M.; King, K.; Petersen, A.; Watterson, J.; Fiedler, H.; Hanberg, A. Compilation of EU Dioxin Exposure and Health Data; UK Department of the Environment, Transport and the Regions (DETR): Abingdon, UK, 1999.
- Stevens, J.L.; Northcott, G.L.; Stern, G.A.; Tomy, G.T.; Jones, K.C. PAHs, PCBs, PCNs, Organochlorine pesticides, synthetic musks, and polychlorinated n-Alkanes in U.K. sewage sludge: Survey results and implications. Environ. Sci. Technol. 2003, 37, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Suciu, N.A.; Lamastra, L. PAHs content of sewage sludge in Europe and its use as soil fertilizer. Waste Manag. 2015, 41, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.M.; Cummings, E. Evaluation of “classic” and emerging contaminants resulting for the application of biosolids to agricultural lands: A review. Hum. Ecol. Risk Assess. 2015, 21, 493–513. [Google Scholar] [CrossRef]
- Prosser, R.S.; Sibley, P.K. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ. Int. 2015, 75, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Werther, J.; Ogada, T. Sewage sludge combustion. Prog. Energy Combust. Sci. 1999, 25, 133–147. [Google Scholar] [CrossRef]
- Khiari, B.; Marias, F.; Zagrouba, F.; Vaxelaire, J. Analytical study of the pyrolysis process in a wastewater treatment pilot station. Desalination 2004, 167, 39–47. [Google Scholar] [CrossRef]
- Barbosa, R.; Lapa, N.; Boavida, D.; Lopes, H.; Gulyurtly, I.; Mendes, B. Co-combustion of coal and sewage sludge: Chemical and ecotoxicological properties of ashes. J. Hazard. Mater. 2009, 170, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Miller-Robbie, L.; Ulrich, B.A.; Ramey, D.F.; Spencer, K.S.; Herzog, S.P.; Cath, T.Y.; Stokes, J.R.; Higgins, C.P. Life cycle energy and greenhouse gas assessment of the co-production of biosolids and biochar for land application. J. Clean. Prod. 2015, 91, 118–127. [Google Scholar] [CrossRef]
- Dominguez, A.; Fernandez, Y.; Fidalgo, B.; Pis, J.J.; Menendez, J.A. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 2008, 70, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Inguanzo, M.; Dominguez, A.; Menendez, J.A.; Blanco, C.G.; Pis, J.J. On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. J. Anal. Appl. Pyrolysis 2002, 63, 209–222. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Abrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Liu, Z.; McNamara, P.; Zitomer, D. Autocatalytic pyrolysis of wastewater biosolids for product upgrading. Environ. Sci. Technol. 2017, 51, 9808–9816. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Pawlowski, A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Lacroix, N.; Rousse, D.R.; Hausler, R. Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery. Waste Manag. Res. 2014, 32, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Ábrego, J.; Arauzo, J.; Sánchez, J.L.; Gonzalo, A.; Cordero, T.; Rodríguez-Mirasol, J. Structural changes of sewage sludge char during fixed-bed pyrolysis. Ind. Eng. Chem. Res. 2009, 48, 3211–3221. [Google Scholar] [CrossRef]
- Jindarom, C.; Meeyoo, V.; Kitiyanan, B.; Rirksomboon, T.; Rangsunvigit, P. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chem. Eng. J. 2007, 133, 239–246. [Google Scholar] [CrossRef]
- De Filippis, P.; di Palma, L.; Petrucci, E.; Scarsella, M.; Verdone, N. Production and characterization of adsorbent materials from sewage sludge by pyrolysis. Chem. Eng. Trans. 2013, 32, 205–210. [Google Scholar]
- Hill, J. Sustainable and/or waste sources for catalysts: Porous carbon development and gasification. Catal. Today 2017, 285, 204–210. [Google Scholar] [CrossRef]
- Pietrzak, R.; Bandosz, T.J. Reactive adsorption of N2O at dry conditions on sewage sludge-derived materials. Environ. Sci. Technol. 2007, 41, 7516–7522. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Bandosz, T.J. Removal of hydrogen sulfide from biogas on sludge-derived adsorbents. Fuel 2007, 86, 2736–2746. [Google Scholar] [CrossRef]
- Smith, K.M.; Fowler, G.D.; Pullket, S.; Graham, N.J. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res. 2009, 43, 2569–2594. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.H.; Ouchi, Y.; Matsuto, T. Characteristics of leachate from pyrolysis residue of sewage sludge. Chemosphere 2007, 68, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; Glaser, B.; Teixeira, W.G.; Lehmann, J.; Blum, W.E.H.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jimenez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Czimczik, C.; Laird, D.; Sohi, S. Stability of biochar in the soil. In Biochar for Environmental Management Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; Chapter 11; pp. 183–205. [Google Scholar]
- Trompowsky, P.M.; Benites, V.M.; Madari, B.E.; Pimenta, A.S.; Hockaday, W.C.; Hatcher, P.G. Characterisation of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org. Geochem. 2005, 36, 1480–1489. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface change along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef] [PubMed]
- Kookana, R.S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review. Aust. J. Soil Res. 2010, 48, 627–637. [Google Scholar] [CrossRef]
- Wang, H.; Lin, K.; Hou, Z.; Richardson, B.; Gan, J. Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J. Soils Sediments 2010, 10, 283–289. [Google Scholar] [CrossRef]
- Sun, K.; Keiluweit, M.; Kleber, M.; Pan, Z.; Xing, B. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresour. Technol. 2011, 102, 9897–9903. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Ro, K.; Guo, M.; Novak, J.; Mashayekhi, H.; Xing, B. Sorption of bisphenol A, 17a-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour. Technol. 2011, 102, 5757–5763. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, M.I.S.; Mackowiak, C.L.; Comerford, N.B.; Moline, E.F.V.; Shirley, J.P.; Guimaraes, D.V. Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil Till. Res. 2017, 165, 59–65. [Google Scholar] [CrossRef]
- Pereira, M.F.R.; Soares, S.F.; Orfao, J.J.M.; Figueiredo, J.L. Adsorption of dyes on activated carbon: Influence of surface chemical groups. Carbon 2003, 41, 811–821. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.A.; Cole, A.J.; Whelan, A.; de Nys, R.; Paul, N.A. Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching from biosolids. Waste Manag. 2017, 64, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.; Terradillos, M.; Gascó, G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 124–130. [Google Scholar] [CrossRef]
- Antunes, E.; Schuman, J.; Brodie, G.; Jacob, M.V.; Schneider, P.A. Biochar produced from biosolids using a single-mode microwave: Characterization of its potential for phosphorus removal. J. Envir. Manag. 2017, 196, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fert. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Bridle, T.R.; Pritchard, D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 2004, 50, 169–175. [Google Scholar] [PubMed]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Fu, S.; Méndez, A.; Gascó, G. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. J. Soils Sediments 2014, 14, 483–494. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Wang, T.; Arbestain, M.C.; Bishop, P. Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org. Geochem. 2012, 51, 45–54. [Google Scholar] [CrossRef]
- Gascó, G.; Cely, P.; Paz-Ferreiro, J.; Plaza, C.; Méndez, A. Relation between biochar properties and effects on seed germination and plant development. Biol. Agric. Hortic. 2016, 32, 237–247. [Google Scholar] [CrossRef]
- Paneque, M.; de la Rosa, J.M.; Kern, J.; Reza, M.T.; Knicker, H. Hydrothermal carbonization and pyrolysis of sewage sludges: What happens to carbon and nitrogen? J. Anal. Appl. Pyrolysis 2017, 128, 314–323. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Hale, S.E.; Lehmann, J.; Cornelissen, G. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresour. Technol. 2012, 111, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ferreiro, J.; Gascó, G.; Gutiérrez, B.; Méndez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Liang, C.; Fu, S.; Méndez, A.; Gascó, G. The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.J.; Zitomer, D.H.; Miller, T.R.; Weirich, C.A.; MacNamara, P.J. Emerging investigator series: Pyrolysis removes common microconstituents triclocarban, triclosan and nonylphenol from biosolids. Environ. Sci. Water Res. Technol. 2016, 2, 282–289. [Google Scholar] [CrossRef]
- Hoffman, T.C.; Zitomer, D.H.; McNamara, P.J. Pyrolysis of wastewater biosolids significantly reduces estrogenicity. J. Hazard. Mater. 2016, 317, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, A.; Oleszczuk, P. The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass Bioenergy 2015, 75, 235–244. [Google Scholar] [CrossRef]
- Khan, S.; Wang, N.; Reid, B.J.; Freddo, A.; Cai, C. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ. Pollut. 2013, 175, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Li, G.; Khan, S.; Shamshad, I.; Reid, B.J.; Qamar, Z.; Chao, C. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ. Sci. Pollut. Res. 2015, 22, 12114–12123. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Khan, S.; Qing, H.; Reid, B.J.; Chao, C. The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 2014, 105, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.G. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef] [PubMed]
- Van Wesenbeeck, S.V.; Prins, W.; Ronsee, F.; Antal, M.J. Sewage sludge carbonization for biochar applications. Fate of heavy metals. Energy Fuels 2014, 28, 5318–5326. [Google Scholar] [CrossRef]
- Garcia-Delgado, M.; Rodriguez-Cruz, M.S.; Lorenzo, L.F.; Arienzo, M.; Sanchez-Martin, M.J. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants. Sci. Total Environ. 2007, 382, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.J.; Yang, T.; Lai, F.Y.; Wu, G.Q. Co-pyrolysis of sewage slude and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 2017, 125, 61–68. [Google Scholar] [CrossRef]
- Amuda, O.S.; Giwa, A.A.; Bello, I.A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 2007, 36, 174–181. [Google Scholar] [CrossRef]
- Veeken, A.H.M.; Hamelers, H.V.M. Removal of heavy metals from sewage sludge by extraction with organic acids. Water Sci. Technol. 1999, 40, 129–136. [Google Scholar]
- Song, X.D.; Xue, X.Y.; Chen, D.Z.; He, P.J.; Dai, X.H. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 2014, 109, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Laing, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Malinska, K.; Golanska, M.; Caceres, R.; Rorat, A.; Weisser, P.; Slezak, E. Biochar amendment for integrated composting and vermicomposting of sewage sludge—The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour. Technol. 2017, 225, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Wang, M.; Chen, H.; Wang, Q.; Zhao, J.; Ren, X.; Li, D.; Shen, F.; Li, R.; Zhang, Z. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresour. Technol. 2017, 224, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huo, R.; Xu, J.; Liang, S.; Li, J.; Zhao, T.; Wang, S. Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresour. Technol. 2017, 235, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Zhang, Z.; Wang, Q.; Shen, F.; Li, R.; Ren, X.; Wang, M.; Chen, H.; Zhao, J. New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting. Bioresour. Technol. 2017, 238, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.; Cárdenas-Aguiar, E.; Paz-Ferreiro, J.; Plaza, C.; Gascó, G. The effect of sewage sludge biochar on peat-based growing media. Biol. Agric. Hortic. 2017, 33, 40–51. [Google Scholar] [CrossRef]
- Kaudal, B.B.; Chen, D.; Madhavan, D.B.; Downie, A.; Weatherley, A. An examination of physical and chemical properties of urban biochar for use as growing media substrate. Biomass Bioenergy 2016, 84, 49–58. [Google Scholar] [CrossRef]
- Álvarez, M.L.; Gascó, G.; Plaza, C.; Paz-Ferreiro, J.; Méndez, A. Hydrochars from biosolids and urban wastes as substitute materials for peat. Land Degrad. Dev. 2017, 28, 2268–2276. [Google Scholar] [CrossRef]
Country | Cr | Ni | Cu | Zn | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|
European Union | 100−150 | 30−75 | 50−140 | 150−300 | 1−3 | 50−300 | 1−1.5 |
Germany | 100 | 50 | 60 | 200 | 1.5 | 100 | 1 |
Denmark | 30 | 15 | 30 | 100 | 0.5 | 40 | 0.5 |
Spain | 100−150 | 30−112 | 50−210 | 150−450 | 1−3 | 50−300 | 1−1.5 |
Finland | 200 | 60 | 100 | 150 | 0.5 | 60 | 0.2 |
France | 150 | 50 | 100 | 300 | 2.0 | 100 | 1 |
Italy | 150 | 50 | 100 | 300 | 3.0 | 100 | - |
Norway | 100 | 30 | 50 | 150 | 1.0 | 50 | 1 |
UK | 400 | 75 | 135 | 300 | 3.0 | 300 | 1 |
Sweden | 30 | 15 | 40 | 100 | 0.5 | 40 | 0.5 |
Netherlands | 100 | 35 | 36 | 140 | 0.8 | 85 | 0.3 |
United States of America | 1500 | 210 | 750 | 1400 | 20 | 150 | 8 |
Metal | European Union | United States of America | ||
---|---|---|---|---|
Maximum Permitted Concentration in Sludge (mg kg−1) | Maximum Annual Loading (kg ha−1 y−1) | Maximum Permitted Concentration in Sludge (mg kg−1) | Maximum Annual Loading (kg ha−1 y−1) | |
Cr | - | - | 3000 | 150 |
Ni | 300−400 | 3 | 420 | 21 |
Cu | 1000−1750 | 12 | 4300 | 75 |
Zn | 2500−4000 | 30 | 7500 | 140 |
Cd | 20−40 | 0.15 | 85 | 39 |
Pb | 750−1200 | 15 | 840 | 300 |
Hg | 16−25 | 0.1 | 57 | 0.85 |
Study | Temperatures | Main Findings |
---|---|---|
Hossain et al. [60] | 350, 400, 500, 700 °C | Higher pyrolysis temperature leads to less char but to less plant-available heavy metals (as measured by DTPA). Strong contrast in pH depending on temperature. |
Agrafioti et al. [21] | 300, 400, 500 °C | Impregnation of sludge catalyzes pyrolysis. Higher yield at lower temperature. |
Chen et al. [61] | 500, 600, 700, 800, 900 °C | Biochars outperform commercial activated carbon for heavy metal sorption. This is related to aromatization and development of pore structure at higher temperatures. |
Roberts et al. [62] | 300, 450, 600, 750 °C | Most P in biosoilds available for plants after transformation to biochar. |
Méndez et al. [63] | 400, 600 °C | Total amount of heavy metals increased with temperature, but metals were less extractable. |
Antunes et al. [64] | 300, 400, 500, 600, 700, 800 °C | pH similar to original biosolids. Surface area quadrupled at higher temperatures. |
Study | Soil Type (Classification System) | Temperature of Pyrolysis and Plant Species | Main Findings |
---|---|---|---|
Yuan et al. [67] | Ultiso, Typic Plinthudult (USDA) | 300, 400, 500, 600, 700 °C | Biochars prepared at high temperatures reduced the leaching of nutrients. |
Hossain et al. [59] | Chromosol (Australian) | 550 °C. Cherry tomato | Plant weight, number of fruits and fruit yield increased, particularly when additional fertiliser was provided. |
Paz-Ferreiro et al. [68] | Acrisol and Ferralsol (FAO) | 600 °C. Proso millet | Increased plant productivity and number of fruits. Increased soil microbial activity, in particular in the presence of earthworms. |
Wang et al. [69] | Entisol, Typic Udipsamment (USDA) | 250, 350, 450, 550 °C. Italian ryegrass | Biosolids biochar have similar P contents and availability to commercial fertilizers. |
Wang et al. [70] | No soil addition performed | 250, 350, 450, 550 °C | The role of different N pools from biochars on long-term and short-term N availability is ascertained. |
Gascó et al. [71] | Haplic Cambisol (FAO) | 600 °C. Lentil, lettuce, cress, cucumber and tomato | Phytostimulant for lentil and lettuce, but not for cress, cucumber and tomato. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz-Ferreiro, J.; Nieto, A.; Méndez, A.; Askeland, M.P.J.; Gascó, G. Biochar from Biosolids Pyrolysis: A Review. Int. J. Environ. Res. Public Health 2018, 15, 956. https://doi.org/10.3390/ijerph15050956
Paz-Ferreiro J, Nieto A, Méndez A, Askeland MPJ, Gascó G. Biochar from Biosolids Pyrolysis: A Review. International Journal of Environmental Research and Public Health. 2018; 15(5):956. https://doi.org/10.3390/ijerph15050956
Chicago/Turabian StylePaz-Ferreiro, Jorge, Aurora Nieto, Ana Méndez, Matthew Peter James Askeland, and Gabriel Gascó. 2018. "Biochar from Biosolids Pyrolysis: A Review" International Journal of Environmental Research and Public Health 15, no. 5: 956. https://doi.org/10.3390/ijerph15050956
APA StylePaz-Ferreiro, J., Nieto, A., Méndez, A., Askeland, M. P. J., & Gascó, G. (2018). Biochar from Biosolids Pyrolysis: A Review. International Journal of Environmental Research and Public Health, 15(5), 956. https://doi.org/10.3390/ijerph15050956