Study of the Kinetics and Equilibrium of the Adsorption of Oils onto Hydrophobic Jute Fiber Modified via the Sol-Gel Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification Method
2.2.1. Pretreatment of the Jute Fiber
2.2.2. Preparation of Surface SiO2 Particles under the Sol-Gel Method
2.2.3. Hydrophobic Modification
2.3. Characterizations
2.4. Adsorbability Measurement
2.5. Batch Experiments
2.6. Adsorption Kinetics
2.6.1. Pseudo First-Order Model
2.6.2. Pseudo Second-Order Model
2.6.3. Intraparticle Diffusion Model
2.7. Adsorption Isotherm
2.7.1. Langmuir Isotherm Model
2.7.2. Freundlich Isotherm Model
2.8. Adsorption Thermodynamics
3. Results and Discussion
3.1. Characterizations
3.1.1. Analysis of the Mechanism of Jute Fiber Modification
3.1.2. FTIR Spectra and BET Analysis
3.1.3. EDS and SEM Analysis
3.1.4. Wettability Analysis
3.2. Analysis of Oil Adsorption and Water Adsorption of Modified Jute Fiber in an Oil System and in a Water System
3.3. Adsorption Kinetic
3.4. Adsorption Isotherm
3.5. Adsorption Thermodynamics
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Romero, I.C.; Toro-Farmer, G.; Diercks, A.R.; Schwing, P.; Muller-Karger, F.; Murawski, S.; Hollander, D.J. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ. Pollut. 2017, 228, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Muir, B.; Bajda, T. Organically modified zeolites in petroleum compounds spill cleanup—Production, efficiency, utilization. Fuel Process. Technol. 2016, 149, 153–162. [Google Scholar] [CrossRef]
- Wang, J.; Wang, A.; Wang, W. Robustly superhydrophobic/superoleophilic kapok fiber with ZnO nanoneedles coating: Highly efficient separation of oil layer in water and capture of oil droplets in oil-in-water emulsions. Ind. Crops Prod. 2017, 108, 303–311. [Google Scholar] [CrossRef]
- Hong, J.Y.; Sohn, E.H.; Park, S.; Park, H.S. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chem. Eng. J. 2015, 269, 229–235. [Google Scholar] [CrossRef]
- Lim, T.T.; Huang, X. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 2007, 66, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, Y.; Wang, A. Coated kapok fiber for removal of spilled oil. Mar. Pollut. Bull. 2013, 69, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, F.; Wei, T.; Zhang, C.; Xiao, H. Hydrophobic modification of bagasse cellulose fibers with cationic latex: Adsorption kinetics and mechanism. Chem. Eng. J. 2016, 302, 33–43. [Google Scholar] [CrossRef]
- Liu, F.; Ma, M.; Zang, D.; Gao, Z.; Wang, C. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr. Polym. 2014, 103, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Qi, H.; Li, B.; Zhanhua, H.; Li, W.; Liu, S. Novel hydrophobic cotton fibers adsorbent for the removal of nitrobenzene in aqueous solution. Carbohydr. Polym. 2017, 155, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Shehrzade, S.; Hassan, M.M. Effect of Alkali and Ultraviolet (UV) Radiation Pretreatment on Physical and Mechanical Properties of 1,6-Hexanediol Diacrylate—Grafted Jute Yarn by UV Radiation. Polym. Environ. 2003, 92, 18–24. [Google Scholar] [CrossRef]
- Hassan, M.S. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation. Radiat. Phys. Chem. 2015, 115, 55–61. [Google Scholar] [CrossRef]
- Gao, D.W.; Hu, Q.; Pan, H.; Jiang, J.; Wang, P. High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers. Bioresour. Technol. 2015, 193, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Arfaoui, M.A.; Dolez, P.I.; Dubé, M.; David, E. Development and characterization of a hydrophobic treatment for jute fibers based on zinc oxide nanoparticles and a fatty acid. Appl. Surf. Sci. 2017, 397, 19–29. [Google Scholar] [CrossRef]
- Dong, A.; Yu, Y.; Yuan, J.; Wang, Q.; Fan, X. Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting. Appl. Surf. Sci. 2014, 301, 418–427. [Google Scholar] [CrossRef]
- Equipment, S.; Products, M. Standard Test Method for Performance of Griddles 1. Annu. B ASTM Stand. 2005, 5, 1–17. [Google Scholar]
- Lagergren, S. About the theory of so-called adsorption of soluble substance. Kungliga Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. Prot. 1998, 76, 183–191. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–59. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Khan, T.A.; Dahiya, S.; Ali, I. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 2012, 69, 58–66. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Wang, X. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chem. Eng. J. 2011, 173, 185–190. [Google Scholar] [CrossRef]
- Bae, G.Y.; Min, B.G.; Jeong, Y.G.; Lee, S.C.; Jang, J.H.; Koo, G.H. Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J. Colloid Interface Sci. 2009, 337, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.T.; Wu, F.L.; Chen, W.Y. Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Mater. Chem. Phys. 2010, 121, 14–21. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Wang, A. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J, 2012, 213, 1–7. [Google Scholar]
- Sai, H.; Fu, R.; Xing, L.; Xiang, J.; Li, Z.; Li, F.; Zhang, T. Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces 2015, 7, 7373–7381. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Piao, C.; Lucas, C. Synthesis and characterization of superhydrophobic wood surfaces. J. Appl. Polym. Sci. 2011, 119, 1667–1672. [Google Scholar] [CrossRef]
- He, Y.D.; Zhai, Y.B.; Li, C.T.; Yang, F.; Chen, L.; Fan, X.P.; Peng, W.F.; Fu, Z.M. The fate of Cu, Zn, Pb and Cd during the pyrolysis of sewage sludge at different temperatures. Environ. Technol. 2010, 31, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chong, D.; Zhang, H.; Peng, S.; Xin, W.; Hu, Y. Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery. Mar. Pollut. Bull. 2017, 122, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Ajay, K.; Amit, K.; Gaurav, S.; Ala’a, H.; Al-M, M.N.; Ayman, A.G.; Florian, J.S. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 2018, 334, 462–478. [Google Scholar]
- Naushad, M.; Ahamad, T.; Al-Maswari, B.M.; Alqadami, A.A.; Alshehri, S.M. Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J. 2017, 330, 1351–1360. [Google Scholar] [CrossRef]
- Furmidge, C.G.L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 1962, 17, 309–324. [Google Scholar] [CrossRef]
- Wu, C.J.; Li, Y.F.; Woon, W.Y.; Sheng, Y.J.; Tsao, H.K. Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces. Appl. Surf. Sci. 2016, 385, 153–161. [Google Scholar] [CrossRef]
- Almasian, A.; Jalali, M.L.; Chizari Fard, Gh.; Maleknia, L. Surfactant grafted PDA-PAN nanofiber: Optimization of synthesis, characterization and oil absorption property. Chem. Eng. J. 2017, 326, 1232–1241. [Google Scholar] [CrossRef]
- Yin, T.; Zhang, X.; Liu, X.; Wang, C. Resource recovery of eichhornia crassipes, as oil superabsorbent. Mar. Pollut. Bull. 2017, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, H.; Chu, B.; Hsiao, B.S. Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption. Polymer 2017, 126, 470–476. [Google Scholar] [CrossRef]
- Ju, H.L.; Kim, D.H.; Sang, W.H.; Bo, R.K.; Park, E.J.; Jeong, M.G.; Kim, J.H.; Kim, Y.D. Fabrication of superhydrophobic fibre and its application to selective oil spill removal. Chem. Eng. J. 2016, 289, 1–6. [Google Scholar]
- Patowary, M.; Ananthakrishnan, R.; Pathak, K. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water. Appl. Surf. Sci. 2014, 320, 294–300. [Google Scholar] [CrossRef]
- Patowary, M.; Ananthakrishnan, R.; Pathak, K. Superhydrophobic and oleophilic barium sulfate material for oil spill clean-ups: Fabrication of surface modified sorbent by a one-step interaction approach. J. Chem. Eng. 2014, 2, 2078–2084. [Google Scholar] [CrossRef]
- Haussard, M.; Gaballah, I.; Kanari, N.; De, D. P.; Barrès, O.; Villieras, F. Separation of hydrocarbons and lipid from water using treated bark. Water Res. 2003, 37, 362–374. [Google Scholar] [CrossRef]
- Cheng, W.P.; Gao, W.; Cui, X.; Ma, J.H.; Li, R.F. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. Eng. 2016, 62, 192–198. [Google Scholar] [CrossRef]
Fiber | BET Surface Area |
---|---|
Raw fiber | 0.17 ± 0.06 m²/g |
Modified fiber | 63.84 ± 0.47 m²/g |
Raw fiber after diesel adsorption | 0.23 ± 0.01 m²/g |
Modified fiber after diesel adsorption | 0.48 ± 0.01 m²/g |
State | 5 | 10 | 15 | 20 | 25 | 30 |
Raw | 4.23 ± 0.02 | 5.44 ± 0.04 | 6.37 ± 0.06 | 7.12 ± 0.02 | 7.83 ± 0.04 | 8.51 ± 0.03 |
Modified | 0.32 ± 0.01 | 0.43 ± 0.02 | 0.55 ± 0.02 | 0.61 ± 0.03 | 0.79 ± 0.02 | 0.81 ± 0.02 |
State | 35 | 40 | 45 | 50 | 55 | 60 |
Raw | 8.52 ± 0.04 | 8.52 ± 0.04 | 8.52 ± 0.03 | 8.53 ± 0.05 | 8.53 ± 0.02 | 8.53 ± 0.03 |
Modified | 0.82 ± 0.01 | 0.83 ± 0.03 | 0.91 ± 0.01 | 0.91 ± 0.02 | 0.92 ± 0.01 | 0.92 ± 0.02 |
Adsorbents | Maximum Diesel | References |
---|---|---|
Adsorption | ||
Capacity (g/g) | ||
Raw cotton fiber | 15 | [8] |
Mesoporous silica aerogel | 13.6 | [29] |
Surfactant grafted PDA-PAN nanofiber | 62.53 | [34] |
The elastic cellulose-based aerogels | 91.82 | [35] |
Sponge treated by trisilanophenyl POSS | 8.9 | [36] |
Cotton modified using P-SiO2 nanoparticles | 20 | [37] |
Kapok modified using P-SiO2 nanoparticles | 23 | [37] |
Modified hygroscopic magnesium carbonate | 3.017 | [38] |
Barium sulfate sorbent powder | 1.6 | [39] |
Treated bark | 2 | [40] |
Jute fiber modified via the sol-gel method | 8.48 | This study |
Kinetic Model | Parameters | Value |
---|---|---|
Pseudofirst-order | Qe | 8.1710 |
K1 | 0.3700 | |
R2 | 0.9805 | |
Pseudosecond-order | Qe | 8.8137 |
K2 | 0.0603 | |
R2 | 0.9918 | |
Intraparticle diffusion | K3 | 0.3904 |
C | 5.5945 | |
R2 | 0.5449 |
Isotherm Model | Isotherm Constants | Temperature (293 K) |
---|---|---|
Langmuir | Q0 | 11.5209 |
K1 | 0.1050 | |
R2 | 0.9075 | |
Frenudlic | n | 2.0437 |
K2 | 1.8355 | |
R2 | 0.9753 |
T/K | Ln (Qe/Ce) | ΔG/kJ·mol−1 | ΔH/kJ·mol−1 | ΔS/J·mol−1·k−1 | R2 |
---|---|---|---|---|---|
293 | 1.02 | −2.48 | −17.54 | −51.21 | 0.9821 |
303 | 0.85 | −2.14 | |||
313 | 0.61 | −1.59 | |||
323 | 0.36 | −0.97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, N.; Wang, X.; Peng, S.; Zhang, H.; Luo, L. Study of the Kinetics and Equilibrium of the Adsorption of Oils onto Hydrophobic Jute Fiber Modified via the Sol-Gel Method. Int. J. Environ. Res. Public Health 2018, 15, 969. https://doi.org/10.3390/ijerph15050969
Lv N, Wang X, Peng S, Zhang H, Luo L. Study of the Kinetics and Equilibrium of the Adsorption of Oils onto Hydrophobic Jute Fiber Modified via the Sol-Gel Method. International Journal of Environmental Research and Public Health. 2018; 15(5):969. https://doi.org/10.3390/ijerph15050969
Chicago/Turabian StyleLv, Na, Xiaoli Wang, Shitao Peng, Huaqin Zhang, and Lei Luo. 2018. "Study of the Kinetics and Equilibrium of the Adsorption of Oils onto Hydrophobic Jute Fiber Modified via the Sol-Gel Method" International Journal of Environmental Research and Public Health 15, no. 5: 969. https://doi.org/10.3390/ijerph15050969
APA StyleLv, N., Wang, X., Peng, S., Zhang, H., & Luo, L. (2018). Study of the Kinetics and Equilibrium of the Adsorption of Oils onto Hydrophobic Jute Fiber Modified via the Sol-Gel Method. International Journal of Environmental Research and Public Health, 15(5), 969. https://doi.org/10.3390/ijerph15050969