Deriving A Drinking Water Guideline for A Non-Carcinogenic Contaminant: The Case of Manganese
Abstract
:1. Introduction
2. Methodology
2.1. Inventory of Available TRVs for Selection of the Most Appropriate POD
2.2. Review and Application of The Required Uncertainty Factors
2.3. Caclulation of the Drinking Water Health-Based Guideline
3. Results
3.1. Available Oral TRV for Manganese
3.2. Determination of the Most Relevant POD
3.3. Application of Uncertainty Factors
3.3.1. Default 10-Fold Value or not Applied (UF = 1) Uncertainty Factors
3.3.2. Uncertainty Factors Different from the Default 10-Fold Value
Human Variability
LOAEL-to-NOAEL Extrapolation
Database Deficiencies
3.4. Determination of a Customized TRV
3.5. Consideration of the Relative Source Contribution and Drinking Water Ingestion Rate
3.5.1. Relative Source Contribution
3.5.2. Body Weight (BW) and Drinking Water Ingestion Rate (ING)
3.6. Calculation of the Drinking Water Guideline
4. Discussion
- (1)
- Neurotoxic effects of ingested manganese are the most sensitive ones based on the array of the toxicological tests listed in Table 2. Besides, this effect was observed in pup rodents at BW-adjusted exposure doses that are lower than those observed in other rodent groups (post weaning or adult animals) exposed chronically or subchronically to manganese [3]. Such sensitivity in rodent pups appears related to the immaturity of their homeostatic regulation system, with the consequent maximal absorption and minimal, if not absent, excretion during the first 15 to 18 postnatal days [33,70,71,72].
- (2)
- Because of the uncertainties associated with the characterization of exposure and the role of confounders in epidemiological studies, corresponding data with regard to cognitive, motor and behavioral effects [19,73] are difficult to use for quantitative risk assessment such as the derivation of a health-based drinking water guideline.
- (3)
- Although non-human primates would constitute the most appropriate toxicological model in order to characterize the toxicity of ingested manganese in humans [74,75], the available data do not appear sufficiently robust to do so. Indeed, such data result from experimental designs that either involve a single tested dose or a manganese exposure occurring via the intravenous route, or lacks comparable control experimental groups [53,75,76,77,78,79,80,81,82].
- (4)
- The mechanism of action of manganese neurotoxicity through the oral exposure route is not fully elucidated. It is likely multi-process, including perturbation of dopamine transmission [40]. Given that such perturbation has been observed in both rodents and primates exposed to manganese [74], using a rat-based LOAEL to determine a DWG in humans appears relevant.
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- Institute of Medicine (IOM). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001; ISBN 978-0-309-07279-3. [Google Scholar]
- ATSDR Toxicological Profile: Manganese. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=102&tid=23 (accessed on 20 September 2017).
- Kondakis, X.G.; Makris, N.; Leotsinidis, M.; Prinou, M.; Papapetropoulos, T. Possible health effects of high manganese concentration in drinking water. Arch. Environ. Health 1989, 44, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Vieregge, P.; Heinzow, B.; Korf, G.; Teichert, H.M.; Schleifenbaum, P.; Mösinger, H.U. Long term exposure to manganese in rural well water has no neurological effects. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 1995, 22, 286–289. [Google Scholar] [CrossRef]
- Bjørklund, G.; Chartrand, M.S.; Aaseth, J. Manganese exposure and neurotoxic effects in children. Environ. Res. 2017, 155, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Claus Henn, B.; Wright, R.O. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Curr. Environ. Health Rep. 2015, 2, 284–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.M.; Kippler, M.; Tofail, F.; Bölte, S.; Hamadani, J.D.; Vahter, M. Manganese in Drinking Water and Cognitive Abilities and Behavior at 10 Years of Age: A Prospective Cohort Study. Environ. Health Perspect. 2017, 125, 057003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dion, L.-A.; Saint-Amour, D.; Sauvé, S.; Barbeau, B.; Mergler, D.; Bouchard, M.F. Changes in water manganese levels and longitudinal assessment of intellectual function in children exposed through drinking water. Neurotoxicology 2017. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Vahter, M. Time to re-evaluate the guideline value for manganese in drinking water? Environ. Health Perspect. 2007, 115, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, R.; Placidi, D.; Cagna, G.; Fedrighi, C.; Oppini, M.; Peli, M.; Zoni, S. Manganese and Developmental Neurotoxicity. Adv. Neurobiol. 2017, 18, 13–34. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Drinking Water Health Advisory for Manganese; U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- MDH. Toxicological Summary for: Manganese. Health Based Guidance for Water; Minnesota Department of Health: St. Paul, MN, USA, 2018.
- Kern, C.H.; Stanwood, G.D.; Smith, D.R. Preweaning manganese exposure causes hyperactivity, disinhibition, and spatial learning and memory deficits associated with altered dopamine receptor and transporter levels. Synapse 2010, 64, 363–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goeden, H. Focus on Chronic Exposure for Deriving Drinking Water Guidance Underestimates Potential Risk to Infants. Int. J. Environ. Res. Public. Health 2018, 15, 512. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, B.; Carrière, A.; Bouchard, M.F. Spatial and temporal variations of manganese concentrations in drinking water. J. Environ. Sci. Health Part A 2011, 46, 608–616. [Google Scholar] [CrossRef] [PubMed]
- MDDELCC. Bilan de la Qualité de L’eau Potable au Québec 2010–2014; Ministère du Développement Durable, de l’Environnement et de la Lutte Contre les Changements Climatiques: Québec, QC, Canada, 2016; p. 80.
- Groupe scientifique sur l’eau. Valeur Guide Sanitaire pour le Manganèse dans l’eau Potable—Avis au Ministère de la Santé et des Services Sociaux; Institut National de Santé Publique du Québec: Québec, QC, Canada, 2017; p. 28.
- Health Canada. Manganese in Drinking Water. Document for Public Consultation Prepared by the Federal-Provincial-Territorial Committee on Drinking Water Consultation period ends August 5, 2016; Health Canada: Ottawa, ON, Canada, 2016.
- U.S. EPA. Integrated Risk Information System (IRIS) Chemical Assessment Summary Manganese; CASRN 7439-96-5; U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
- OEHHA Public Health Goals (PHGs). Available online: https://oehha.ca.gov/water/public-health-goals-phgs (accessed on 3 May 2018).
- MDH Health-Based Values and Risk Assessment Advice for Water—EH: Minnesota Department of Health. Available online: http://www.health.state.mn.us/divs/eh/risk/guidance/hbvraawater.html (accessed on 18 May 2018).
- ATSDR ATSDR—Minimal Risk Levels for Hazardous Substances (MRLs). Available online: https://www.atsdr.cdc.gov/mrls/index.asp (accessed on 18 May 2018).
- ANSES L’Anses, Acteur de la Qualité des eaux|Anses—Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail. Available online: https://www.anses.fr/fr/content/l%E2%80%99anses-acteur-de-la-qualit%C3%A9-des-eaux (accessed on 3 May 2018).
- U.S. EPA. Benchmark Dose Technical Guidance; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- U.S. EPA. A Review of the Reference Dose and Reference Concentration Processes; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Dourson, M.L.; Stara, J.F. Regulatory history and experimental support of uncertainty (safety) factors. Regul. Toxicol. Pharmacol. 1983, 3, 224–238. [Google Scholar] [CrossRef]
- Dourson, M.L.; Felter, S.P.; Robinson, D. Evolution of science-based uncertainty factors in noncancer risk assessment. Regul. Toxicol. Pharmacol. 1996, 24, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Ritter, L.; Totman, C.; Krishnan, K.; Carrier, R.; Vézina, A.; Morisset, V. Deriving uncertainty factors for threshold chemical contaminants in drinking water. J. Toxicol. Environ. Health B Crit. Rev. 2007, 10, 527–557. [Google Scholar] [CrossRef] [PubMed]
- WHO. Chemical-Specific Adjustment Factors for Interspecies Differences and Human Variability: Guidance Document for Use of Data in Dose/Concentration-Response Assessment; Harmonization Project Document No. 2; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- U.S. EPA. Guidance for Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies Extrapolation; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- Bhat, V.S.; Meek, M.E.B.; Valcke, M.; English, C.; Boobis, A.; Brown, R. Evolution of chemical-specific adjustment factors (CSAF) based on recent international experience; increasing utility and facilitating regulatory acceptance. Crit. Rev. Toxicol. 2017, 47, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Keen, C.L.; Bell, J.G.; Lönnerdal, B. The effect of age on manganese uptake and retention from milk and infant formulas in rats. J. Nutr. 1986, 116, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.D.; Zech, L.; Greger, J.L. Manganese metabolism in rats: An improved methodology for assessing gut endogenous losses. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 1993, 202, 103–108. [Google Scholar] [CrossRef]
- Mizoguchi, N.; Nishimura, Y.; Ono, H.; Sakura, N. Manganese elevations in blood of children with congenital portosystemic shunts. Eur. J. Pediatr. 2001, 160, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Health Canada Second Report on Human Biomonitoring of Environmental Chemicals in Canada. Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/second-report-human-biomonitoring-environmental-chemicals-canada-health-canada-2013.html (accessed on 19 April 2018).
- Sidhu, K.S. Standard setting processes and regulations for environmental contaminants in drinking water: State versus federal needs and viewpoints. Regul. Toxicol. Pharmacol. 1991, 13, 293–308. [Google Scholar] [CrossRef]
- U.S. EPA. 2012 Edition of the Drinking Water Standards and Health Advisories; U.S. Environmental Protection Agency: Washigton, DC, USA, 2012.
- Tobin, R.S.; Wood, G.C.; Giddings, M.J. Development of drinking water guidelines for public health protection. Can. Water Resour. J. 1991, 16, 433–437. [Google Scholar] [CrossRef]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M. Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.; Carrier, R. The use of exposure source allocation factor in the risk assessment of drinking-water contaminants. J. Toxicol. Environ. Health B Crit. Rev. 2013, 16, 39–51. [Google Scholar] [CrossRef] [PubMed]
- MDH. Statement of Need and Reasonableness Proposed Amendments to the Rules on Health Risk Limits for Groundwater (Minnesota Rules, Chapter 4717, Parts 7500, 7850, and 7860); Minnesota Department of Health: St. Paul, MN, USA, 2015.
- U.S. EPA. Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health; U.S. Environmental Protection Agency: Washigton, DC, USA, 2000.
- Howd, R.A.; Brown, J.P.; Fan, A.M. Risk Assessment for Chemicals in Drinking Water: Estimation of Relative Source Contribution. In Proceedings of the 43rd Annual Meeting of the Society of Toxicology, Baltimore, MD, USA, 21–25 March 2004; Volume 78. [Google Scholar]
- MDH. 2012 Health Based Guidance for Groundwater. Manganese (Mn); Minnesota Department of Health: St. Paul, MN, USA, 2012.
- WHO. Trace Elements in Human Nutrition: Manganese; Report of a WHO expert committee; World Health Organization: Geneva, Switzerland, 1973; pp. 34–36. [Google Scholar]
- Schroeder, H.A.; Balassa, J.J.; Tipton, I.H. Essential trace metals in man: Manganese. A study in homeostasis. J. Chronic Dis. 1966, 19, 545–571. [Google Scholar] [CrossRef]
- National Research Council (US) Subcommittee on Reproductive and Neurodevelopmental Toxicology. Biologic Markers in Reproductive Toxicology; National Academies Press (US): Washington, DC, USA, 1989; ISBN 978-0-309-03930-7. [Google Scholar]
- NRC. Recommended Dietary Allowances: 10th Edition; National Academies Press (National Research Council): Washington, DC, USA, 1989. [Google Scholar]
- Greger, J.L. Nutrition versus toxicology of manganese in humans: Evaluation of potential biomarkers. Neurotoxicology 1999, 20, 205–212. [Google Scholar] [PubMed]
- Kern, C.H.; Smith, D.R. Preweaning Mn exposure leads to prolonged astrocyte activation and lasting effects on the dopaminergic system in adult male rats. Synapse 2011, 65, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Beaudin, S.A.; Nisam, S.; Smith, D.R. Early life versus lifelong oral manganese exposure differently impairs skilled forelimb performance in adult rats. Neurotoxicol. Teratol. 2013, 38, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Murthy, R.C.; Chandra, S.V. Neuromelanin in manganese-exposed primates. Toxicol. Lett. 1980, 6, 17–20. [Google Scholar] [CrossRef]
- Ishizuka, H.; Nishida, M.; Kawada, J. Changes in stainability observed by light microscopy in the brains of ataxial mice subjected to three generations of manganese administration. Biochem. Int. 1991, 25, 677–687. [Google Scholar] [PubMed]
- Park, S.; Sim, C.-S.; Lee, H.; Kim, Y. Blood Manganese Concentration is Elevated in Infants with Iron Deficiency. Biol. Trace Elem. Res. 2013, 155, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, O.M.; Reinosa-Fuller, J.A.; Silva, T.; Ramirez De Fernandez, M.; Gamboa, J. Manganese Levels in Serum of Healthy Venezuelan Infants Living in Mérida. J. Trace Elem. Med. Biol. 1996, 10, 210–213. [Google Scholar] [CrossRef]
- Huang, S.-H.; Weng, K.-P.; Lin, C.-C.; Wang, C.-C.; Lee, C.T.-C.; Ger, L.-P.; Wu, M.-T. Maternal and umbilical cord blood levels of mercury, manganese, iron, and copper in southern Taiwan: A cross-sectional study. J. Chin. Med. Assoc. 2017, 80, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A. Whole blood manganese levels in pregnancy and the neonate. Nutrition 1999, 15, 731–734. [Google Scholar] [CrossRef]
- Beaudin, S.A.; Strupp, B.J.; Strawderman, M.; Smith, D.R. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats. Environ. Health Perspect. 2017, 125, 230–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenneman, K.A.; Cattley, R.C.; Ali, S.F.; Dorman, D.C. Manganese-induced developmental neurotoxicity in the CD rat: Is oxidative damage a mechanism of action? Neurotoxicology 1999, 20, 477–487. [Google Scholar] [PubMed]
- Dorman, D.C.; Struve, M.F.; Vitarella, D.; Byerly, F.L.; Goetz, J.; Miller, R. Neurotoxicity of manganese chloride in neonatal and adult CD rats following subchronic (21-day) high-dose oral exposure. J. Appl. Toxicol. 2000, 20, 179–187. [Google Scholar] [CrossRef]
- Reichel, C.M.; Wacan, J.J.; Farley, C.M.; Stanley, B.J.; Crawford, C.A.; McDougall, S.A. Postnatal manganese exposure attenuates cocaine-induced locomotor activity and reduces dopamine transporters in adult male rats. Neurotoxicol. Teratol. 2006, 28, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Erikson, K.M.; Thompson, K.; Aschner, J.; Aschner, M. Manganese neurotoxicity: A focus on the neonate. Pharmacol. Ther. 2007, 113, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockell, K.A.; Bonacci, G.; Belonje, B. Manganese content of soy or rice beverages is high in comparison to infant formulas. J. Am. Coll. Nutr. 2004, 23, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, L.; Cederblad, A.; Lönnerdal, B.; Sandström, B. Manganese absorption from human milk, cow’s milk, and infant formulas in humans. Am. J. Dis. Child. 1989, 143, 823–827. [Google Scholar] [CrossRef] [PubMed]
- INSPQ. Lignes Directrices pour la Réalisation des Évaluations du Risque Toxicologique D’origine Environnementale au Québec; Institut National de Santé Publique du Québec: Québec, QC, Canada, 2012.
- NRC. Biologic Markers in Reproductive Toxicology; National Academies Press (US): Washington, DC, USA, 1989; ISBN 978-0-309-03930-7. [Google Scholar]
- OMS. Manganese in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality; Organisation Mondiale de la Santé: Genève, Switzerland, 2011. [Google Scholar]
- U.S. EPA. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals. Available online: https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals (accessed on 13 June 2016).
- Aschner, M.; Erikson, K.M.; Dorman, D.C. Manganese dosimetry: Species differences and implications for neurotoxicity. Crit. Rev. Toxicol. 2005, 35, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Chowanadisai, W.; Crinella, F.M.; Chicz-DeMet, A.; Lönnerdal, B. Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology 2002, 23, 635–643. [Google Scholar] [CrossRef]
- Miller, S.T.; Cotzias, G.C.; Evert, H.A. Control of tissue manganese: Initial absence and sudden emergence of excretion in the neonatal mouse. Am. J. Physiol. 1975, 229, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Zoni, S.; Lucchini, R.G. Manganese exposure: Cognitive, motor and behavioral effects on children: A review of recent findings. Curr. Opin. Pediatr. 2013, 25, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Neal, A.P.; Guilarte, T.R. Mechanisms of lead and manganese neurotoxicity. Toxicol. Res. 2013, 2, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Golub, M.S.; Hogrefe, C.E.; Germann, S.L.; Tran, T.T.; Beard, J.L.; Crinella, F.M.; Lonnerdal, B. Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicol. Teratol. 2005, 27, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.V.; Srivastava, R.S.; Shukla, G.S. Regional distribution of metals and biogenic amines in the brain of monkeys exposed to manganese. Toxicol. Lett. 1979, 4, 189–192. [Google Scholar] [CrossRef]
- Guilarte, T.R.; Chen, M.-K.; McGlothan, J.L.; Verina, T.; Wong, D.F.; Zhou, Y.; Alexander, M.; Rohde, C.A.; Syversen, T.; Decamp, E.; et al. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp. Neurol. 2006, 202, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.S.; Decamp, E.; Clark, K.; Bouquio, C.; Syversen, T.; Guilarte, T.R. Effects of Chronic Manganese Exposure on Working Memory in Non-Human Primates. Brain Res. 2009, 1258, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.S.; Williams, C.; Ault, M.; Guilarte, T.R. Chronic Manganese Exposure Impairs Visuospatial Associative Learning in Non-Human Primates. Toxicol. Lett. 2013, 221, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.S.; Williams, C.; Ault, M.; Guilarte, T.R. Effects of Chronic Manganese Exposure on Attention and Working Memory in Non-Human Primates. Neurotoxicology 2015, 48, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Verina, T.; Kiihl, S.F.; Schneider, J.S.; Guilarte, T.R. Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. Neurotoxicology 2011, 32, 215–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, J.S.; Decamp, E.; Koser, A.J.; Fritz, S.; Gonczi, H.; Syversen, T.; Guilarte, T.R. Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Res. 2006, 1118, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Institution | POD (mg/kg/day) | Type of POD | Composite UF | Oral TRV (µg/kg/day) |
---|---|---|---|---|
TRV based on human data | ||||
US EPA and MDH [12,20,45] | 0.140 1 | NOAEL | 1 or 3 2 | 140 or 47 2 |
WHO [1] | 0.183 3 | NOAEL | 3 | 61 |
ATSDR [3] | 0.160 | NOAEL | 1 | 160 4 |
TRV based on animal data | ||||
MDH [13] | 25 | LOAEL | 300 | 83 5 |
Study | Postnatal Exposure Days | Postnatal Effect Days 1 | Critical Observed Effect | LOAEL or NOAEL (mg/kg/day) 2 |
---|---|---|---|---|
Kern et al., 2010 [14] | 1–21 | 33-46 | Decreased learning capacity (increase use of stereotyped response strategy) 3 | 25 (LOAEL) |
Kern et al., 2011 [51] | 1–21 | 24 4 | Increased expression of glial acid protein in the prefrontal cortex 5 | 25 (LOAEL) |
Beaudin et al., 2013 [52] | 1–21 | 120–150 6 | Decreased fine sensorymotor function 7 | 25 (NOAEL) |
1–400 | 25 (LOAEL) |
Characteristics | Public Health Institution | ||||
---|---|---|---|---|---|
Health Canada [19] | US EPA [12] | WHO [1] | MDH [13] | INSPQ [18] | |
Year of publication | 2016 | 2004 | 2017 | 2012 | 2017 |
Critical studies, (specie) | [14,51,52], (rats) | [46,47,67], (human) | [2], (human) | [14], (rats) | [14,51,52], (rats) |
POD, mg/kg/day (Type) | 25 (LOAEL) | 0.14 (NOAEL) | 0.183 (NOAEL) | 25 (LOAEL) | 25 (LOAEL) |
Composite UF, (detailed) 2 | 1000, (10 × 10 × 1× 10 × 1) | 3, (3 × 1 × 1 × 1 × 1) | 3, (3 × 1 × 1 × 1 × 1) | 300, (10 × 10 × 1 × 3 × 1) | 450, (5 × 10 × 1 × 3 × 3) |
TRV, µg/kg/day | 25 | 47 | 61 | 83 | 55 |
BW, kg | 7 | 70 | 60 | - | 6.7 |
RSC, % | 50 | 20 | 20 | 50 | 20 |
ING, L/kgBW/day 3 | 0.107 | 0.029 | 0.033 | 0.29 | 0.182 |
Guideline value, mg/L | 100 | 300 | 400 | 100 1 | 60 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valcke, M.; Bourgault, M.-H.; Haddad, S.; Bouchard, M.; Gauvin, D.; Levallois, P. Deriving A Drinking Water Guideline for A Non-Carcinogenic Contaminant: The Case of Manganese. Int. J. Environ. Res. Public Health 2018, 15, 1293. https://doi.org/10.3390/ijerph15061293
Valcke M, Bourgault M-H, Haddad S, Bouchard M, Gauvin D, Levallois P. Deriving A Drinking Water Guideline for A Non-Carcinogenic Contaminant: The Case of Manganese. International Journal of Environmental Research and Public Health. 2018; 15(6):1293. https://doi.org/10.3390/ijerph15061293
Chicago/Turabian StyleValcke, Mathieu, Marie-Hélène Bourgault, Sami Haddad, Michèle Bouchard, Denis Gauvin, and Patrick Levallois. 2018. "Deriving A Drinking Water Guideline for A Non-Carcinogenic Contaminant: The Case of Manganese" International Journal of Environmental Research and Public Health 15, no. 6: 1293. https://doi.org/10.3390/ijerph15061293
APA StyleValcke, M., Bourgault, M. -H., Haddad, S., Bouchard, M., Gauvin, D., & Levallois, P. (2018). Deriving A Drinking Water Guideline for A Non-Carcinogenic Contaminant: The Case of Manganese. International Journal of Environmental Research and Public Health, 15(6), 1293. https://doi.org/10.3390/ijerph15061293