Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Site Description
2.2. Sampling and Analysis
2.3. Stream Invertebrate Grade Number-Average Level (SIGNAL)
2.4. Statistical Analysis ANOVA
2.5. Simpson’s Dominance Index (D)
2.6. Similarity Indices
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ali, A.-E.; Strezov, V.; Davies, P.; Wright, I. Environmental impact of coal mining and coal seam gas production on surface water quality in the sydney basin, Australia. Environ. Monit. Assess. 2017, 189, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.-E.; Strezov, V.; Davies, P.J.; Wright, I. River sediment quality assessment using sediment quality indices for the sydney basin, australia affected by coal and coal seam gas mining. Sci. Total Environ. 2018, 616, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, P.; Wang, C.; Qian, J.; Hou, J. Heavy metal pollution status and ecological risks of sediments under the influence of water transfers in taihu lake, China. Environ. Sci. Pollut. Res. 2017, 24, 2653–2666. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.S.; Thompson, P.C.; Gromen, L.; Bowman, J. Use of leaf litter breakdown and macroinvertebrates to evaluate gradient of recovery in an acid mine impacted stream remediated with an active alkaline doser. Environ. Monit. Assess. 2014, 186, 4111–4127. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.A.; Belmer, N.; Davies, P.J. Coal mine water pollution and ecological impairment of one of Australia’s most ‘protected’ high conservation-value rivers. Water Air Soil Pollut. 2017, 228, 90. [Google Scholar] [CrossRef]
- Mishra, V.K.; Shukla, R. Aquatic macrophytes for the removal of heavy metals from coal mining effluent. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, A.A., Lanza, R., Newman, G., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 3, pp. 143–156. ISBN 978-3-319-40148-5. [Google Scholar]
- Venkateswarlu, K.; Nirola, R.; Kuppusamy, S.; Thavamani, P.; Naidu, R.; Megharaj, M. Abandoned metalliferous mines: Ecological impacts and potential approaches for reclamation. Rev. Environ. Sci. Technol. 2016, 15, 327–354. [Google Scholar] [CrossRef]
- Alvarez, M.B.; Domini, C.E.; Garrido, M.; Lista, A.G.; Fernández-Band, B.S. Single-step chemical extraction procedures and chemometrics for assessment of heavy metal behaviour in sediment samples from the Bahía Blanca estuary, Argentina. J. Soils Sediments 2011, 11, 657–666. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Peng, S.-C.; Chen, T.-H.; Zhang, L. Occurrence, source identification and ecological risk evaluation of metal elements in surface sediment: Toward a comprehensive understanding of heavy metal pollution in Chaohu Lake, Eastern China. Environ. Sci. Pollut. Res. 2016, 23, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Pagenkopf, G.K. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Environ. Sci. Technol. 1983, 17, 342–347. [Google Scholar] [CrossRef]
- Allinson, G.; Zhang, P.; Bui, A.; Allinson, M.; Rose, G.; Marshall, S.; Pettigrove, V. Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ. Sci. Pollut. Res. 2015, 22, 10214–10226. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, K.M.; Rainbow, P.S.; Clark, P.F.; Smith, B.D.; Morritt, D. Trace metal bioavailabilities in the thames estuary: Continuing decline in the 21st century. J. Mar. Biol. Assoc. UK 2016, 96, 205–216. [Google Scholar] [CrossRef]
- Bailey, P.; Boon, P.; Morris, K. Australian Biodiversity—Salt Sensitivity Database; Land and Water Australia: Canberra, Australia, 2002. Available online: http://www. lwa. gov. au/products/pn30088 (accessed on 7 July 2017).
- Smith, M.L.; Dye, A.; Hose, G.; Sharp, S. Effects of Mine Water Salinity on Freshwater Biota: Investigations of Coal Mine Water Discharge in NSW; C.E.L.P. Ltd., Ed.; Australian Coal Industry’s Research Program: Brookvale, Australia, 2009. [Google Scholar]
- Bunn, S.E.; Davies, P.M. Community structure of the macroinvertebrate fauna and water quality of a saline river system in south-western Australia. Hydrobiologia 1992, 248, 143–160. [Google Scholar] [CrossRef]
- Baruah, B.P.; Khare, P. Mobility of trace and potentially harmful elements in the environment from high sulfur Indian coal mines. Appl. Geochem. 2010, 25, 1621–1631. [Google Scholar] [CrossRef]
- Volland, S.; Bayer, E.; Baumgartner, V.; Andosch, A.; Lütz, C.; Sima, E.; Lütz-Meindl, U. Rescue of heavy metal effects on cell physiology of the algal model system micrasterias by divalent ions. J. Plant Physiol. 2014, 171, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.H.; Aroviita, J.; Carstensen, J.; Friberg, N.; Johnson, R.K.; Kauppila, P.; Lindegarth, M.; Murray, C.; Norling, K. Approaches for integrated assessment of ecological and eutrophication status of surface waters in Nordic countries. Ambio 2016, 45, 68–691. [Google Scholar] [CrossRef] [PubMed]
- Kaboré, I.; Moog, O.; Alp, M.; Guenda, W.; Koblinger, T.; Mano, K.; Ouéda, A.; Ouédraogo, R.; Trauner, D.; Melcher, A. Using macroinvertebrates for ecosystem health assessment in semi-arid streams of Burkina Faso. Hydrobiologia 2016, 766, 57–74. [Google Scholar] [CrossRef]
- Wright, S.; Jeffrey, S.; Mantoura, R. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, 2nd ed.; UNESCO Pub.: Paris, France, 2005; ISBN 9231032755. [Google Scholar]
- Gerritsen, J.; Carlson, R.; Dycus, D.; Faulkner, C.; Gibson, G.; Harcum, J.; Markowitz, S. Lake and Reservoir Bioassessment and Biocriteria; Technical Guidance Document; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 1998; p. 202.
- Chessman, B. Signal 2. Iv-a scoring system for macro invertebrates (‘water bugs’) in Australian rivers. In Monitoring River Health Initiative Technical Report; Department of Environmental Heritage: Canberra, Australia, 2003. [Google Scholar]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Greenacre, M.; Primicerio, R. Multivariate Analysis of Ecological Data; Fundación BBVA: Bilbao, Spain, 2013; pp. 61–73. ISBN 978-84-92937-50-9. [Google Scholar]
- Jaccard, P. The distribution of the flora in the Alpine zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Bray, J.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Stewart, P.; Butcher, J.; Swinford, T. Land use, habitat, and water quality effects on macroinvertebrate communities in three watersheds of a Lake Michigan associated marsh system. Aquat. Ecosyst. Health Manag. 2000, 3, 179–189. [Google Scholar] [CrossRef]
- Pauletti, P.M.; Cintra, L.S.; Braguine, C.G.; Cunha, W.R.; Januário, A.H. Halogenated indole alkaloids from marine invertebrates. Mar. Drugs 2010, 8, 1526–1549. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W., Mann, H.B., Eds.; Stanford University Press: Palo Alto, CA, USA, 1960. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002; ISBN 0521009766. [Google Scholar]
S. No. | Mines/Industry | Sample Collection Site | Coordinates | Site I.D. | |
---|---|---|---|---|---|
1 | West Cliff Colliery Appin | Georges River, Appin, upstream | 4°12′13.46″ S | 150°47′52.74″ E | S1 |
Georges River, Appin, downstream | 4°12′17.25″ S | 150°47′55.89″ E | S2 | ||
2 | Tahmoor Coal Mine | Bargo River, Tahmoor, upstream | 4°14′12.11″ S | 150°34′46.02″ E | S4 |
Bargo River, Tahmoor, downstream | 4°14′58.47″ S | 150°36′25.37″ E | S5 |
Parameters | DO% | pH | NO2 | Turbidity | Total Dissolved Solids | Conductivity | Water Quality Index (WQI) | Contamination index (Cd) | Heavy metal Evaluation index | Heavy metal Potential index (HPI) | Environmental Water Quality Index | Chlorophyll A µg/m2 | Invert abundance | Invert richness | Invert density | SIGNAL 2 index | Average Sensitivity Grade |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DO% | 1 | −0.786 | −0.706 | −0.446 | −0.844 | −0.841 | 0.299 | −0.105 | −0.776 | −0.442 | 0.970 * | 0.062 | −0.534 | −0.923 | −0.162 | −0.854 | −0.904 |
pH | −0.786 | 1 | 0.978 * | 0.765 | 0.925 | 0.897 | −0.585 | −0.100 | 0.806 | 0.827 | −0.853 | 0.565 | 0.542 | 0.963 * | 0.187 | 0.363 | 0.624 |
NO2 | −0.706 | 0.978 * | 1 | 0.881 | 0.945 | 0.924 | −0.737 | 0.042 | 0.863 | 0.762 | −0.750 | 0.617 | 0.66 | 0.912 | 0.357 | 0.29 | 0.47 |
Turbidity | −0.446 | 0.765 | 0.881 | 1 | 0.856 | 0.859 | −0.968 * | 0.412 | 0.882 | 0.448 | −0.416 | 0.574 | 0.858 | 0.66 | 0.72 | 0.141 | 0.07 |
Total dissolved solids | −0.844 | 0.925 | 0.945 | 0.856 | 1 | 0.998 ** | −0.745 | 0.278 | 0.969 * | 0.551 | −0.816 | 0.332 | 0.806 | 0.936 | 0.502 | 0.562 | 0.57 |
Conductivity | −0.841 | 0.897 | 0.924 | 0.859 | 0.998 ** | 1 | −0.762 | 0.34 | 0.983 * | 0.494 | −0.797 | 0.286 | 0.84 | 0.916 | 0.55 | 0.588 | 0.551 |
Water Quality Index (WQI) | 0.299 | −0.585 | −0.737 | −0.968 * | −0.745 | −0.762 | 1 | −0.594 | −0.830 | −0.223 | 0.223 | −0.461 | −0.903 | −0.480 | −0.858 | −0.094 | 0.12 |
Contamination index (Cd) | −0.105 | −0.100 | 0.042 | 0.412 | 0.278 | 0.34 | −0.594 | 1 | 0.505 | −0.612 | 0.126 | −0.401 | 0.778 | −0.032 | 0.921 | 0.385 | −0.249 |
Heavy metal evaluation index (HEI) | −0.776 | 0.806 | 0.863 | 0.882 | 0.969 * | 0.983 * | −0.830 | 0.505 | 1 | 0.343 | −0.693 | 0.208 | 0.925 | 0.829 | 0.691 | 0.59 | 0.437 |
Heavy metal potential index (HPI) | −0.442 | 0.827 | 0.762 | 0.448 | 0.551 | 0.494 | −0.223 | −0.612 | 0.343 | 1 | −0.630 | 0.789 | 0.018 | 0.713 | −0.297 | −0.078 | 0.475 |
Environmental Water Quality Index | 0.970 * | −0.853 | −0.750 | −0.416 | −0.816 | −0.797 | 0.223 | 0.126 | −0.693 | −0.630 | 1 | −0.106 | −0.387 | −0.955 * | 0.02 | −0.725 | −0.935 |
Chlorophyll A µg/m2 | 0.062 | 0.565 | 0.617 | 0.574 | 0.332 | 0.286 | −0.461 | −0.401 | 0.208 | 0.789 | −0.106 | 1 | 0.075 | 0.326 | −0.018 | −0.563 | −0.151 |
Invert abundance | −0.534 | 0.542 | 0.66 | 0.858 | 0.806 | 0.84 | −0.903 | 0.778 | 0.925 | 0.018 | −0.387 | 0.075 | 1 | 0.555 | 0.913 | 0.486 | 0.122 |
Invert richness | −0.923 | 0.963 * | 0.912 | 0.66 | 0.936 | 0.916 | −0.480 | −0.032 | 0.829 | 0.713 | −0.955 * | 0.326 | 0.555 | 1 | 0.17 | 0.594 | 0.787 |
Invert density | −0.162 | 0.187 | 0.357 | 0.72 | 0.502 | 0.55 | −0.858 | 0.921 | 0.691 | −0.297 | 0.02 | −0.018 | 0.913 | 0.17 | 1 | 0.243 | −0.265 |
SIGNAL-2 index | −0.854 | 0.363 | 0.29 | 0.141 | 0.562 | 0.588 | −0.094 | 0.385 | 0.59 | −0.078 | −0.725 | −0.563 | 0.486 | 0.594 | 0.243 | 1 | 0.777 |
Average sensitivity grade | −0.904 | 0.624 | 0.47 | 0.07 | 0.57 | 0.551 | 0.12 | −0.249 | 0.437 | 0.475 | −0.935 | −0.151 | 0.122 | 0.787 | −0.265 | 0.777 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.-e.; Sloane, D.R.; Strezov, V. Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators. Int. J. Environ. Res. Public Health 2018, 15, 1556. https://doi.org/10.3390/ijerph15071556
Ali A-e, Sloane DR, Strezov V. Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators. International Journal of Environmental Research and Public Health. 2018; 15(7):1556. https://doi.org/10.3390/ijerph15071556
Chicago/Turabian StyleAli, Aal-e, Daniel R. Sloane, and Vladimir Strezov. 2018. "Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators" International Journal of Environmental Research and Public Health 15, no. 7: 1556. https://doi.org/10.3390/ijerph15071556
APA StyleAli, A. -e., Sloane, D. R., & Strezov, V. (2018). Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators. International Journal of Environmental Research and Public Health, 15(7), 1556. https://doi.org/10.3390/ijerph15071556