Rapid Population Growth throughout Asia’s Earthquake-Prone Areas: A Multiscale Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Determining the MSHA
2.3.2. Analyzing the Changes in the Total Population in the MSHA
2.3.3. Analyzing the Changes in the Vulnerable Population in the MSHA
3. Results
3.1. Features of the MSHA in Asia
3.2. Population Changes among MSHA between 2000 and 2015
3.3. Vulnerable Population Changes among MSHA between 2000 and 2015
4. Discussion
4.1. Utilizing WorldPop Datasets Allows for an Effective Analysis of the Changes of the Population in the MSHA
4.2. Urban Population Growth Was a Major Factor Impacting the Increase in Both the Population and the Vulnerable Population in Asia’s MSHA
4.3. More Attention Should Be Paid to Demographic Changes in the MSHA
4.4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Region | Country | MSHA Area | Percentage of MSHA Area to the Area of Country | Percentage of MSHA Area in the Total MSHA Area of Asia |
---|---|---|---|---|
(104 km2) | (%) | (%) | ||
West Asia | Turkey | 59.48 | 76.14 | 6.62 |
Iraq | 8.45 | 19.33 | 0.94 | |
Azerbaijan | 8.37 | 96.96 | 0.93 | |
Georgia | 6.85 | 98.08 | 0.76 | |
Armenia | 2.83 | 95.21 | 0.31 | |
Oman | 2.76 | 8.97 | 0.31 | |
United Arab Emirates | 2.11 | 29.75 | 0.23 | |
Syria | 1.69 | 9.11 | 0.19 | |
Israel | 1.02 | 46.40 | 0.11 | |
Lebanon | 0.86 | 85.33 | 0.10 | |
Palestine | 0.53 | 84.39 | 0.06 | |
Cyprus | 0.50 | 55.79 | 0.06 | |
Jordan | 0.50 | 5.59 | 0.06 | |
Saudi Arabia | 0.43 | 0.22 | 0.05 | |
South Asia | Iran | 144.02 | 88.82 | 16.02 |
India | 53.26 | 16.89 | 5.92 | |
Pakistan | 48.49 | 55.34 | 5.39 | |
Afghanistan | 33.52 | 52.26 | 3.73 | |
Nepal | 14.69 | 99.90 | 1.63 | |
Bangladesh | 6.50 | 47.61 | 0.72 | |
Bhutan | 3.96 | 99.68 | 0.44 | |
Southeast Asia | Indonesia | 71.17 | 37.68 | 7.92 |
Myanmar | 38.38 | 57.47 | 4.27 | |
Philippines | 23.16 | 78.25 | 2.58 | |
Thailand | 1.73 | 3.37 | 0.19 | |
Vietnam | 1.48 | 4.52 | 0.16 | |
Laos | 1.18 | 5.14 | 0.13 | |
Timor-Leste | 0.55 | 37.20 | 0.06 | |
Central Asia | Kyrgyzstan | 19.25 | 96.61 | 2.14 |
Uzbekistan | 19.09 | 44.07 | 2.12 | |
Turkmenistan | 18.49 | 37.78 | 2.06 | |
Kazakhstan | 17.46 | 6.45 | 1.94 | |
Tajikistan | 14.14 | 99.56 | 1.57 | |
Eastern Asia | China | 215.08 | 22.94 | 23.93 |
Mongolia | 29.41 | 18.78 | 3.27 | |
Japan | 27.57 | 73.78 | 3.07 |
Region | Country | Total Population in the MSHA (Million) | Change Rate of the Total Population in the MSHA | ||||
---|---|---|---|---|---|---|---|
2000 | 2015 | 2000–2015 | 2015–2020 | 2000–2015 | 2015–2020 | ||
West Asia | United Arab Emirates | 2.03 | 6.68 | 4.65 | 0.68 | 228.41% | 10.13% |
Oman | 1.40 | 2.76 | 1.36 | 0.25 | 97.24% | 9.18% | |
Lebanon | 2.46 | 4.43 | 1.97 | 0.03 | 80.18% | 0.70% | |
Jordan | 1.01 | 1.62 | 0.61 | 0.13 | 59.82% | 8.13% | |
Iraq | 5.53 | 8.54 | 3.00 | 1.31 | 54.25% | 15.32% | |
Saudi Arabia | 0.03 | 0.04 | 0.01 | 0.00 | 46.64% | 9.59% | |
Palestine | 1.77 | 2.51 | 0.75 | 0.41 | 42.39% | 16.13% | |
Israel | 3.43 | 4.66 | 1.24 | 0.35 | 36.15% | 7.43% | |
Turkey | 47.46 | 59.49 | 12.03 | 2.65 | 25.34% | 4.46% | |
Cyprus | 0.65 | 0.80 | 0.16 | 0.03 | 24.01% | 4.05% | |
Azerbaijan | 8.11 | 9.75 | 1.64 | 0.49 | 20.27% | 4.98% | |
Syria | 3.46 | 3.91 | 0.45 | 0.53 | 13.06% | 13.59% | |
Armenia | 3.08 | 3.02 | −0.06 | 0.01 | −2.02% | 0.41% | |
Georgia | 4.74 | 4.00 | −0.74 | −0.03 | −15.62% | −0.75% | |
South Asia | Afghanistan | 14.71 | 24.29 | 9.58 | 2.91 | 65.16% | 11.98% |
Bhutan | 0.56 | 0.77 | 0.21 | 0.05 | 38.36% | 5.83% | |
Pakistan | 70.13 | 95.85 | 25.72 | 9.92 | 36.68% | 10.35% | |
India | 103.75 | 129.03 | 25.28 | 7.73 | 24.36% | 5.99% | |
Bangladesh | 54.87 | 67.20 | 12.33 | 4.05 | 22.47% | 6.03% | |
Nepal | 23.75 | 28.51 | 4.76 | 1.68 | 20.06% | 5.88% | |
Iran | 58.26 | 69.09 | 10.83 | 3.63 | 18.60% | 5.25% | |
Southeast Asia | Timor-Leste | 0.20 | 0.27 | 0.08 | 0.03 | 39.70% | 11.07% |
Philippines | 57.95 | 74.97 | 17.02 | 5.66 | 29.37% | 7.55% | |
Laos | 0.31 | 0.39 | 0.08 | 0.04 | 27.05% | 8.93% | |
Indonesia | 132.41 | 161.12 | 28.71 | 9.04 | 21.68% | 5.61% | |
Vietnam | 0.66 | 0.76 | 0.11 | 0.04 | 15.99% | 5.34% | |
Myanmar | 23.56 | 26.63 | 3.07 | 1.17 | 13.02% | 4.40% | |
Thailand | 0.54 | 0.58 | 0.05 | 0.00 | 8.75% | 0.62% | |
Central Asia | Tajikistan | 6.18 | 8.48 | 2.30 | 0.95 | 37.25% | 11.18% |
Turkmenistan | 1.59 | 1.97 | 0.39 | 0.15 | 24.30% | 7.62% | |
Uzbekistan | 21.24 | 26.18 | 4.94 | 1.68 | 23.26% | 6.40% | |
Kyrgyzstan | 4.95 | 5.94 | 0.99 | 0.45 | 20.00% | 7.58% | |
Kazakhstan | 5.25 | 6.20 | 0.95 | 0.33 | 18.14% | 5.35% | |
East Asia | Mongolia | 0.28 | 0.35 | 0.07 | 0.03 | 23.44% | 7.42% |
China | 128.45 | 139.19 | 10.74 | 2.70 | 8.36% | 1.94% | |
Japan | 93.34 | 93.94 | 0.60 | −1.10 | 0.64% | −1.17% |
Region | Country | Vulnerable Population in the MSHA (Million) | Change Rate of the Vulnerable Population in the MSHA | ||||
---|---|---|---|---|---|---|---|
2000 | 2015 | 2000–2015 | 2015–2020 | 2000–2015 | 2015–2020 | ||
West Asia | United Arab Emirates | 0.54 | 1.01 | 0.47 | 0.17 | 86.33% | 17.34% |
Lebanon | 0.88 | 1.42 | 0.54 | −0.05 | 61.94% | −3.23% | |
Iraq | 2.58 | 3.98 | 1.40 | 0.61 | 54.28% | 15.32% | |
Jordan | 0.43 | 0.64 | 0.21 | 0.02 | 47.91% | 3.72% | |
Israel | 1.31 | 1.82 | 0.52 | 0.18 | 39.49% | 10.01% | |
Turkey | 17.83 | 22.10 | 4.28 | 0.90 | 23.98% | 4.08% | |
Palestine | 0.88 | 1.09 | 0.21 | 0.14 | 23.29% | 13.12% | |
Oman | 0.55 | 0.64 | 0.08 | 0.15 | 15.10% | 23.66% | |
Saudi Arabia | 0.01 | 0.01 | 0.00 | 0.00 | 14.68% | 7.14% | |
Cyprus | 0.21 | 0.24 | 0.02 | 0.02 | 11.73% | 7.85% | |
Syria | 1.53 | 1.61 | 0.08 | 0.04 | 5.37% | 2.43% | |
Azerbaijan | 2.97 | 2.69 | −0.28 | 0.47 | −9.54% | 17.62% | |
Armenia | 1.11 | 0.88 | −0.23 | 0.08 | −20.37% | 9.14% | |
Georgia | 1.63 | 1.25 | −0.38 | 0.08 | −23.06% | 6.06% | |
South Asia | Afghanistan | 7.27 | 12.00 | 4.74 | 1.44 | 65.16% | 11.98% |
Pakistan | 33.06 | 45.18 | 12.12 | 4.68 | 36.68% | 10.35% | |
India | 37.56 | 46.70 | 9.14 | 2.81 | 24.35% | 6.01% | |
Bangladesh | 22.82 | 27.95 | 5.13 | 1.68 | 22.48% | 6.03% | |
Nepal | 10.64 | 10.90 | 0.26 | −0.26 | 2.40% | −2.34% | |
Bhutan | 0.25 | 0.25 | 0.00 | 0.00 | −1.04% | 1.06% | |
Iran | 22.80 | 19.79 | −3.02 | 1.69 | −13.22% | 8.55% | |
Southeast Asia | Timor-Leste | 0.10 | 0.14 | 0.04 | 0.02 | 39.70% | 11.07% |
Philippines | 23.59 | 30.52 | 6.93 | 2.30 | 29.38% | 7.55% | |
Laos | 0.13 | 0.16 | 0.03 | 0.01 | 27.12% | 8.87% | |
Indonesia | 43.45 | 52.87 | 9.42 | 2.97 | 21.68% | 5.62% | |
Vietnam | 0.26 | 0.30 | 0.04 | 0.02 | 16.07% | 5.28% | |
Myanmar | 7.34 | 8.30 | 0.96 | 0.36 | 13.02% | 4.40% | |
Thailand | 0.17 | 0.19 | 0.02 | 0.00 | 8.75% | 0.62% | |
Central Asia | Turkmenistan | 0.53 | 0.66 | 0.13 | 0.05 | 24.18% | 7.72% |
Kazakhstan | 1.73 | 2.05 | 0.32 | 0.11 | 18.19% | 5.31% | |
Tajikistan | 2.87 | 3.21 | 0.34 | 0.45 | 11.84% | 14.02% | |
Kyrgyzstan | 2.00 | 2.12 | 0.12 | 0.29 | 5.82% | 13.88% | |
Uzbekistan | 8.79 | 8.66 | −0.13 | 0.72 | −1.48% | 8.26% | |
East Asia | Japan | 29.69 | 36.82 | 7.14 | 1.29 | 24.04% | 3.51% |
Mongolia | 0.12 | 0.15 | 0.03 | 0.01 | 23.43% | 7.42% | |
China | 34.32 | 37.20 | 2.87 | 0.72 | 8.37% | 1.94% |
Earthquake Intensity | Total Earthquakes in Asia (Number) | Total Earthquakes in the MSHA (Number) | Percentage of the Total Earthquakes in the MSHA (%) |
---|---|---|---|
Total | 1824 | 1500 | 82.24 |
5.5–6.0 | 916 | 735 | 80.24 |
6.0–6.5 | 498 | 417 | 83.73 |
6.5–7.0 | 253 | 216 | 85.38 |
7.0 above | 157 | 132 | 84.08 |
Area | Region | Total Population Change | Change Rate of the Total Population * | Vulnerable Population Change | Change Rate of the Vulnerable Population ** |
---|---|---|---|---|---|
(Million) | (%) | (Million) | (%) | ||
MSHA | Asia | 57.93 | 5.39 | 24.20 | 6.28 |
South Asia | 29.96 | 7.22 | 12.04 | 7.40 | |
Central Asia | 3.52 | 7.21 | 1.62 | 9.70 | |
West Asia | 6.84 | 6.10 | 2.83 | 7.18 | |
Southeast Asia | 15.98 | 6.04 | 5.68 | 6.15 | |
East Asia | 1.63 | 0.70 | 2.03 | 2.73 | |
non-MSHA region | Asia | 146.94 | 4.47 | 59.21 | 5.85 |
South Asia | 87.25 | 6.20 | 8.45 | 1.78 | |
Central Asia | 1.07 | 5.78 | 0.85 | 13.75 | |
West Asia | 15.04 | 10.37 | 3.84 | 7.50 | |
Southeast Asia | 18.17 | 4.93 | 3.91 | 3.45 | |
East Asia | 25.41 | 1.89 | 42.16 | 11.51 |
References
- Freire, S.; Aubrecht, C. Integrating population dynamics into mapping human exposure to seismic hazard. Nat. Hazards Earth Syst. 2012, 12, 3533–3543. [Google Scholar] [CrossRef] [Green Version]
- Holzer, T.L.; Savage, J.C. Global earthquake fatalities and population. Earthq. Spectra 2013, 29, 155–175. [Google Scholar] [CrossRef]
- Stahl, T.; Clark, M.K.; Zekkos, D.; Athanasopoulos-Zekkos, A.; Willis, M.; Medwedeff, W.; Knoper, L.; Townsend, K.; Jin, J. Earthquake science in resilient societies. Tectonics 2017, 36, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Bilham, R. The seismic future of cities. Bull. Earthq. Eng. 2009, 7, 839–887. [Google Scholar] [CrossRef] [Green Version]
- Tucker, B.E. Reducing earthquake risk. Science 2013, 341, 1070–1072. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, F.; Bendimerad, F.; Sinha, R. Megacities—Megarisks. Nat. Hazards 2007, 42, 481–491. [Google Scholar] [CrossRef]
- Wyss, M.; Rosset, P. Mapping seismic risk: The current crisis. Nat. Hazards 2013, 68, 49–52. [Google Scholar] [CrossRef]
- Tang, B.; Deng, Q.; Glik, D.; Dong, J.; Zhang, L. A Meta-Analysis of Risk Factors for Post-Traumatic Stress Disorder (PTSD) in Adults and Children after Earthquakes. Int. J. Environ. Res. Public Health 2017, 14, 1537. [Google Scholar] [CrossRef] [PubMed]
- Fujiu, M.; Morisaki, Y.; Takayama, J.; Yanagihara, K.; Nishino, T.; Sagae, M.; Hirako, K. Evaluation of Regional Vulnerability to Disasters by People of Ishikawa, Japan: A Cross Sectional Study Using National Health Insurance Data. Int. J. Environ. Res. Public Health 2018, 15, 507. [Google Scholar] [CrossRef] [PubMed]
- Vink, K.; Takeuchi, K. International comparison of measures taken for vulnerable people in disaster risk management laws. Int. J. Disaster Risk Reduct. 2013, 4, 63–70. [Google Scholar] [CrossRef]
- Tanida, N. What happened to elderly people in the great Hanshin earthquake. BMJ 1996, 313, 1133–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; Zhang, H.; Liu, Q.; Liang, K. An overview of two devastating earthquakes in Afghanistan in March 2002. Rec. Dev. World Seism. 2002, 16–21. (In Chinese) [Google Scholar]
- United Nations. World Population Prospectives: The 2015 Revision, Volume II: Demographic Profiles; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2015; pp. 21–27. ISBN 9789211515336. [Google Scholar]
- Guha-Sapir, D.; Vos, F. Earthquakes, an epidemiological perspective on patterns and trends. In Human Casualties in Earthquakes: Progress in Modeling and Mitigation; Spence, R., So, E., Scawthornp, C., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2011; pp. 13–24. [Google Scholar]
- Li, M.; Zou, Z.; Xu, G.; Shi, P. Mapping earthquake risk of the world. World Atlas Nat. Disaster Risk 2015, 25–39. [Google Scholar] [CrossRef]
- Freire, S.; Ehrlich, D.; Ferri, S. Assessing temporal changes in global population exposure and impacts from earthquakes. In Proceedings of the 11th International ISCRAM Conference, University Park, PA, USA, 1 May 2014; pp. 324–328. [Google Scholar]
- The United States Geological Survey (USGS). The Modified Mercalli Intensity Scale. Available online: https://earthquake.usgs.gov/learn/topics/mercalli.php (accessed on 24 August 2018).
- Djordjević, M.; Radivojević, A.; Dragović, R.; Filipović, I. Exposure to earthquakes-distribution and change of the world’s population with regard to disposition of seismic activities. J. Geogr. Inst. Jovan Cvijic SASA 2016, 66, 353–370. [Google Scholar] [CrossRef]
- Nojima, N.; Fujikawa, S.; Ishikawa, Y.; Okumura, T.; Fujiwara, H.; Morikawa, N. Exposure analysis using the probabilistic seismic hazard maps for Japan. J. Disaster Res. 2013, 8, 861–868. [Google Scholar] [CrossRef]
- He, C.; Huang, Q.; Dou, Y.; Tu, W.; Liu, J. The population in China’s earthquake-prone areas has increased by over 32 million along with rapid urbanization. Environ. Res. Lett. 2016, 11, 074028. [Google Scholar] [CrossRef] [Green Version]
- Goldewijk, K.K.; Beusen, A.; Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: Hyde 3.1. Holocene 2010, 20, 565–573. [Google Scholar] [CrossRef]
- Balk, D.; Yetman, G. The Global Distribution of Population Evaluating the Grains in Resolution Refinement. Center for International Earth Science Information Network (CIESIN), Colunbia University, Draft Documentation for GPW v3. Available online: http://beta.sedac.ciesin.columbia.edu/gpw (accessed on 11 April 2017).
- Balk, D.; Pozzi, F.; Yetman, G.; Deichmann, U.; Nelson, A. The distribution of people and the dimension of place: Methodologies to improve the global estimation of urban extents. In Proceedings of the Urban Remote Sensing Conference of the International Society for the Photogrammetry and Remote Sensing, Tempe, AZ, USA, 14–16 March 2005. [Google Scholar]
- The United Nations Environment Programme (UNEP). Global Resource Information Database. 1990. Available online: http://na.unep.net/siouxfalls/datasets/datalist.php (accessed on 11 April 2017).
- Tatem, A.J. Worldpop, open data for spatial demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef] [PubMed]
- Sorichetta, A.; Hornby, G.M.; Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2015, 2, 150045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High resolution global gridded data for use in population studies. Sci. Data 2017, 4, 170001. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, A.E.; Stevens, F.R.; Linard, C.; Jia, P.; Tatem, A.J. High resolution population distribution maps for Southeast Asia in 2010 and 2015. PLoS ONE 2013, 8, e55882. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Zu Erbach-Schoenberg, E.; Albert, M.; Power, D.; Tudge, S.; Gonzalez, M.; Guthrie, S.; Chamberlain, H.; Brooks, C.; Hughes, C.; et al. Rapid and near real-time assessments of population displacement using mobile phone data following disasters: The 2015 Nepal earthquake. PLoS Curr. 2016, 8, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Data Center for Resources and Environmental Sciences Chinese Academy of Sciences (DCRES). The Subcontinental and National Boundaries. Available online: http://www.resdc.cn (accessed on 11 April 2017).
- Liu, D.; Li, Z.; Jiang, S.; Han, J. Asia’s Natural Geography; The Commercial Press: Beijing, China, 1996; ISBN 7100017203. (In Chinese) [Google Scholar]
- Zhang, P.; Yang, Z.; Gupta, H.K.; Bhatia, S.C.; Shedlock, K.M. Global seismic hazard assessment program (GSHAP) in continental Asia. Ann. Geofis. 1999, 42, 1167–1190. [Google Scholar]
- Giardini, D.; Grunthal, G.; Shedlock, K.M.; Zhang, P. The GSHAP global seismic hazard map. Ann. Geofis. 1999, 42, 1225–1230. [Google Scholar]
- Showstack, R. New map lays out global seismic hazard values. Eos Trans. Am. Geophys. Union 1999, 80, 633–635. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2015, 42, 169–180. [Google Scholar] [CrossRef]
- Goldewijk, K.K.; Beusen, A.; Doelman, J.; Stehfest, E. New anthropogenic land use estimates for the holocene; hyde 3.2. Earth Syst. Sci. Data Discuss. 2017, 9, 927–953. [Google Scholar] [CrossRef]
- Lin, K.H.E.; Chang, Y.C.; Liu, G.Y.; Chan, C.H.; Lin, T.H.; Yeh, C.H. An interdisciplinary perspective on social and physical determinants of seismic risk. Nat. Hazards Earth Syst. 2015, 15, 2173–2182. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, K.S.; Petersen, M.D.; Rukstales, K.; Leith, W.S. Earthquake shaking hazard estimates and exposure changes in the conterminous United States. Earthq. Spectra 2015, 31, 201–220. [Google Scholar] [CrossRef]
- Blaikie, P.M.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People Vulnerability and Disasters, 2nd ed.; Routledge: London, UK, 2014; ISBN 9781135642723. [Google Scholar]
- Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J. Exposure estimation from multi-resolution optical satellite imagery for seismic risk assessment. ISPRS Int. J. Geo-Inf. 2012, 1, 69–88. [Google Scholar] [CrossRef]
- The United Nations Office for Disaster Risk Reduction (UNISDR). Towards a Culture of Prevention: Disaster Risk Reduction Begins at School-Good Practices and Lessons Learned. Available online: https://www.unisdr.org/2007/campaign/wdrc-2006–2007.htm (accessed on 11 April 2017).
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X. China’s demographic history and future challenges. Science 2011, 333, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Tatem, A.J. Mapping the denominator: Spatial demography in the measurement of progress. Int. Health 2014, 6, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, B.; Bright, E.; Coleman, P.; Urban, M.L. Landscan USA: A high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal 2007, 69, 103–117. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Hadi, A.S.; Price, B. Regression Analysis by Example; John Wiley and Sons: New York, NY, USA, 2000; ISBN 9780471746966. [Google Scholar]
- Ma, Q.; He, C.; Wu, J. Behind the rapid expansion of urban impervious surfaces in China: Major influencing factors revealed by a hierarchical multiscale analysis. Land Use Policy 2016, 59, 434–445. [Google Scholar] [CrossRef]
- The United Nations Office for Disaster Risk Reduction (UNISDR). Sendai Framework for Disaster Risk Reduction 2015–2030. Available online: https://www.unisdr.org/we/inform/publications/43291 (accessed on 24 August 2018).
- Storchak, D.A.; Di Giacomo, D.; Engdahl, E.R.; Harris, J.; Bondár, I.; Lee, W.H.K.; Bormann, P.; Villaseñor, A. The ISC-GEM global instrumental earthquake catalogue (1900–2009): Introduction. Phys. Earth Planet. Inter. 2015, 239, 48–63. [Google Scholar] [CrossRef]
- Zuccolo, E.; Vaccari, F.; Peresan, A.; Panza, G.F. Neo-deterministic and probabilistic seismic hazard assessments: A comparison over the Italian territory. Pure Appl. Geophys. 2011, 168, 69–83. [Google Scholar] [CrossRef]
- Azar, D.; Engstrom, R.; Graesser, J.; Comenetz, J. Generation of fine-scale population layers using multi-resolution satellite imagery and geospatial data. Remote Sens. Environ. 2013, 130, 219–232. [Google Scholar] [CrossRef]
- Bakillah, M.; Liang, S.; Mobasheri, A.; Jokar Arsanjani, J.; Zipf, A. Fine-resolution population mapping using openstreetmap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [Google Scholar] [CrossRef]
Region | MSHA Area (104 km2) | Regional Area (104 km2) | Percentages of MSHA Area to the Regional Area (%) | Percentage of MSHA Area to the Total MSHA Area of Asia (%) |
---|---|---|---|---|
Asia | 898.96 | 3115.84 | 28.85 | |
South Asia | 304.44 | 668.22 | 45.56 | 33.87 |
East Asia | 272.06 | 1153.54 | 23.58 | 30.26 |
Southeast Asia | 137.65 | 445.82 | 30.88 | 15.31 |
West Asia | 96.38 | 451.42 | 21.35 | 10.72 |
Central Asia | 88.43 | 396.84 | 22.28 | 9.84 |
Area | Region | 2000 | 2015 | 2000 to 2015 | Change Rate 1 |
---|---|---|---|---|---|
(Million) | (Million) | (Million) | (%) | ||
MSHA | Asia | 888.07 | 1073.95 | 185.88 | 20.93 |
West Asia | 85.16 | 112.22 | 27.07 | 31.78 | |
South Asia | 326.03 | 414.75 | 88.73 | 27.21 | |
Central Asia | 39.20 | 48.77 | 9.57 | 24.41 | |
Southeast Asia | 215.62 | 264.73 | 49.11 | 22.78 | |
East Asia | 222.06 | 233.47 | 11.41 | 5.15 | |
non-MSHA | Asia | 2797.24 | 3288.09 | 490.85 | 17.55 |
West Asia | 99.80 | 145.01 | 45.20 | 45.29 | |
South Asia | 1125.91 | 1408.22 | 282.31 | 25.07 | |
Central Asia | 15.89 | 18.54 | 2.65 | 16.71 | |
Southeast Asia | 310.56 | 368.76 | 58.20 | 18.74 | |
East Asia | 1245.08 | 1347.56 | 102.48 | 8.23 |
Area | Region | 2000 | 2015 | 2000 to 2015 | Change Rate 1 |
---|---|---|---|---|---|
(Million) | (Million) | (Million) | (%) | ||
MSHA | Asia | 321.94 | 385.47 | 63.53 | 19.73 |
Southeast Asia | 75.04 | 92.47 | 17.43 | 23.23 | |
West Asia | 32.45 | 39.38 | 6.93 | 21.33 | |
South Asia | 134.40 | 162.77 | 28.37 | 21.11 | |
East Asia | 64.13 | 74.16 | 10.03 | 15.65 | |
Central Asia | 15.92 | 16.69 | 0.77 | 4.84 | |
non-MSHA | Asia | 1013.47 | 1011.40 | −2.07 | −0.20 |
Southeast Asia | 117.89 | 113.33 | −4.56 | −3.86 | |
West Asia | 42.46 | 51.14 | 8.69 | 20.46 | |
South Asia | 447.09 | 474.42 | 27.33 | 6.11 | |
East Asia | 399.93 | 366.31 | −33.62 | −8.41 | |
Central Asia | 6.10 | 6.19 | 0.09 | 1.48 |
Method | Variable | Total Population in the MSHA | Vulnerable Population in the MSHA | ||
---|---|---|---|---|---|
r | p | r | p | ||
Pearson’s Correlation | Population density | 0.998 | 0.000 | 0.741 | 0.000 |
Urban population | 0.894 | 0.000 | 0.607 | 0.000 | |
GDP | 0.127 | 0.419 | 0.037 | 0.603 | |
GDP per capita | 0.379 | 0.183 | 0.308 | 0.111 | |
Urban land area | 0.875 | 0.000 | 0.575 | 0.001 | |
Birth rate | −0.333 | 0.245 | −0.205 | 0.278 | |
Infant mortality rate | 0.399 | 0.157 | 0.201 | 0.287 | |
Multiple GLM Regression | Variable | MS | SS, % | MS | SS, % |
Population density | 1.396 | 32.82 * | 0.15 | 26.19 * | |
Urban population | 2.802 | 65.87 * | 0.30 | 50.95 * | |
GDP | 0.003 | 0.07 | 0.00 | 0.10 | |
Urban land area | 0.016 | 0.37 | 0.01 | 1.18 | |
Birth rate | 0.004 | 0.10 | 0.00 | 0.51 | |
Infant mortality rate | 0.000 | 0.00 | 0.00 | 0.56 | |
Residuals | 0.002 | 0.77 | 0.01 | 20.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, Y.; Huang, Q.; He, C.; Meng, S.; Zhang, Q. Rapid Population Growth throughout Asia’s Earthquake-Prone Areas: A Multiscale Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1893. https://doi.org/10.3390/ijerph15091893
Dou Y, Huang Q, He C, Meng S, Zhang Q. Rapid Population Growth throughout Asia’s Earthquake-Prone Areas: A Multiscale Analysis. International Journal of Environmental Research and Public Health. 2018; 15(9):1893. https://doi.org/10.3390/ijerph15091893
Chicago/Turabian StyleDou, Yinyin, Qingxu Huang, Chunyang He, Shiting Meng, and Qiang Zhang. 2018. "Rapid Population Growth throughout Asia’s Earthquake-Prone Areas: A Multiscale Analysis" International Journal of Environmental Research and Public Health 15, no. 9: 1893. https://doi.org/10.3390/ijerph15091893
APA StyleDou, Y., Huang, Q., He, C., Meng, S., & Zhang, Q. (2018). Rapid Population Growth throughout Asia’s Earthquake-Prone Areas: A Multiscale Analysis. International Journal of Environmental Research and Public Health, 15(9), 1893. https://doi.org/10.3390/ijerph15091893