NonLinear Effects of Environmental Regulation on Eco-Efficiency under the Constraint of Land Use Carbon Emissions: Evidence Based on a Bootstrapping Approach and Panel Threshold Model
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data Specification
3.1. Eco-Efficiency Estimation Method
3.1.1. Mixed Directional Distance Function
3.1.2. Bootstrap–DEA Approach
3.1.3. Data Specification
3.2. Threshold Regression Model
3.2.1. Panel Threshold Model
3.2.2. Indicator Description and Data Processing
4. Results and Analysis
4.1. Analysis of Eco-Efficiency Results
4.2. Testing of Threshold Effects and the Analysis of Threshold Regression
5. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- WBCSD. Eco-Efficient Leadership for Improved Economic and Environmental Performance; WBCSD: Geneva, Switzerland, 1996; pp. 3–16. [Google Scholar]
- Lou, Y.; Shen, L.; Huang, Z.; Wu, Y.; Li, H.; Li, G. Does the Effort Meet the Challenge in Promoting Low-Carbon City?—A Perspective of Global Practice. Int. J. Environ. Res. Public Health. 2018, 15, 1334. [Google Scholar] [CrossRef]
- Qin, J.; Zhao, Y.; Xia, L. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract. Int. J. Environ. Res. Public Health. 2018, 15, 750. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Zhao, R.; Chen, Z.; Huang, X.; Zhong, T.; Chuai, X.; Lai, L.; Zhang, M. Research progress of land use carbon emission in Nanjing University. Sci. Geogr. Sin. 2012, 32, 1473–1480. [Google Scholar]
- Lei, L.P.; Zhong, H.; He, Z.H.; Cai, B.F.; Yang, S.Y.; Wu, C.J.; Zeng, Z.C.; Liu, L.Y.; Zhang, B. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations. Chin. Sci. Bull. 2017, 62, 2941–2950. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Chuurch, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Wang, J.; Zhao, T.; Wang, Y. How to achieve the 2020 and 2030 emissions targets of China: Evidence from high, mid and low energy-consumption industrial sub-sectors. Atmos. Environ. 2016, 145, 280–292. [Google Scholar] [CrossRef]
- Li, W.; Zhao, T.; Wang, Y.; Guo, F. Investigating the learning effects of technological advancement on CO2 emissions: A regional analysis in China. Nat. Hazards. 2017, 88, 1–17. [Google Scholar] [CrossRef]
- Long, X.L.; Oh, K.; Cheng, G. Are stronger environmental regulations effective in practice? The case of China’s accession to the WTO. J. Clean. Prod. 2013, 39, 161–167. [Google Scholar] [CrossRef]
- Ren, H.; Yao, Y. Effects of environmental regulation on eco-efficiency from the perspective of resource dependence. Soft Sci. 2016, 30, 35–38. [Google Scholar]
- Zhang, Z.; Wang, K.; Chen, X. Relationship between China ecological efficiency and environmental regulation—Based on SBM model and provincial panel data. Econ. Surv. 2015, 32, 126–131. [Google Scholar]
- Lei, Y.; You, L. The study on the impacts of environmental regulation on industrial ecological efficiency from the perspective of regional differences. Ind. Econ. Rev. 2018, 9, 140–150. [Google Scholar]
- Sun, K. Land finance restructuring, local industrial structure optimization and land transfer system reform. Econ. Manag. 2014, 2, 10–22. [Google Scholar]
- Pekka, J.K.; Mikulas, L. Eco-efficiency analysis of power plants: An extension of data envelopment analysis. J. Oper. Res. 2004, 154, 437–446. [Google Scholar]
- Passetti, E.; Tenucci, A. Eco-efficiency measurement and the influence of organizational factors: Evidence from large Italian companies. J. Clean. Prod. 2016, 122, 228–239. [Google Scholar] [CrossRef]
- Morioka, T.; Tsunemi, K.; Yamamoto, Y.; Yabar, H.; Yoshida, N. Eco-efficiency of advanced loop-closing systems for vehicles and household appliances in Hyogo eco-town. J. Ind. Ecol. 2015, 9, 205–221. [Google Scholar] [CrossRef]
- Song, M.; An, Q.; Zhang, W.; Wang, Z.; Wu, J. Environmental efficiency evaluation based on data envelopment analysis: A review. Renew. Sustain. Energy Rev. 2012, 16, 4465–4469. [Google Scholar] [CrossRef]
- Song, M.L.; Fisher, R.; Wang, J.L.; Cui, L.B. Environmental performance evaluation with big data: Theories and methods. Ann. Oper. Res. 2016, 3, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, X.; Yang, Q.; Zhang, Y. An empirical study on the institutional factors of energy conservation and emissions reduction: Evidence from listed companies in China. Energy Policy 2013, 57, 36–42. [Google Scholar] [CrossRef]
- Porter, M. America’s green strategy. Sci. Am. 1991, 264, 168. [Google Scholar] [CrossRef]
- Frondel, M.; Horbach, J.; Rennings, K. End-of-pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries. Strategy Environ. 2007, 16, 571–584. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, B.; Zeng, H. The effect of environmental regulation on external trade: Empirical evidences from Chinese economy. J. Clean. Prod. 2015, 147, 649–660. [Google Scholar] [CrossRef]
- Laplante, B.; Rilstone, P. Environmental inspections and emissions of the pulp and paper industry in Quebec. J. Environ. Econ. Manag. 1996, 31, 19–36. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Wang, H.; Wheeler, D. Confronting the environmental Kuznets curve. Econ Perspect. 2002, 16, 147–168. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Stavins, R.N. Dynamic incentives of environmental regulations: The effects of alternative policy instruments on technology diffusion. J. Environ. Econ. Manag. 2004, 29, 43–63. [Google Scholar] [CrossRef]
- Levinson, S.L.; Taylor, M.S. Unmasking the Pollution Haven Effect. Int. Econ. Rev. 2008, 49, 223–254. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Z.; Liang, Q. An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization. Energy Policy 2017, 103, 203–211. [Google Scholar] [CrossRef]
- Xie, R.; Yuan, Y.; Huang, J. Different types of environmental regulations and heterogeneous influence on “Green” productivity: Evidence from China. Ecol. Econ. 2017, 132, 104–112. [Google Scholar] [CrossRef]
- Nadeau, L.W. EPA effectiveness at reducing the duration of plant-level noncompliance. J. Environ. Econ. Manag. 2004, 34, 54–78. [Google Scholar] [CrossRef]
- Daron, A.; Philippe, A.; Leonardo, B.; David, H. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar]
- Lanoie, P.; Patry MLajeunesse, R. Environmental Regulation and Productivity: Testing the Porter Hypothesis. J. Prod. Anal. 2008, 30, 121–128. [Google Scholar] [CrossRef]
- Yuan, Y.; Xie, R. Environmental regulation and the “Green” productivity growth of China’s industry. China Soft Sci. 2016, 7, 144–154. [Google Scholar]
- Chen, S. Energy-save and emission-abate activity with its impact on industrial win–win development in China: 2009–2049. Econ. Res. J. 2010, 3, 129–143. [Google Scholar]
- Tu, Z. The coordination of industrial growth with environment and resource. Econ. Res. J. 2008, 2, 93–105. [Google Scholar]
- Shen, K.; Gong, J. Environmental pollution, technical progress, and productivity growth of energy-intensive industries in China—Empirical study based on ETFP. China Ind. Econ. 2011, 12, 25–34. [Google Scholar]
- Chen, L.; Wang, W.; Wang, B. Economic efficiency, environmental efficiency and eco-efficiency of the so-called two vertical and three horizontal urbanization areas: Empirical analysis based on HDDP and Co-Plot method. China Soft Sci. 2015, 2, 96–109. [Google Scholar]
- Tone, K. A Hybrid Measure of Efficiency in DEA; GRIPS Policy Information Center Research Report; National Graduate Institute for Policy Studies: Tokyo, Japan, 2004. [Google Scholar]
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef]
- Energy Research Institute of National Development and Reform Commission. Analysis of China’s sustainable development energy and carbon emission scenario. China Energy 2003, 25, 4–10. [Google Scholar]
- Li, B.; Zhang, J.; Li, H. Empirical study on China’s agriculture carbon emissions and economic development. J. Arid Land Resour. Environ. 2011, 25, 8–13. [Google Scholar]
- Chuai, X.; Huang, X.; Zheng, Z.; Zhang, M.; Liao, Q.; Lai, L.; Lu, J. Land Use Change and Its Influence on Carbon Storage of Terrestrial Ecosystems in Jiangsu Province. Res. Sci. 2011, 33, 1932–1939. [Google Scholar]
- Shan, H. Re-estimating the Capital Stock of China: 1952–2006. J. Quant. Tech. Econ. 2008, 10, 17–31. [Google Scholar]
- Zhang, J.; Wu, G.; Zhang, J. The Estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- You, H.; Wu, C.; Lin, N.; Shen, P. Assessment of eco-efficiency of land use based on DEA. Trans. Chin. Soc. Agric. 2011, 27, 309–315. [Google Scholar]
- Gonzalez, A.; Terasvirta, T.; Dijk, D.V. Panel Smooth Transition Regression Models; SEE/EFI Working Paper Series in Economics and Finance; Department of Statistics, Uppsala University: Uppsala, Sweden, 2005; p. 604. [Google Scholar]
- Hansen, B. Threshold effects in non-dynamic panels: Estimation, testing and inference. J. Econ. 1999, 22, 345–368. [Google Scholar] [CrossRef]
- Tong, H. On a Threshold Model in Pattern Recognition and Signal Processing; Sijthof & Noordhof: Amsterdam, The Netherland, 1978. [Google Scholar]
- Ederington, J.; Levinson, A.; Minier, J. Footloose and Pollution Free. Rev. Econ. Stat. 2005, 87, 92–99. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X. Competition for promotion of local officials and economic growth. Econ. Sci. 2010, 1, 42–58. [Google Scholar]
- Huang, J.; Yang, X.; Cheng, G.; Wang, S. A comprehensive eco-efficiency in China. J. Clean. Prod. 2014, 12, 228–238. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Wang, P.; Ding, L.; Li, X.; Wang, Y.; Zhang, Q.; Li, A.; Jiang, G. Reduction of Atmospheric Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/Fs) during the 2008 Beijing Olympic Games. Environ. Sci. Technol. 2011, 45, 3304–3309. [Google Scholar] [CrossRef] [Green Version]
- Qu, X. Regional differentials and influence factors of eco-efficiency in China: An empirical analysis based on the perspective of spatio-temporal differences. Resour. Environ. Yangtze Basin 2018, 27, 2673–2683. [Google Scholar]
- Chen, Y.; Wang, M.; Li, D. Study on China’s inter-provincial eco-efficiency based on improved SBM model. Sci. Tech. Manag. Res. 2019, 6, 248–254. [Google Scholar]
- Yang, L.; Zhang, X. Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: A bootstrapping approach in global data envelopment analysis. J. Clean. Prod. 2016, 7, 1–12. [Google Scholar] [CrossRef]
- Luo, N.; Wang, Y. Fiscal decentralization, environmental regulation and regional eco-efficiency. China Popul. Resour. Environ. 2017, 27, 110–118. [Google Scholar]
- Zhang, L.; Yang, C.L. Has the reform of land marketization refrain the fluctuation of housing prices?—Empirical evidence from China. Economist 2015, 12, 34–41. [Google Scholar]
- Du, J.; Thill, J.C.; Peiser, R.B.; Feng, C. Urban Land Market and Land-Use Changes in Post-Reform China: A Case Study of Beijing. Landsc. Urban Plan. 2014, 124, 118–128. [Google Scholar] [CrossRef]
- Liu, R.; Shi, L. The dual efficiency loss of state-owned enterprises and economic growth. Econ. Res. J. 2010, 1, 127–137. [Google Scholar]
- Zhang, C.; Zhang, Y. Do the state-owned enterprises have low efficiency? Economist 2011, 2, 16–25. [Google Scholar]
Index | Parameters | |
---|---|---|
Input | Land average capital stock | |
Land average labor | ||
Land average energy consumption | ||
Output | Desirable output | GDP |
Undesirable output | CO2 |
Year | Eco-Efficiency | Eco-Efficiency after Modification | Bias | Derivation | Confidence Intervals |
---|---|---|---|---|---|
2004 | 0.7872 | 0.6979 | 0.0893 | 0.0488 | [0.6052, 0.7740] |
2005 | 0.7740 | 0.6776 | 0.0964 | 0.0523 | [0.5784, 0.7595] |
2006 | 0.7750 | 0.6803 | 0.0946 | 0.05198 | [0.5822, 0.7618] |
2007 | 0.7720 | 0.6764 | 0.0955 | 0.0510 | [0.5790, 0.7570] |
2008 | 0.7813 | 0.6870 | 0.0943 | 0.0499 | [0.5880, 0.7661] |
2009 | 0.7904 | 0.6991 | 0.0913 | 0.0487 | [0.6028, 0.7764] |
2010 | 0.5871 | 0.4756 | 0.1114 | 0.0553 | [0.3777, 0.5687] |
2011 | 0.8085 | 0.7178 | 0.0906 | 0.0490 | [0.6213, 0.7931] |
2012 | 0.8132 | 0.7253 | 0.0878 | 0.0488 | [0.6280, 0.7990] |
2013 | 0.8116 | 0.7238 | 0.0878 | 0.0491 | [0.6232, 0.7965] |
2014 | 0.8117 | 0.7238 | 0.0880 | 0.0488 | [0.6272, 0.7972] |
2015 | 0.8049 | 0.7117 | 0.0933 | 0.0505 | [0.6152, 0.7897] |
2016 | 0.8131 | 0.7244 | 0.0886 | 0.0464 | [0.6349, 0.7962] |
Variables | Sum | Minimum | Maximum | Mean | Standard Error |
---|---|---|---|---|---|
Eco-efficiency | 390 | 0.0025 | 0.9086 | 0.6861 | 0.1433 |
ER | 390 | 0.008 | 0.1857 | 0.0424 | 0.0284 |
OS | 390 | 0.0168 | 0.8343 | 0.1431 | 0.1308 |
RD | 390 | 0.0491 | 6.6651 | 1.7399 | 2.4396 |
IS | 390 | 0.197 | 48.9 | 3.6374 | 11.163 |
COM | 390 | 0.7333 | 2.9167 | 1.5089 | 0.5941 |
LM | 390 | 0.0429 | 5.9249 | 0.6065 | 0.3911 |
Thresholds Variables | Number of Thresholds | F-Statistic | Threshold Value | 95% Confidence Interval |
---|---|---|---|---|
Technical Innovation (RD) | Single | 12.41 *** | 0.46 | [0.42, 0.47] |
Double | 17.05 ** | 0.3735 | [0.3506, 0.3900] | |
0.4175 | [0.4050, 0.4235] | |||
Industrial Structure (IS) | Single | 8.55 ** | 0.25 | [0.240, 0.257] |
Land Marketization (LM) | Single | 7.52 ** | 0.1750 | [0.1355,0.1797] |
Double | 9.78 ** | 0.1750 | [0.1437, 0.1797] | |
0.3219 | [0.2638, 0.3221] |
Parameter | Coefficient | Parameter | Coefficient | Parameter | Coefficient |
---|---|---|---|---|---|
OS | 0.4375 ** (0.1811) | OS | 0.4855 *** (0.1848) | OS | 0.6790 *** (0.193) |
COM | −0.0776 *** (0.0105) | COM | −0.0882 *** (0.1064) | COM | −0.0834 *** (0.011) |
−0.337 * (0.2057) | 4.1022 *** (0.0863) | −1.4679 ** (0.0534) | |||
−6.4322 *** (0.0767) | −0.4304 * (0.4378) | ||||
0.8347 ** (0.1336) | 1.2621 *** (0.0314) | 1.0899 *** (0.0303) | |||
R2 | 0.1882 | R2 | 0.1423 | R2 | 0.1322 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zheng, H.; Liu, H.; Wu, Q. NonLinear Effects of Environmental Regulation on Eco-Efficiency under the Constraint of Land Use Carbon Emissions: Evidence Based on a Bootstrapping Approach and Panel Threshold Model. Int. J. Environ. Res. Public Health 2019, 16, 1679. https://doi.org/10.3390/ijerph16101679
Yang H, Zheng H, Liu H, Wu Q. NonLinear Effects of Environmental Regulation on Eco-Efficiency under the Constraint of Land Use Carbon Emissions: Evidence Based on a Bootstrapping Approach and Panel Threshold Model. International Journal of Environmental Research and Public Health. 2019; 16(10):1679. https://doi.org/10.3390/ijerph16101679
Chicago/Turabian StyleYang, Haoran, Hao Zheng, Hongguang Liu, and Qun Wu. 2019. "NonLinear Effects of Environmental Regulation on Eco-Efficiency under the Constraint of Land Use Carbon Emissions: Evidence Based on a Bootstrapping Approach and Panel Threshold Model" International Journal of Environmental Research and Public Health 16, no. 10: 1679. https://doi.org/10.3390/ijerph16101679
APA StyleYang, H., Zheng, H., Liu, H., & Wu, Q. (2019). NonLinear Effects of Environmental Regulation on Eco-Efficiency under the Constraint of Land Use Carbon Emissions: Evidence Based on a Bootstrapping Approach and Panel Threshold Model. International Journal of Environmental Research and Public Health, 16(10), 1679. https://doi.org/10.3390/ijerph16101679