Farm Machine Use and Pesticide Expenditure in Maize Production: Health and Environment Implications
Abstract
:1. Introduction
2. Empirical Specification
2.1. The Decision of Farm Machine Use
2.2. Impact Evaluation and Selection Bias
2.3. Endogenous Switching Regression Model
3. Data and Descriptive Statistics
4. Empirical Results
4.1. Determinants of Farm Machine Use
4.2. Determinants of Pesticide Expenditure
4.3. Estimations of the Treatment Effects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variables | Category | NNM | KBM |
---|---|---|---|
Pesticide expenditure | ATT | −8.003 (5.762) | −3.914 (4.478) |
ATU | −17.411 (7.895) ** | −10.860 (6.497) * |
References
- Pingali, P.L.; Roger, P.A. Impact of Pesticides on Farmer Health and the Rice Environment; Pingali, P.L., Roger, P.A., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 54, ISBN 978-94-010-4282-6. [Google Scholar]
- Myriam, C.; Federica, D.; Sophie, D.; Polifunzionale, E.; Sanctis, V.F. De Maximum residual levels of pesticides and public health best friends or faux amis? Agric. Econ. 2017, 33, 1–22. [Google Scholar]
- Lai, W. Pesticide use and health outcomes: Evidence from agricultural water pollution in China. J. Environ. Econ. Manag. 2017, 86, 93–120. [Google Scholar] [CrossRef]
- Ghimire, N.; Woodward, R.T. Under- and over-use of pesticides: An international analysis. Ecol. Econ. 2013, 89, 73–81. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 2012, 37, 616–626. [Google Scholar] [CrossRef]
- Richter, E.D. Acute human pesticide poisonings. Encycl. Pest Manag. 2002, 1, 3–6. [Google Scholar]
- Jin, S.; Zhou, F. Zero Growth of Chemical Fertilizer and Pesticide Use: China’s Objectives, Progress and Challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar]
- Antle, J.M.; Capalbo, S.M. Pesticides, Productivity, and Farmer Health: Implications for Regulatory Policy and Agricultural Research. Am. J. Agric. Econ. 1994, 76, 598. [Google Scholar] [CrossRef]
- Huang, J.; Hu, R.; Rozelle, S.; Pray, C. Insect-resistant GM rice in farmers’ fields: Assessing productivity and health effects in China. Science (N. Y.) 2005, 308, 688–690. [Google Scholar] [CrossRef]
- Ngowi, A.V.F.V.F.; Mbise, T.J.J.; Ijani, A.S.M.S.M.; London, L.; Ajayi, O.C.C. Smallholder vegetable farmers in Northern Tanzania: Pesticides use practices, perceptions, cost and health effects. Crop Prot. 2007, 26, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Stoler, A.B.; Walker, B.M.; Hintz, W.D.; Jones, D.K.; Lind, L.; Mattes, B.M.; Schuler, M.S.; Relyea, R.A. Combined effects of road salt and an insecticide on wetland communities. Environ. Toxicol. Chem. 2017, 36, 771–779. [Google Scholar] [CrossRef]
- Sierra-Diaz, E.; Celis-de la Rosa, A.J.; Lozano-Kasten, F.; Trasande, L.; Peregrina-Lucano, A.A.; Sandoval-Pinto, E.; Gonzalez-Chavez, H. Urinary pesticide levels in children and adolescents residing in two agricultural communities in Mexico. Int. J. Environ. Res. Public Health 2019, 16, E562. [Google Scholar] [CrossRef]
- Midingoyi, S.-k.G.; Kassie, M.; Muriithi, B.; Diiro, G.; Ekesi, S. Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya. J. Agric. Econ. 2018, 70, 452–470. [Google Scholar] [CrossRef]
- Skevas, T.; Stefanou, S.E.; Lansink, A.O. Can economic incentives encourage actual reductions in pesticide use and environmental spillovers? Agric. Econ. 2012, 43, 267–276. [Google Scholar] [CrossRef]
- Alam, S.A.; Wolff, H. Do Pesticide Sellers Make Farmers Sick? Health, Information, and Adoption of Technology in Bangladesh. J. Agric. Resour. Econ. 2016, 41, 62–80. [Google Scholar]
- Boussemart, J.P.; Leleu, H.; Ojo, O. Could society’s willingness to reduce pesticide use be aligned with farmers’ economic self-interest? Ecol. Econ. 2011, 70, 1797–1804. [Google Scholar] [CrossRef]
- Carvalho, F.P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 2006, 9, 685–692. [Google Scholar] [CrossRef]
- Benin, S. Impact of Ghana’s agricultural mechanization services center program. Agric. Econ. 2015, 46, 103–117. [Google Scholar] [CrossRef]
- Ma, W.; Renwick, A.; Grafton, Q. Farm machinery use, off-farm employment and farm performance in China. Aust. J. Agric. Resour. Econ. 2018, 62, 279–298. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, W.; Li, G. Draft Animals, Farm Machines and Sustainable Agricultural Production: Insight from China. Sustainability 2018, 10, 3015. [Google Scholar] [CrossRef]
- Fischer, G.; Wittich, S.; Malima, G.; Sikumba, G.; Lukuyu, B.; Ngunga, D.; Rugalabam, J. Gender and mechanization: Exploring the sustainability of mechanized forage chopping in Tanzania. J. Rural Stud. 2018, 64, 112–122. [Google Scholar] [CrossRef]
- Kienzle, J.; Ashburner, J.E.; Sims, B.G. Mechanization for Rural Development: A Review of Patterns and Progress from Around the World.; Integrated Crop Management (FAO), Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 20. [Google Scholar]
- Yamauchi, F. Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia. Food Policy 2016, 58, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Takeshima, H. Mechanize or exit farming? Multiple-treatment-effects model and external validity of adoption impacts of mechanization among Nepalese smallholders. Rev. Dev. Econ. 2018, 22, 1620–1641. [Google Scholar] [CrossRef]
- Rahman, M.S.; Monayem Miah, M.A.; Moniruzzaman; Hossain, S. Impact of farm mechanization on labour use for wheat cultivation in northern Bangladesh. J. Anim. Plant Sci. 2011, 21, 589–594. [Google Scholar]
- Takeshima, H. Custom-hired tractor services and returns to scale in smallholder agriculture: A production function approach. Agric. Econ. 2017, 48, 363–372. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef]
- Asfaw, S.; Shiferaw, B.; Simtowe, F.; Lipper, L. Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia. Food Policy 2012, 37, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Abdulai, A. Linking apple farmers to markets. China Agric. Econ. Rev. 2016, 8, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Abdulai, A.; Goetz, R. Agricultural Cooperatives and Investment in Organic Soil Amendments and Chemical Fertilizer in China. Am. J. Agric. Econ. 2018, 100, 502–520. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. Does cooperative membership improve household welfare? Evidence from apple farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
- Ma, W.; Grafton, R.Q.; Renwick, A. Smartphone use and income growth in rural China: Empirical results and policy implications. Electron. Commer. Res. 2018. [Google Scholar] [CrossRef]
- Kabunga, N.S.; Dubois, T.; Qaim, M. Yield Effects of Tissue Culture Bananas in Kenya: Accounting for Selection Bias and the Role of Complementary Inputs. J. Agric. Econ. 2012, 63, 444–464. [Google Scholar] [CrossRef] [Green Version]
- De Janvry, A.; Sadoulet, E. Income Strategies Among Rural Households in Mexico: The Role of Off-farm Activities. World Dev. 2001, 29, 467–480. [Google Scholar] [CrossRef]
- Heckman, J.J. Sample Selection Bias as a Specification Error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
- CRSY. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Ji, Y.; Yu, X.; Zhong, F. Machinery investment decision and off-farm employment in rural China. China Econ. Rev. 2012, 23, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yamauchi, F.; Otsuka, K.; Huang, J. Wage Growth, Landholding, and Mechanization in Chinese Agriculture. World Dev. 2016, 86, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Abdulai, A.N. Impact of conservation agriculture technology on household welfare in Zambia. Agric. Econ. 2016, 47, 729–741. [Google Scholar] [CrossRef]
- Diendéré, A.; Nguyen, G.; Del Corso, J.P.; Kephaliacos, C. Modeling the Relationship Between Pesticide Use and Farmers’ Beliefs about Water Pollution in Burkina Faso. Ecol. Econ. 2018, 151, 114–121. [Google Scholar] [CrossRef]
- Denkyirah, E.K.; Okoffo, E.D.; Adu, D.T.; Aziz, A.A.; Ofori, A.; Denkyirah, E.K. Modeling Ghanaian cocoa farmers’ decision to use pesticide and frequency of application: The case of Brong Ahafo Region. SpringerPlus 2016, 5, 1113. [Google Scholar] [CrossRef]
- Gong, Y.; Baylis, K.; Kozak, R.; Bull, G. Farmers’ risk preferences and pesticide use decisions: Evidence from field experiments in China. Agric. Econ. 2016, 47, 411–421. [Google Scholar] [CrossRef]
- Liu, E.M.; Huang, J. Risk preferences and pesticide use by cotton farmers in China. J. Dev. Econ. 2013, 103, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Abdulai, A.; Ma, C. The effects of off-farm work on fertilizer and pesticide expenditures in China. Rev. Dev. Econ. 2018, 22, 573–591. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeshima, H.; Nin-Pratt, A.; Diao, X. Mechanization and Agricultural Technology Evolution, Agricultural Intensification in Sub-Saharan Africa: Typology of Agricultural Mechanization in Nigeria. Am. J. Agric. Econ. 2013, 95, 1230–1236. [Google Scholar] [CrossRef]
Variables | Definition | Mean | SD 1 |
---|---|---|---|
Pesticide expenditure | Expense on pesticide (Yuan/mu) 2 | 25.750 | 28.700 |
Farm machine use | 1 if a household uses farm machines for pesticides application, 0 otherwise | 0.576 | 0.495 |
Age | Age of household head (year) | 46.790 | 10.320 |
Gender | 1 if household head is male, 0 otherwise | 0.836 | 0.371 |
Education | Schooling year of household head (year) | 6.779 | 2.760 |
Off-farm work | 1 if household head participate in off-farm work, 0 otherwise | 0.712 | 0.453 |
Farming experience | Years of household head farming (year) | 25.44 | 10.54 |
Risk preference | Risk preference score (1–10) 3 | 2.586 | 1.865 |
Household size | Number of people residing in a household | 4.552 | 1.447 |
Credit access | 1 if farmer has access to credit, 0 otherwise | 0.428 | 0.495 |
Transportation condition | 1 if transportation from the village to the train/bus station is convenient, 0 otherwise | 0.753 | 0.432 |
Farm size | Total farm size used to cultivate maize (mu) | 3.514 | 2.956 |
Subsidy | 1 if household receives the agricultural subsidy, 0 otherwise | 0.221 | 0.415 |
Extension contact | 1 if household receives extension service, 0 otherwise | 0.203 | 0.403 |
Extension attitude | Attitude to the extension service provided by local government (1–5) 4 | 2.673 | 1.152 |
Project | 1 if the village executes the environment improvement project, 0 otherwise | 0.807 | 0.395 |
Gansu | 1 if household resides in Gansu, 0 otherwise | 0.327 | 0.469 |
Henan | 1 if household resides in Henan, 0 otherwise | 0.345 | 0.476 |
Shandong | 1 if household resides in Shandong, 0 otherwise | 0.329 | 0.470 |
Variables | Users | Nonusers | Diff. | t-Value |
---|---|---|---|---|
Pesticide expenditure | 19.788 (21.077) | 33.856 (35.058) | −14.067 *** | −5.538 |
Age | 46.246 (9.929) | 47.522 (10.816) | −1.275 | −1.356 |
Gender | 0.796 (0.796) | 0.890 (0.890) | −0.094 *** | −2.805 |
Education | 6.673 (2.541) | 6.923 (3.034) | −0.251 | −0.997 |
Off-farm work | 0.778 (0.416) | 0.622 (0.486) | 0.156 *** | 3.832 |
Farming experience | 25.331 (10.111) | 25.584 (11.123) | −0.253 | −0.263 |
Risk preference | 2.127 (1.612) | 3.211 (2.003) | −1.084 *** | −6.650 |
Household size | 4.521 (1.569) | 4.593 (1.264) | −0.072 | −0.547 |
Credit access | 0.317 (0.466) | 0.579 (0.495) | −0.262 *** | −6.009 |
Transportation condition | 0.863 (0.345) | 0.603 (0.490) | 0.260 *** | 6.905 |
Farm size | 4.116 (3.441) | 2.696 (1.843) | 1.421 *** | 5.422 |
Subsidy | 0.081 (0.273) | 0.411 (0.493) | −0.330 *** | −9.487 |
Extension contact | 0.201 (0.401) | 0.206 (0.405) | −0.005 | −0.137 |
Extension attitude | 2.289 (1.009) | 3.196 (1.139) | −0.907 *** | −9.380 |
Project | 0.782 (0.414) | 0.842 (0.366) | −0.060 * | −1.682 |
Gansu | 0.131 (0.337) | 0.593 (0.492) | −0.463 *** | −12.386 |
Henan | 0.299 (0.459) | 0.407 (0.492) | −0.107 ** | −2.490 |
Shandong | 0.570 (0.496) | 0.000 (0.000) | 0.570 *** | 16.625 |
Variables | Selection | Pesticide Expenditure | |
---|---|---|---|
Users | Nonusers | ||
Age | −0.046 (0.032) | −0.902 (0.325) *** | 0.132 (0.531) |
Gender | −0.639 (0.223) *** | −12.466 (3.989) *** | −1.150 (7.853) |
Education | −0.011 (0.035) | −0.322 (0.588) | −1.026 (0.814) |
Off-farm work | 0.319 (0.177) * | −1.444 (3.881) | 1.777 (4.506) |
Farming experience | 0.039 (0.032) | 0.857 (0.316) *** | 0.424 (0.470) |
Risk preference | −0.125 (0.050) ** | −0.238 (0.662) | −0.500 (1.079) |
Household size | 0.082 (0.066) | −0.309 (0.514) | 0.991 (1.962) |
Credit access | −0.232 (0.193) | 3.045 (2.243) | 2.869 (6.358) |
Transportation condition | 0.628 (0.192) *** | 9.329 (2.458) *** | 12.919 (4.894) *** |
Farm size | 0.099 (0.033) *** | −0.347 (0.291) | −3.327 (1.078) *** |
Subsidy | −0.413 (0.233) * | 10.489 (6.888) | −4.728 (7.064) |
Extension contact | 0.386 (0.222) * | −5.240 (3.420) | −1.277 (6.717) |
Extension attitude | −0.233 (0.079) *** | 0.251 (1.469) | −1.010 (2.523) |
Project | −0.619 (0.217) *** | −6.219 (3.971) | −20.540 (6.676) *** |
Henan | −0.595 (0.298) ** | −11.463 (4.758) ** | −38.365 (7.615) *** |
Shandong | 6.388 (0.567) *** | −8.787 (4.572) * | |
IV | 2.376 (0.697) *** | ||
Constant | 1.067 (0.867) | 59.962 (11.964) *** | 63.102 (21.863) *** |
2.871 (0.128) *** | |||
0.056 (0.068) | |||
3.351 (0.091) *** | |||
0.398 (0.135) *** | |||
LR test of indep. eqns. | |||
Log-likelihood | −2361.866 | ||
Observation | 493 | 493 | 493 |
Variables | Category | Average Expected Expenditure (Yuan/mu) | Treatment Effects | t-Value | Change (%) | |
---|---|---|---|---|---|---|
Users | Nonusers | |||||
Pesticide expenditure | ATT | 19.788 | 48.107 | −28.319 *** | −25.497 | 58.87 |
ATU | 22.780 | 33.827 | −11.047 *** | −11.651 | 32.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, J.; Zhou, X. Farm Machine Use and Pesticide Expenditure in Maize Production: Health and Environment Implications. Int. J. Environ. Res. Public Health 2019, 16, 1808. https://doi.org/10.3390/ijerph16101808
Zhang J, Wang J, Zhou X. Farm Machine Use and Pesticide Expenditure in Maize Production: Health and Environment Implications. International Journal of Environmental Research and Public Health. 2019; 16(10):1808. https://doi.org/10.3390/ijerph16101808
Chicago/Turabian StyleZhang, Jing, Jianhua Wang, and Xiaoshi Zhou. 2019. "Farm Machine Use and Pesticide Expenditure in Maize Production: Health and Environment Implications" International Journal of Environmental Research and Public Health 16, no. 10: 1808. https://doi.org/10.3390/ijerph16101808
APA StyleZhang, J., Wang, J., & Zhou, X. (2019). Farm Machine Use and Pesticide Expenditure in Maize Production: Health and Environment Implications. International Journal of Environmental Research and Public Health, 16(10), 1808. https://doi.org/10.3390/ijerph16101808