A Novel, Individualized Exercise Program for Patients with Peripheral Arterial Disease Recovering from Bypass Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. The Stage of Rehabilitation
2.3. Individual Tong-Term Exercise Program (Group I)
2.4. The Standard Physical Activity Program (Group II)
2.5. Patients Data Collection
2.6. Statistical Analysis
3. Results
3.1. Quality of Life Before Surgery
3.2. Quality of Life Changes at 6-month Follow-Up
3.3. Changes of Quality of Life Considering Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Olin, J.W.; White, C.J.; Armstrong, E.J.; Kadian-Dodov, D.; Hiatt, W.R. Peripheral artery disease (evolving role of exercise, medical therapy, and endovascular options). J. Am. Coll. Cardiol. 2016, 67, 11. [Google Scholar]
- Choi, D.; Ko, Y.; Rha, S.; Choi, S.; Kim, Y.; Kim, H.J. Characteristics and quality of life in peripheral arterial disease (pad) patients in Korea: Results from Pad Outcomes Research. Value Health 2016, 19, A658. [Google Scholar] [CrossRef]
- Hansson, C.W.; Wennick, A. How do patients with peripheral arterial disease communicate their knowledge about their illness and treatments? A qualitative descriptive study. BMC Nurs. 2016, 15, 29. [Google Scholar]
- Inampudi, C.; Akintoye, E.; Ando, T.; Briasoulis, A. Angiogenesis in peripheral arterial disease. Curr. Opin. Pharmacol. 2018, 39, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: Executive summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 68, 1465–1508. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Coresh, J.; Selvin, E.; Tanaka, H.; Heiss, G.; Hirsch, A.T.; Jaar, B.G.; Matsushita, K. Lower Extremity Peripheral Artery Disease and Quality of Life Among Older Individuals in the Community. J. Am. Heart Assoc. 2017, 6, e004519. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Lin, J.W.; Hsu, J.; Wu, L.C.; Lai, M.S. Stent revascularization versus bypass surgery for peripheral artery disease in type 2 diabetic patients—An instrumental variable analysis. Sci. Rep. 2016, 6, 37177. [Google Scholar] [CrossRef]
- Je, H.G.; Kim, B.H.; Cho, K.I.; Jang, S.J.; Park, Y.H.; Spertus, J. Correlation between patient-reported symptoms and ankle-brachial index after revascularization for peripheral arterial disease. Int. J. Mol. Sci. 2015, 16, 11355–11368. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. The task force for the diagnosis and treatment of peripheral arterial diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef]
- Salisbury, D.L.; Whipple, M.O.; Burt, N.; Brown, R.; Mays, R.J.; Bakken, M.; Jacobson, D.T. Experience Implementing Supervised Exercise Therapy for Peripheral Artery Disease. J. Clin. Exerc. Physiol. 2019, 8, 1–12. [Google Scholar] [CrossRef]
- Kirk, L.N.; Brown, R.; Jacobson, D.T. Long-term outcomes of supervised exercise in peripheral artery disease: Impact of differing modes of exercise 1–4 years after intervention. J. Vasc. Nurs. 2018, 36, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Rooke, T.W.; Hirsch, A.T.; Misra, S.; Sidawy, A.N.; Beckman, J.A.; Findeiss, L.K.; Golzarian, J.; Gornik, H.L.; Halperin, J.L.; Jaff, M.R.; et al. 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2011, 58, 2020–2045. [Google Scholar] [PubMed]
- Milani, R.V.; Lavie, C.J. The role of exercise training in peripheral arterial disease. Vasc. Med. 2007, 12, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mays, R.J.; Hiatt, W.R.; Casserly, I.P.; Rogers, R.K.; Main, D.S.; Kohrt, W.M.; Ho, P.M.; Regensteiner, J.G. Community-based walking exercise for peripheral artery disease: An exploratory pilot study. Vasc. Med. 2015, 20, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, D.T.; McDermot, M.M.; Bronas, U.G.; Campia, U.; Collins, T.C.; Criqui, M.H.; Gardner, A.W.; Hiatt, W.R.; Regensteiner, J.G.; Rich, K.; et al. Optimal Exercise Programs for Patients with Peripheral Artery Disease: A Scientific Statement from the American Heart Association. Circulation 2019, 139, 10–33. [Google Scholar]
- Badger, S.A.; Soong, C.V.; O’Donnell, M.E.; Boreham, C.A.; McGuigan, K.E. Benefits of a supervised exercise program after lower limb bypass surgery. Vasc. Endovasc. Surg. 2007, 41, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, F.; Dahllof, A.G.; Lundholm, K.; Scherstén, T.; Volkmann, R. Intermittent claudication—Surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann. Surg. 1989, 209, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Jakubsevičienė, E.; Vasiliauskas, D.; Velička, L.; Kubilius, R.; Milinavičienė, E.; Venclovienė, J. Effectiveness of a New Exercise Program after Lower Limb Arterial Blood Flow Surgery in Patients with Peripheral Arterial Disease: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2014, 11, 7961–7976. [Google Scholar] [CrossRef] [Green Version]
- Jakubsevičienė, E.; Vasiliauskas, D.; Kubilius, R.; Velička, L.; Venclovienė, J.; Milinavičienė, E.; Leimonienė, L. Exercise-based rehabilitation improves hemodynamic responses after lower limb arterial blood flow surgery. Br. J. Med. Res. 2014, 4, 2089–2099. [Google Scholar] [CrossRef]
- Fakhry, F.; Spronk, S.; van der Laan, L.; Wever, J.J.; Teijink, J.A.; Hoffmann, W.H.; Smits, T.M.; van Brussel, J.P.; Stultiens, G.N.; Derom, A.; et al. Endovascular revascularization and supervised exercise for peripheral artery disease and intermittent claudication: A randomized clinical trial. JAMA 2015, 314, 1936–1944. [Google Scholar] [CrossRef]
- Pandey, A.; Banerjee, S.; Ngo, C.; Mody, P.; Marso, S.P.; Brilakis, E.S.; Armstrong, E.J.; Giri, J.; Bonaca, M.P.; Pradhan, A.; et al. Comparative efficacy of endovascular revascularization versus supervised exercise training in patients with intermittent claudication: Meta-analysis of randomized controlled trials. JACC Cardiovasc. Interv. 2017, 10, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Bo, E.; Hisdal, J.; Cvancarova, M.; Stranden, E.; Jørgensen, J.J.; Sandbæk, G.; Grøtta, O.J.; Bergland, A. Twelve-months follow-up of supervised exercise after percutaneous transluminal angioplasty for intermittent claudication: A randomised clinical trial. Int. J. Environ. Res. Public Health 2013, 10, 5998–6014. [Google Scholar] [CrossRef] [PubMed]
- Fakhry, F.; Fokkenrood, H.J.; Spronk, S.; Teijink, J.A.; Rouwet, E.V.; Hunink, M.G.M. Endovascular revascularization versus conservative management for intermittent claudication. Cochrane Database Syst. Rev. 2018, 8, CD010512. [Google Scholar] [CrossRef]
- Harwood, A.E.; Totty, J.P.; Broadbent, E.; Smith, G.E.; Chetter, I.C. Quality of life in patients with intermittent claudication. Gefässchirurgie 2017, 22, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmenter, B.J.; Dieberg, G.; Phipps, G.; Smart, N.A. Exercise training for health-related quality of life in peripheral artery disease: A systematic review and meta-analysis. Vasc. Med. 2015, 20, 30–40. [Google Scholar] [CrossRef]
- Koureas, A.; Theodorou, M.; Samoutis, A.A. The impact of peripheral artery disease on health-related quality of life: Comparison with the impact of coronary artery disease. J. Vasc. Endovasc. Surg. 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Aherne, T.M.; Kheirelseid, E.A.H.; Boland, M.; Carr, S.; Al-Zabi, T.; Bashar, K.; Moneley, D.; Leahy, A.; McCaffrey, N.; Naughton, P.; et al. Supervised exercise therapy in the management of peripheral arterial disease—An assessment of compliance. Vasa 2017, 46, 219–222. [Google Scholar] [CrossRef]
- Sales, A.T.N.; Fregonezi, G.A.F.; Silva, A.G.C.B.; Ribeiro, C.T.D.; Dourado-Junior, M.E.T.; de Sousa, A.G.P.; Dias, F.A.L. Identification of peripheral arterial disease in diabetic patients and its association with quality of life, physical activity and body composition. J. Vasc. Bras. 2015, 14, 46–54. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M. Lower extremity manifestations of peripheral artery disease: The pathophysiologic and functional implications of leg ischemia. Circ. Res. 2015, 116, 1540–1550. [Google Scholar] [CrossRef]
- Mazari, F.A.K.; Khan, J.A.; Samuel, C.D.N.; Rahman, M.N.A.A.; Gulati, S.; Lee, H.L.D.; Mehta, T.A.; McCollum, P.T.; Chett, I.C. Randomized clinical trial of percutaneous transluminal angioplasty, supervised exercise and combined treatment for intermittent claudication due to femoropopliteal arterial disease. Br. J. Surg. 2012, 99, 39–48. [Google Scholar] [CrossRef]
- Oakley, C.; Spafford, C.; Beard, J.D. A three-month home exercise programme augmented with Nordic Poles for patients with intermittent claudication enhances quality of life and continues to improve walking distance and compliance after one year. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Kruidenier, L.M.; Nicola, S.P.; Rouwet, E.V.; Peters, R.J.; Prins, M.H.; Teijink, J.A. Additional supervised exercise therapy after a percutaneous vascular intervention for peripheral arterial disease: A randomized clinical trial. J. Vasc. Interv. Radiol. 2011, 22, 961–968. [Google Scholar] [CrossRef] [PubMed]
Reasons | Group I (n = 88) | Group II (n = 88) | Group III (n = 42) |
---|---|---|---|
Re-operated, n (%) | 2 (2) | 2 (2) | – |
Leg amputation above knee, n (%) | 1 (1) | 2 (2) | 1 (2) |
Toe amputation, n (%) | 1 (1) | – | – |
Health problems, n (%) | 7 (8) | 9 (10) | 4 (10) |
Did not come, n (%) | 14 (16) | 10 (11) | 5 (12) |
Total, n (%) | 25 (28) | 23 (26) | 10 (24) |
Characteristics | Group I (n = 63) | Group II (n = 65) | Group III (n = 32) | p-Value | Total (n = 160) |
---|---|---|---|---|---|
Age, V (± SE) | 68.2 (1.0) | 67.3 (0.9) | 68.3 (1.4) | 0.322 | 67.9 (1.1) |
Gender | |||||
Women, n (%) Men, n (%) | 5 (7.9) 58 (92.1) | 4 (6.2) 61 (93.8) | 2 (6.3) 30 (93.8) | 0.912 | 11 (6.9) 149 (93.1) |
BMI kg/m2, V (± SE) | 26.4 (0.4) | 27.2 (0.5) | 26.6 (0.6) | 0.461 | 26.8 (0.3) |
Smoking Smoker, n (%) Non-smoker, n (%) | 47 (74.6) 16 (25.4) | 45 (69.2) 18 (30.8) | 20 (62.5) 12 (37.5) | 0.371 | 112 (70) 48 (30) |
Blood tests TC (mmol/l), V (± SE) LDL-C (mmol/l), V (± SE) HDL-C (mmol/l), V (± SE) TG (mmol/l), V (± SE) | 4.8 (0.1) 3.0 (0.1) 1.1 (0.1) 1.7 (0.1) | 5.1 (0.1) 3.2 (0.1) 1.1 (0.1) 1.8 (0.1) | 4.7 (0.2) 2.9 (0.1) 1.1 (0.1) 1.7 (0.1) | 0.209 0.268 0.309 0.576 | 4.9 (0.1) 3.1 (0.1) 1.1 (0.1) 1.7 (0.1) |
Comorbidities | |||||
DM, n (%) | 5 (7.9) | 5 (7.7) | 3 (6.3) | 0.955 | 13 (7.5) |
CVD, n (%) | 33 (52.4) | 31 (47.7) | 18 (56.3) | 0.711 | 82 (51.3) |
Hypertension, n (%) | 41 (65.1) | 45 (69.2) | 19 (59.4) | 0.626 | 105 (65.6) |
Quality of Life Aspects | Group I (n = 63) V (SE) | Group II (n = 65) V (SE) | Group III (n = 32) V (SE) | p-Value among Groups | Total (n = 160) V (SE) |
---|---|---|---|---|---|
Physical health | 33.11 (0.8) | 33.35 (0.9) | 32.41 (1.1) | 0.823 | 33.07 (0.5) |
Physical activity | 33.80 (1.5) | 33.92 (1.5) | 28.43 (1.5) | 0.079 | 32.78 (0.9) |
Role limitation | 32.93 (1.7) | 34.61 (2.0) | 34.37 (3.3) | 0.825 | 33.90 (1.2) |
Bodily pain | 28.57 (1.8) | 29.57 (1.7) | 29.51 (2.2) | 0.910 | 29.16 (1.1) |
General health score | 37.14 (1.4) | 35.30 (1.2) | 37.34 (2.0) | 0.551 | 36.43 (0.8) |
Mental health | 47.82 (1.2) | 45.12 (1.2) | 45.41 (1.6) | 0.256 | 46.24 (0.7) |
Role limitation | 39.68 (1.9) | 38.23 (1.7) | 37.18 (2.0) | 0.698 | 38.59 (1.1) |
Social function | 38.27 (1.7) | 36.92 (1.3) | 37.15 (2.1) | 0.818 | 37.50 (0.9) |
Emotional state | 52.90 (2.7) | 50.25 (1.4) | 52.08 (5.7) | 0.872 | 51.66 (2.2) |
Vitality | 59.44 (1.7) | 55.07 (1.4) | 55.25 (1.7) | 0.085 | 57.22 (0.9) |
General life quality | 40.47 (0.7) | 39.23 (0.6) | 38.91 (1.1) | 0.372 | 39.65 (0.4) |
Quality of Life Aspect | p-Value between Group I and II | p-Value between Group I and III |
---|---|---|
Physical health | 0.848 | 0.635 |
Physical activity | 0.960 | 0.035 |
Role limitation | 0.535 | 0.676 |
Bodily pain | 0.692 | 0.755 |
General health score | 0.331 | 0.935 |
Mental health | 0.121 | 0.251 |
Role limitation | 0.581 | 0.425 |
Social function | 0.546 | 0.703 |
Emotional state | 0.594 | 0.884 |
Vitality | 0.063 | 0.064 |
General life quality | 0.236 | 0.255 |
Quality of Life Aspect | Group I ∆ (SE) (n = 63) | Group II ∆ (SE) (n = 65) | Group III ∆ (SE) (n = 32) | p-Value among Groups | p-Value between Group I and II |
---|---|---|---|---|---|
Physical health | 25.82 (1.7) | 15.66 (1.9) | 14.40 (2.2) | <0.001 | <0.001 |
Physical activity | 35.15 (2.1) | 16.46 (2.6) | 21.87 (3.2) | <0.001 | <0.001 |
Role limitation | 18.01 (4.6) | 8.07 (4.8) | 7.81 (5.8) | 0.251 | 0.141 |
Bodily pain | 39.50 (2.8) | 23.41 (3.1) | 23.26 (4.0) | <0.001 | <0.001 |
General health score | 11.34 (2.1) | 8.38 (2.0) | 4.68 (15.7) | 0.178 | 0.321 |
Mental health | 12.18 (2.1) | 9.54 (1.9) | 11.96 (1.9) | 0.008 | 0.367 |
Role limitation | 19.57 (2.7) | 14.87 (4.1) | 10.41 (6.0) | 0.345 | 0.350 |
Social function | 32.27 (2.7) | 24.10 (2.8) | 20.48 (3.3) | 0.020 | 0.035 |
Emotional state | 6.53 (1.9) | 8.92 (2.0) | 7.75 (3.1) | 0.721 | 0.409 |
Vitality | 18.33 (3.0) | 10.30 (2.6) | 9.21 (3.1) | 0.064 | 0.050 |
General life quality | 22.59 (1.0) | 14.31 (1.1) | 13.18 (1.3) | <0.001 | <0.001 |
Risk Factors | Physical Health | Physical Activity | Role Limitation of Physical Health | Bodily Pain | General Health |
---|---|---|---|---|---|
∆ (SE) | ∆ (SE) | ∆ (SE) | ∆ (SE) | ∆ (SE) | |
Age | |||||
≥65 | 17.71 (2.2) | 24.30 (2.0) | 11.89 (3.6) | 28.41 (3.4) | 7.7 (2.4) |
<65 | 22.20 (1.7) | 26.15 (2.7) | 12.01 (4.9) | 30.34 (2.4) | 9.30 (1.5) |
Gender | |||||
Men | 21.15 (1.4) | 24.96 (1.6) | 13.15 (3.0) | 30.12 (2.0) | 8.99 (1.3) |
Women | 14.18 (4.2) | 24.09 (8.2) | 4.54 (10.5) | 24.24 (8.0) | 6.36 (3.7) |
BMI, kg/m2 | |||||
≥30 | 16.70 (3.0) | 23.00 (3.8) | 2.14 (6.4) | 25.07 (4.6) | 9.00 (2.8) |
<30 | 21.91 (1.5) | 25.44 (1.8) | 14.68 (3.2) * | 31.02 (2.1) | 8.76 (1.4) |
Smoking | |||||
Yes | 19.03 (1.3) | 24.96 (1.6) | 12.80 (2.9) | 29.53 (2.0) | 8.5 (1.3) |
No | 15.09 (5.9) | 23.00 (7.1) | 6.80 (25.7) | 35.55 (7.3) | 16.00 (5.7) |
Hypertension | |||||
Yes | 19.68 (1.51) | 26.57 (2.0) | 9.38 (3.6) | 29.41 (2.4) | 10.04 (1.6) |
No | 23.44 (3.1) | 21.72 (2.6) | 16.81 (4.9) | 30.30 (3.2) | 6.45 (2.3) |
DM | |||||
Yes | 19.19 (4.9) | 17.91 (7.1) | 4.08 (9.9) | 24.07 (9.5) | 8.10 (1.3) |
No | 20.79 (1.4) | 25.47 (1.6) | 10.73 (3.0) | 30.18 (2.0) | 17.50(4.9) * |
CVD | |||||
Yes | 21.05 (1.9) | 25.36 (2.1) | 13.41 (4.0) | 26.28 (3.0) * | 9.75 (1.9) |
No | 20.27 (1.9) | 24.42 (2.4) | 10.38 (4.2) | 33.33 (2.4) | 7.82 (1.7) |
Risk Factors | Mental Health | Role Limitation of Mental Health | Social Function | Emotional State | Vitality |
---|---|---|---|---|---|
∆ (SE) | ∆ (SE) | ∆ (SE) | ∆ (SE) | ∆ (SE) | |
Age | |||||
≥ 65 | 10.28 (1.7) | 14.19 (2.6) | 20.72 (2.7) | 6.92 (1.5) | 7.50 (2.8) |
< 65 | 11.91 (2.6) | 19.23 (4.6) | 29.42 (2.1) * | 9.46 (2.3) | 16.01(2.1) * |
Gender | |||||
Men | 10.56 (1.5) | 16.33 (2.4) | 26.47 (1.7) | 7.51 (1.3) | 12.78 (1.7) |
Women | 14.18 (4.2) | 9.09 (7.9) | 28.28 (6.5) | 10.90 (5.6) | 19.54 (9.4) |
BMI, kg/2 | |||||
≥ 30 | 10.12 (1.7) | 14.40 (2.5) | 24.17 (1,8) | 8.00 (2.3) | 15.14 (3.8) |
< 30 | 13.10 (2.3) | 20.95 (5.4) | 35.23 (3.6) ** | 7.68 (1.5) | 12.72 (1.9) |
Smoking | |||||
Yes | 10.74 (1.4) | 16.12 (2.3) | 26.73 (1.7) | 7.50 (1.2) | 12.96 (1.7) |
No | 16.76 (3.5) | 6.66 (12.4) | 22.21 (9.2) | 15.20 (12.8) | 22.00 (8.8) |
Hypertension | |||||
Yes | 12.22 (1.6) | 15.56 (3.0) | 28.14 (2.0) | 8.38 (1.5) | 12.47 (2.1) |
No | 6.88 (3.1) | 16.36 (3.6) | 23.63 (3.0) | 6.54 (2.3) | 14.72 (3.0) |
DM | |||||
Yes | 13.68 (3.9) | 16.66 (8.7) | 29.62 (6.8) | 2.00 (3.4) | 7.50 (7.2) |
No | 10.57 (1.5) | 15.76 (2.4) | 26.35 (1.7) | 8.21 (1.3) | 13.71 (1.8) |
CVD | |||||
Yes | 10.62 (2.1) | 12.60 (2.9) | 26.96 (2.1) | 8.19 (1.8) | 11.89 (2.4) |
No | 11.05 (2.0) | 19.23 (3.6) | 24.21 (2.6) | 7.2 (1.8) | 14.67 (2.5) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubsevičienė, E.; Mėlinytė, K.; Kubilius, R. A Novel, Individualized Exercise Program for Patients with Peripheral Arterial Disease Recovering from Bypass Surgery. Int. J. Environ. Res. Public Health 2019, 16, 2127. https://doi.org/10.3390/ijerph16122127
Jakubsevičienė E, Mėlinytė K, Kubilius R. A Novel, Individualized Exercise Program for Patients with Peripheral Arterial Disease Recovering from Bypass Surgery. International Journal of Environmental Research and Public Health. 2019; 16(12):2127. https://doi.org/10.3390/ijerph16122127
Chicago/Turabian StyleJakubsevičienė, Edita, Karolina Mėlinytė, and Raimondas Kubilius. 2019. "A Novel, Individualized Exercise Program for Patients with Peripheral Arterial Disease Recovering from Bypass Surgery" International Journal of Environmental Research and Public Health 16, no. 12: 2127. https://doi.org/10.3390/ijerph16122127
APA StyleJakubsevičienė, E., Mėlinytė, K., & Kubilius, R. (2019). A Novel, Individualized Exercise Program for Patients with Peripheral Arterial Disease Recovering from Bypass Surgery. International Journal of Environmental Research and Public Health, 16(12), 2127. https://doi.org/10.3390/ijerph16122127