Effects of Physical Exercise on Endothelial Function and DNA Methylation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Exercise-Training Program
2.3. Sample Collection and DNA Methylation Analysis
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Exercise-Induced Clinical Parameter Changes
3.3. Exercise-Induced DNA Methylation Changes
3.4. Association between Blood Pressure and Methylation Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar] [CrossRef]
- Wang, W.; Lee, E.T.; Fabsitz, R.R.; Devereux, R.; Best, L.; Welty, T.K.; Howard, B.V. A longitudinal study of hypertension risk factors and their relation to cardiovascular disease: The Strong Heart Study. Hypertension 2006, 47, 403–409. [Google Scholar] [CrossRef]
- Vasan, R.S.; Larson, M.G.; Leip, E.P.; Evans, J.C.; O’Donnell, C.J.; Kannel, W.B.; Levy, D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med. 2001, 345, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Sadayappan, S.; Becker, R.C.; Martin, L.J.; Urbina, E.M. Epigenetic modification: A regulatory mechanism in essential hypertension. Hypertens. Res. 2019. [Google Scholar] [CrossRef]
- Almgren, T.; Persson, B.; Wilhelmsen, L.; Rosengren, A.; Andersson, O.K. Stroke and coronary heart disease in treated hypertension—A prospective cohort study over three decades. J. Intern. Med. 2005, 257, 496–502. [Google Scholar] [CrossRef]
- Andersson, O.K.; Almgren, T.; Persson, B.; Samuelsson, O.; Hedner, T.; Wilhelmsen, L. Survival in treated hypertension: Follow up study after two decades. BMJ 1998, 317, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Diem, G.; Brownson, R.C.; Grabauskas, V.; Shatchkute, A.; Stachenko, S. Prevention and control of noncommunicable diseases through evidence-based public health: Implementing the NCD 2020 action plan. Glob. Health Promot. 2016, 23, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Hubner, N. Molecular genetics of human hypertension. Clin. Sci. (Lond.) 2006, 110, 315–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschini, N.; Le, T.H. Genetics of hypertension: Discoveries from the bench to human populations. Am. J. Physiol. Ren. physiol. 2014, 306, F1–F11. [Google Scholar] [CrossRef] [PubMed]
- Elmer, P.J.; Obarzanek, E.; Vollmer, W.M.; Simons-Morton, D.; Stevens, V.J.; Young, D.R.; Lin, P.H.; Champagne, C.; Harsha, D.W.; Svetkey, L.P.; et al. Effects of comprehensive lifestyle modification on diet, weight, physical fitness, and blood pressure control: 18-month results of a randomized trial. Ann. Intern. Med. 2006, 144, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Dusek, J.A.; Hibberd, P.L.; Buczynski, B.; Chang, B.H.; Dusek, K.C.; Johnston, J.M.; Wohlhueter, A.L.; Benson, H.; Zusman, R.M. Stress management versus lifestyle modification on systolic hypertension and medication elimination: A randomized trial. J. Altern. Complement. Med. 2008, 14, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef]
- Lollgen, H.; Bockenhoff, A.; Knapp, G. Physical activity and all-cause mortality: An updated meta-analysis with different intensity categories. Int. J. Sports Med. 2009, 30, 213–224. [Google Scholar] [CrossRef]
- Martins, L.C.; Lopes, M.V.; Guedes, N.G.; Nunes, M.M.; Diniz, C.M.; Carvalho, P.M. Sedentary lifestyle in individuals with hypertension. Rev. Bras. Enferm. 2015, 68, 1005–1012. [Google Scholar] [CrossRef]
- Shimbo, D. Dietary and lifestyle factors in hypertension. J. Hum. Hypertens. 2016, 30, 571–572. [Google Scholar] [CrossRef]
- Bakker, E.A.; Sui, X.; Brellenthin, A.G.; Lee, D.C. Physical activity and fitness for the prevention of hypertension. Curr. Opin. Cardiol. 2018, 33, 394–401. [Google Scholar] [CrossRef]
- Bhammar, D.M.; Angadi, S.S.; Gaesser, G.A. Effects of fractionized and continuous exercise on 24-h ambulatory blood pressure. Med. Sci. Sports Exerc. 2012, 44, 2270–2276. [Google Scholar] [CrossRef] [PubMed]
- Pagonas, N.; Dimeo, F.; Bauer, F.; Seibert, F.; Kiziler, F.; Zidek, W.; Westhoff, T.H. The impact of aerobic exercise on blood pressure variability. J. Hum. Hypertens. 2014, 28, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Guidry, M.A.; Blanchard, B.E.; Thompson, P.D.; Maresh, C.M.; Seip, R.L.; Taylor, A.L.; Pescatello, L.S. The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am. Heart J. 2006, 151. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. American College of Sports Medicine position stand. Exercise and hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Braith, R.W.; Stewart, K.J. Resistance exercise training: Its role in the prevention of cardiovascular disease. Circulation 2006, 113, 2642–2650. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.T.; Casey, D.P.; Martin, J.S.; Emerson, B.D.; Braith, R.W. Exercise training improves endothelial function in young prehypertensives. Exp. Biol. Med. (Maywood) 2013, 238, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durand, M.J.; Gutterman, D.D. Exercise and vascular function: How much is too much? Can. J. Physiol. Pharmacol. 2014, 92, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Alegria-Torres, J.A.; Baccarelli, A.; Bollati, V. Epigenetics and lifestyle. Epigenomics 2011, 3, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norouzitallab, P.; Baruah, K.; Vanrompay, D.; Bossier, P. Can epigenetics translate environmental cues into phenotypes? Sci. Total Environ. 2019, 647, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Fagard, R.H. Exercise is good for your blood pressure: Effects of endurance training and resistance training. Clin. Exp. Pharmacol. Physiol. 2006, 33, 853–856. [Google Scholar] [CrossRef] [PubMed]
- Ash, G.I.; Eicher, J.D.; Pescatello, L.S. The promises and challenges of the use of genomics in the prescription of exercise for hypertension: The 2013 update. Curr. Hypertens. Rev. 2013, 9, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Wright, R.; Bollati, V.; Litonjua, A.; Zanobetti, A.; Tarantini, L.; Sparrow, D.; Vokonas, P.; Schwartz, J. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 2010, 21, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Bollati, V.; Baccarelli, A.; Hou, L.; Bonzini, M.; Fustinoni, S.; Cavallo, D.; Byun, H.M.; Jiang, J.; Marinelli, B.; Pesatori, A.C.; et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007, 67, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Weisenberger, D.J.; Campan, M.; Long, T.I.; Kim, M.; Woods, C.; Fiala, E.; Ehrlich, M.; Laird, P.W. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 2005, 33, 6823–6836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.S.; Estecio, M.R.; Doshi, K.; Kondo, Y.; Tajara, E.H.; Issa, J.P. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004, 32, e38. [Google Scholar] [CrossRef] [PubMed]
- Diaz, K.M.; Shimbo, D. Physical activity and the prevention of hypertension. Curr. Hypertens. Rep. 2013, 15, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Sui, X.; Church, T.S.; Lavie, C.J.; Jackson, A.S.; Blair, S.N. Changes in fitness and fatness on the development of cardiovascular disease risk factors hypertension, metabolic syndrome, and hypercholesterolemia. J. Am. Coll. Cardiol. 2012, 59, 665–672. [Google Scholar] [CrossRef]
- Moraes-Silva, I.C.; Mostarda, C.; Moreira, E.D.; Silva, K.A.; dos Santos, F.; de Angelis, K.; Farah Vde, M.; Irigoyen, M.C. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development. J. Appl. Physiol. 2013, 114, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Tjonna, A.E.; Stolen, T.O.; Bye, A.; Volden, M.; Slordahl, S.A.; Odegard, R.; Skogvoll, E.; Wisloff, U. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin. Sci. (Lond.) 2009, 116, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Smolarek, I.; Wyszko, E.; Barciszewska, A.M.; Nowak, S.; Gawronska, I.; Jablecka, A.; Barciszewska, M.Z. Global DNA methylation changes in blood of patients with essential hypertension. Med. Sci. Monit. 2010, 16, CR149–CR155. [Google Scholar]
- Wise, I.A.; Charchar, F.J. Epigenetic Modifications in Essential Hypertension. Int. J. Mol. Sci. 2016, 17, 451. [Google Scholar] [CrossRef]
- Zimmer, P.; Bloch, W. Physical exercise and epigenetic adaptations of the cardiovascular system. Herz 2015, 40, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Brown, W.J.; McLaughlin, D.; Leung, J.; McCaul, K.A.; Flicker, L.; Almeida, O.P.; Hankey, G.J.; Lopez, D.; Dobson, A.J. Physical activity and all-cause mortality in older women and men. Br. J. Sports Med. 2012, 46, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Sui, X.; Artero, E.G.; Lee, I.M.; Church, T.S.; McAuley, P.A.; Stanford, F.C.; Kohl, H.W., 3rd; Blair, S.N. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: The Aerobics Center Longitudinal Study. Circulation 2011, 124, 2483–2490. [Google Scholar] [CrossRef] [PubMed]
- Swift, D.L.; Lavie, C.J.; Johannsen, N.M.; Arena, R.; Earnest, C.P.; O’Keefe, J.H.; Milani, R.V.; Blair, S.N.; Church, T.S. Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ. J. 2013, 77, 281–292. [Google Scholar] [CrossRef]
- Thompson, P.D.; Buchner, D.; Pina, I.L.; Balady, G.J.; Williams, M.A.; Marcus, B.H.; Berra, K.; Blair, S.N.; Costa, F.; Franklin, B.; et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: A statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation 2003, 107, 3109–3116. [Google Scholar] [CrossRef]
- Sallam, N.; Laher, I. Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. Oxidative. Med. Cell. Longev. 2016, 2016, 7239639. [Google Scholar] [CrossRef]
- Loscalzo, J.; Handy, D.E. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm. Circ. 2014, 4, 169–174. [Google Scholar] [CrossRef]
- Lorenzen, J.M.; Martino, F.; Thum, T. Epigenetic modifications in cardiovascular disease. Basic Res. Cardiol. 2012, 107, 245. [Google Scholar] [CrossRef]
- Abi Khalil, C. The emerging role of epigenetics in cardiovascular disease. Ther. Adv. Chronic Dis. 2014, 5, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solvsten, C.A.E.; de Paoli, F.; Christensen, J.H.; Nielsen, A.L. Voluntary Physical Exercise Induces Expression and Epigenetic Remodeling of VegfA in the Rat Hippocampus. Mol. Neurobiol. 2018, 55, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Liu, S.; Su, Z.; Cheng, R.; Bai, X.; Li, X. LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population. Arq. Bras. Cardiol. 2014, 102, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.T.; Hsi, E.; Lin, H.F.; Liao, Y.C.; Wang, Y.S.; Juo, S.H. LINE-1 methylation is associated with an increased risk of ischemic stroke in men. Curr. Neurovascular Res. 2014, 11, 4–9. [Google Scholar] [CrossRef]
- Duan, L.; Hu, J.; Xiong, X.; Liu, Y.; Wang, J. The role of DNA methylation in coronary artery disease. Gene 2018, 646, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Muka, T.; Koromani, F.; Portilla, E.; O’Connor, A.; Bramer, W.M.; Troup, J.; Chowdhury, R.; Dehghan, A.; Franco, O.H. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int. J. Cardiol. 2016, 212, 174–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarrera, S.; Fiorito, G.; Onland-Moret, N.C.; Russo, A.; Agnoli, C.; Allione, A.; Di Gaetano, C.; Mattiello, A.; Ricceri, F.; Chiodini, P.; et al. Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin. Epigenetics 2015, 7, 133. [Google Scholar] [CrossRef]
- Yokoi, K.; Adachi, H.; Hirai, Y.; Enomoto, M.; Fukami, A.; Ogata, K.; Tsukagawa, E.; Kasahara, A.; Imaizumi, T. Plasma endothelin-1 level is a predictor of 10-year mortality in a general population: The Tanushimaru study. Circ. J. 2012, 76, 2779–2784. [Google Scholar] [CrossRef]
- Zhang, J.; Patel, J.M.; Li, Y.D.; Block, E.R. Proinflammatory cytokines downregulate gene expression and activity of constitutive nitric oxide synthase in porcine pulmonary artery endothelial cells. Res. Commun. Mol. Pathol. Pharmacol. 1997, 96, 71–87. [Google Scholar]
- Chan, G.C.; Fish, J.E.; Mawji, I.A.; Leung, D.D.; Rachlis, A.C.; Marsden, P.A. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J. Immunol. 2005, 175, 3846–3861. [Google Scholar] [CrossRef]
- Zhen, J.; Lu, H.; Wang, X.Q.; Vaziri, N.D.; Zhou, X.J. Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. Am. J. Hypertens. 2008, 21, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Alexeeff, S.E.; Baccarelli, A.A.; Halonen, J.; Coull, B.A.; Wright, R.O.; Tarantini, L.; Bollati, V.; Sparrow, D.; Vokonas, P.; Schwartz, J. Association between blood pressure and DNA methylation of retrotransposons and pro-inflammatory genes. Int. J. Epidemiol. 2013, 42, 270–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Subjects | Diastolic Blood Pressure ≤ 80 and Systolic Blood Pressure ≤ 120 | 80< Diastolic Blood Pressure ≤ 90 and 120 < Systolic Blood Pressure ≤ 140 | Diastolic Blood Pressure > 90 and/or Systolic Blood Pressure > 140 | |
---|---|---|---|---|
(n = 68) | (n = 24, 35.3%) | (n = 14, 20.6%) | (n = 30, 44.1%) | |
Gender, n (%) | ||||
Male | 50 (73.5) | 17 (25.0) | 9 (13.2) | 24 (35.3) |
Female | 18 (26.5) | 7 (10.3) | 5 (7.4) | 6 (8.8) |
Age (Years), n (%) | ||||
22–40 | 17 (25.0) | 4 (5.9) | 4 (5.9) | 9 (13.2) |
41–60 | 33 (48.5) | 12 (17.6) | 4 (5.9) | 17 (25.0) |
61–70 | 18 (26.5) | 8 (11.8) | 5 (7.35) | 5 (7.35) |
BMI (kg/m2), n (%) | ||||
≤25 | 26 (38.8) | 13 (19.4) | 5 (7.5) | 8 (11.9) |
>25 and ≤30 | 32 (47.8) | 10 (14.9) | 5 (7.5) | 17 (25.4) |
>30 | 9 (13.4) | 1 (1.5) | 3 (4.5) | 5 (7.4) |
Smoking, n (%) | ||||
Never smoker | 59 (86.8) | 22 (32.3) | 11 (16.2) | 26 (38.3) |
Current smoker | 9 (13.2) | 2 (2.9) | 3 (4.4) | 4 (5.9) |
Compliance (Physical Training) a, n (%) | ||||
Yes | 52 (76.5) | 19 (27.9) | 10 (14.7) | 23 (33.8) |
No | 16 (23.5) | 5 (7.3) | 4 (5.9) | 7 (10.3) |
Methylation Marker | Baseline (T0) | Post Physical Training (T1) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | 25pct | Median | 75pct | Mean | SD | 25pct | Median | 75pct | ||
Peak VO2/Kg (mL min-1 Kg-1) | 24.8 | 8.4 | 18.9 | 22.9 | 30.7 | 27.7 | 8.5 | 22.0 | 25.9 | 32.4 | <0.0001 |
SBP at rest (mmHg) | 128.9 | 13.8 | 120.0 | 130.0 | 135.0 | 125.0 | 12.4 | 117.5 | 120.0 | 132.5 | 0.0026 |
DBP at rest (mmHg) | 85.1 | 12.0 | 80.0 | 82.5 | 90.0 | 81.1 | 10.0 | 75.0 | 80.0 | 85.0 | 0.0001 |
Methylation Marker | n | Baseline (T0) | Post Physical Training (T1) | p-Value a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | 25pct | Median | 75pct | Mean | SD | 25pct | Median | 75pct | |||
ALU | 67 | 27.5 | 4.4 | 24.4 | 25.6 | 34.1 | 28.9 | 4.6 | 25.2 | 26.5 | 34.5 | 0.007 |
LINE-1 | 59 | 78.2 | 3.0 | 77.0 | 78.5 | 80.5 | 79.8 | 2.2 | 78.7 | 79.9 | 81.2 | 0.001 |
NOS3 | 61 | 81.1 | 9.0 | 78.4 | 84.1 | 86.2 | 82.8 | 8.2 | 82.5 | 84.8 | 86.5 | 0.277 |
EDN1 | 65 | 1.6 | 0.5 | 1.3 | 1.7 | 1.9 | 2.0 | 1.0 | 1.4 | 1.9 | 2.2 | 0.005 |
NOS2 | 65 | 67.5 | 7.9 | 61.5 | 68.2 | 74.5 | 71.8 | 5.8 | 66.9 | 72.5 | 76.6 | 0.001 |
ICAM1 | 64 | 6.7 | 2.3 | 4.9 | 6.0 | 8.2 | 7.2 | 3.1 | 5.3 | 6.4 | 8.1 | 0.321 |
TLR2 | 66 | 9.6 | 7.2 | 2.8 | 8.9 | 14.0 | 10.3 | 10.8 | 2.5 | 7.5 | 14.2 | 0.686 |
TNF | 66 | 14.6 | 6.7 | 11.1 | 13.8 | 16.9 | 14.9 | 5.4 | 12.1 | 14.1 | 16.2 | 0.846 |
N | Unadjusted Models | Multivariable Models | |||||
---|---|---|---|---|---|---|---|
β a | (95% CI) | p-Value | β a | (95% CI) | p-Value | ||
Peak VO2/Kg (mL min−1 Kg−1) | |||||||
ALU | 134 | 0.3 | (0.01, 0.6) | 0.045 | 0.38 | (0.13, 0.64) | 0.004 |
LINE-1 | 118 | 0.37 | (0.02, 0.72) | 0.039 | 0.31 | (−0.01, 0.63) | 0.059 |
NOS3 | 122 | 0.08 | (−0.07, 0.24) | 0.299 | 0.04 | (−0.1, 0.18) | 0.553 |
EDN1 | 130 | 0.95 | (−0.06, 1.96) | 0.064 | 0.93 | (0.02, 1.83) | 0.046 |
NOS2 | 130 | 0.17 | (0.03, 0.3) | 0.014 | 0.16 | (0.04, 0.27) | 0.009 |
ICAM1 | 128 | 0.06 | (−0.25, 0.37) | 0.699 | 0.08 | (−0.21, 0.36) | 0.587 |
TLR2 | 132 | 0 | (−0.1, 0.11) | 0.935 | 0 | (−0.11, 0.09) | 0.823 |
TNF | 132 | 0.16 | (0.02, 0.31) | 0.029 | 0.14 | (0.01, 0.27) | 0.042 |
Systolic blood pressure at rest (mmHg) | |||||||
ALU | 134 | −0.4 | (−0.92, 0.14) | 0.146 | −0.5 | (−1.02, 0.05) | 0.074 |
LINE-1 | 118 | −0.9 | (−1.6, −0.14) | 0.021 | −0.9 | (−1.59, −0.12) | 0.023 |
NOS3 | 122 | −0.1 | (−0.36, 0.21) | 0.582 | 0 | (−0.31, 0.26) | 0.854 |
EDN1 | 130 | −3.0 | (−4.93, −0.99) | 0.004 | −3.0 | (−4.89, −1.02) | 0.003 |
NOS2 | 130 | −0.4 | (−0.63, −0.1) | 0.007 | −0.4 | (−0.65, −0.13) | 0.004 |
ICAM1 | 128 | −0.1 | (−0.73, 0.52) | 0.740 | −0.2 | (−0.86, 0.4) | 0.474 |
TLR2 | 132 | 0.1 | (−0.11, 0.32) | 0.344 | 0.11 | (−0.11, 0.32) | 0.323 |
TNF | 132 | 0 | (−0.31, 0.29) | 0.940 | 0.01 | (−0.29, 0.31) | 0.957 |
Diastolic blood pressure at rest (mmHg) | |||||||
ALU | 134 | −0.4 | (−0.81, 0.08) | 0.104 | −0.3 | (−0.77, 0.1) | 0.125 |
LINE-1 | 118 | −0.6 | (−1.19, 0.06) | 0.074 | −0.5 | (−1.11, 0.12) | 0.112 |
NOS3 | 122 | −0.2 | (−0.42, 0.05) | 0.125 | −0.1 | (−0.34, 0.12) | 0.328 |
EDN1 | 130 | −2.0 | (−3.62, −0.29) | 0.022 | −1.7 | (−3.34, −0.12) | 0.035 |
NOS2 | 130 | −0.3 | (−0.51, −0.07) | 0.012 | −0.3 | (−0.5, −0.08) | 0.008 |
ICAM1 | 128 | −0.1 | (−0.65, 0.41) | 0.654 | −0.2 | (−0.7, 0.35) | 0.506 |
TLR2 | 132 | 0.07 | (−0.11, 0.24) | 0.465 | 0.05 | (−0.12, 0.22) | 0.555 |
TNF | 132 | −0.1 | (−0.36, 0.14) | 0.378 | −0.1 | (−0.34, 0.15) | 0.459 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, L.; Vicenzi, M.; Tarantini, L.; Barretta, F.; Sironi, S.; Baccarelli, A.A.; Guazzi, M.; Bollati, V. Effects of Physical Exercise on Endothelial Function and DNA Methylation. Int. J. Environ. Res. Public Health 2019, 16, 2530. https://doi.org/10.3390/ijerph16142530
Ferrari L, Vicenzi M, Tarantini L, Barretta F, Sironi S, Baccarelli AA, Guazzi M, Bollati V. Effects of Physical Exercise on Endothelial Function and DNA Methylation. International Journal of Environmental Research and Public Health. 2019; 16(14):2530. https://doi.org/10.3390/ijerph16142530
Chicago/Turabian StyleFerrari, Luca, Marco Vicenzi, Letizia Tarantini, Francesco Barretta, Silvia Sironi, Andrea A. Baccarelli, Marco Guazzi, and Valentina Bollati. 2019. "Effects of Physical Exercise on Endothelial Function and DNA Methylation" International Journal of Environmental Research and Public Health 16, no. 14: 2530. https://doi.org/10.3390/ijerph16142530
APA StyleFerrari, L., Vicenzi, M., Tarantini, L., Barretta, F., Sironi, S., Baccarelli, A. A., Guazzi, M., & Bollati, V. (2019). Effects of Physical Exercise on Endothelial Function and DNA Methylation. International Journal of Environmental Research and Public Health, 16(14), 2530. https://doi.org/10.3390/ijerph16142530