Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design and Analysis
2.3. Statistical Analysis
3. Results
3.1. Soil Evaporation (ES)
3.2. Soil Bulk Density (BDs)
4. Discussion
4.1. Biochar Properties on Soil Evaporation
4.2. Biochar for Greenhouse Cultivation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Liu, X.; Feng, Y.; Yu, D.; Shi, X. Composition of a soil organic carbon increment under different vegetable cultivation patterns: A study using three soc pools. Sustainability 2018, 11, 35. [Google Scholar] [CrossRef]
- Cai, Z. Scientifc and technological issues of nutrient management under greenhouse cultivation in China. Acta Pedol. Sin. 2019, 56, 1–9. [Google Scholar]
- Guo, L.; Liu, M.; Zhang, Y.; Tao, Y.; Zhang, F.; Li, G.; Dittert, K.; Lin, S. Yield differences get large with ascendant altitude between traditional paddy and water-saving ground cover rice production system. Eur. J. Agron. 2018, 92, 9–16. [Google Scholar] [CrossRef]
- Qi, L.; Niu, H.D.; Zhou, P.; Jia, R.J.; Gao, M. Effects of biochar on the net greenhouse gas emissions under continuous flooding and water-saving irrigation conditions in paddy soils. Sustainability 2018, 10, 1403. [Google Scholar] [CrossRef]
- Kodur, S. Improving the prediction of soil evaporation for different soil types under dryland cropping. Agric. Water Manag. 2017, 193, 131–141. [Google Scholar] [CrossRef]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar applied with appropriate rates can reduce n leaching, keep n retention and not increase nh3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, H.; Liu, Y.; Xue, L.; Dionysiou, D.D.; Yang, L.; Xing, B. Nano-cerium oxide functionalized biochar for phosphate retention: Preparation, optimization and rice paddy application. Chemosphere 2017, 185, 816–825. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Chang, S.X.; Yang, Y.; Fu, S.; Jiang, P.; Luo, Y.; Yang, M.; Chen, Z.; Hu, S.; et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol. Biochem. 2018, 122, 173–185. [Google Scholar] [CrossRef]
- Lee, M.-E.; Park, J.H.; Chung, J.W. Adsorption of Pb(ii) and Cu(ii) by ginkgo-leaf-derived biochar produced under various carbonization temperatures and times. Int. J. Environ. Res. Public Health 2017, 14, 1528. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, D.; Gao, F.; Li, M.; Luo, X. Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils. Int. J. Environ. Res. Public Health 2017, 14, 681. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, H.; Xue, L.; Liu, Y.; Gao, Q.; Lu, K.; Yang, L. Biochar applied at an appropriate rate can avoid increasing Nh3 volatilization dramatically in rice paddy soil. Chemosphere 2016, 168, 1277–1284. [Google Scholar] [CrossRef]
- Tan, Z.; Lin, C.S.K.; Ji, X.; Rainey, T.J. Returning biochar to fields: A review. Appl. Soil Ecol. 2017, 116, 1–11. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Siddiqui, M.T.H.; Baloch, H.A.; Mubarak, N.M.; Griffin, G.; Madapusi, S.; Tanksale, A. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ. Sci. Pollut. Res. 2018, 25, 17529–17539. [Google Scholar] [CrossRef] [PubMed]
- Gronwald, M.; Vos, C.; Helfrich, M.; Don, A. Stability of pyrochar and hydrochar in agricultural soil—A new field incubation method. Geoderma 2016, 284, 85–92. [Google Scholar] [CrossRef]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Xu, J.; Niu, W.-Q.; Zhang, M.Z.; Li, Y.; Lyu, W.; Li, K.-Y.; Zou, X.-Y.; Liang, B.-H. Effect of biochar addition on soil evaporation. Chin. J. Appl. Ecol. 2016, 27, 3505–3513. [Google Scholar]
- Wang, T.; Stewart, C.E.; Sun, C.; Wang, Y.; Zheng, J. Effects of biochar addition on evaporation in the five typical loess plateau soils. Catena 2018, 162, 29–39. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; You, C. Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 2016, 26, 265–272. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Stoof, C.R.; Lehmann, J.C.; Yitaferu, B.; Steenhuis, T.S. Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid ethiopian highlands: The Anjeni watershed. Geoderma 2015, 243–244, 115–123. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, Z.; Sun, X.; Ding, J.; Xu, J. Effects of biochar amendment on CO2 emissions from paddy fields under water-saving irrigation. Int. J. Environ. Res. Public Health 2018, 15, 2580. [Google Scholar] [CrossRef]
- Hansen, V.; Hauggaard-Nielsen, H.; Petersen, C.T.; Mikkelsen, T.N.; Müller-Stöver, D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 2016, 161, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.; Yan, W.; Shangguan, Z. Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil Tillage Res. 2018, 183, 100–108. [Google Scholar] [CrossRef]
- Salo, H.; Warsta, L.; Turunen, M.; Nurminen, J.; Myllys, M.; Paasonen-Kivekäs, M.; Alakukku, L.; Koivusalo, H. Simulating 3-d water flow in subsurface drain trenches and surrounding soils in a clayey field. Soil Tillage Res. 2017, 168, 20–32. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R.; Zimmerman, A.R. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ. 2014, 487, 26–36. [Google Scholar] [CrossRef]
- Aller, D.; Rathke, S.; Laird, D.; Cruse, R.; Hatfield, J. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 2017, 307, 114–121. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Graber, E.R.; Meller Harel, Y.; Kolton, M.; Cytryn, E.; Silber, A.; Rav David, D.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- De, T.C.; Haegeman, A.; Vandecasteele, B.; Clement, L.; Cremelie, P.; Dawyndt, P.; Maes, M.; Debode, J. Dynamics in the strawberry rhizosphere microbiome in response to biochar and botrytis cinerea leaf infection. Front. Microbiol. 2016, 7, 2062. [Google Scholar]
- Li, C.; Xiong, Y.; Qu, Z.; Xu, X.; Huang, Q.; Huang, G. Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
- Paparozzi, E.T.; Meyer, G.E.; Schlegel, V.; Blankenship, E.E.; Adams, S.A.; Conley, M.E.; Loseke, B.; Read, P.E. Strawberry cultivars vary in productivity, sugars and phytonutrient content when grown in a greenhouse during the winter. Sci. Hortic. 2018, 227, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
Biochar Type | BDc (g/cm3) | SSA (m2/g) | APD (nm) | TPV (cm3/g) |
---|---|---|---|---|
SP500 | 0.12 | 20.73 | 6.41 | 0.033 |
WP500 | 0.10 | 22.38 | 5.08 | 0.028 |
SP700 | 0.11 | 114.20 | 5.02 | 0.143 |
WP700 | 0.11 | 32.03 | 4.25 | 0.034 |
SH260 | 0.26 | 1.44 | 17.93 | 0.006 |
WH260 | 0.36 | 0.30 | 17.07 | 0.001 |
Treatments | Parameters of Linear Equation | Parameters of First-Order Kinetics Equation | ||||
---|---|---|---|---|---|---|
a | b | R2 | N0 | b | R2 | |
SP500-2% | 0.874 | 9.687 | 0.931 | 139.149 | 0.012 | 0.981 |
SP500-6% | 0.841 | 10.768 | 0.941 | 132.116 | 0.012 | 0.992 |
WP500-2% | 0.854 | 11.847 | 0.923 | 128.802 | 0.013 | 0.986 |
WP500-6% | 0.813 | 9.372 | 0.952 | 132.436 | 0.011 | 0.994 |
SP700-2% | 0.853 | 13.366 | 0.912 | 125.467 | 0.015 | 0.984 |
SP700-6% | 0.833 | 12.369 | 0.928 | 124.604 | 0.014 | 0.992 |
WP700-2% | 0.832 | 15.372 | 0.898 | 118.735 | 0.017 | 0.983 |
WP700-6% | 0.785 | 15.340 | 0.919 | 112.694 | 0.017 | 0.998 |
SH260-2% | 0.838 | 15.169 | 0.904 | 119.914 | 0.016 | 0.989 |
SH260-6% | 0.802 | 19.203 | 0.888 | 111.580 | 0.020 | 0.996 |
WH260-2% | 0.793 | 22.023 | 0.850 | 108.855 | 0.023 | 0.992 |
WH260-6% | 0.811 | 18.631 | 0.888 | 113.004 | 0.020 | 0.994 |
CK | 0.787 | 23.937 | 0.816 | 107.718 | 0.025 | 0.986 |
Feedstock | PT(°C) | Application Proportion (%) | RA (%/h) | R25 (%/h) | R50 (%/h) | R75 (%/h) |
---|---|---|---|---|---|---|
CK | 0.025 ± 0.003 | 1.84 ± 0.20 | 1.83 ± 0.20 | 1.78 ± 0.23 | ||
Saw dust | 500 | 2% | 0.012 ± 0.002 | 1.17 ± 0.13 | 1.19 ± 0.08 | 1.24 ± 0.05 |
6% | 0.012 ± 0.002 | 1.25 ± 0.09 | 1.22 ± 0.06 | 1.17 ± 0.05 | ||
700 | 2% | 0.015 ± 0.003 | 1.35 ± 0.20 | 1.34 ± 0.16 | 1.31 ± 0.07 | |
6% | 0.014 ± 0.001 | 1.27 ± 0.07 | 1.31 ± 0.05 | 1.21 ± 0.05 | ||
Wheat straw | 500 | 2% | 0.014 ± 0.002 | 1.26 ± 0.12 | 1.27 ± 0.07 | 1.26 ± 0.03 |
6% | 0.011 ± 0.001 | 1.14 ± 0.08 | 1.16 ± 0.04 | 1.06 ± 0.01 | ||
700 | 2% | 0.017 ± 0.004 | 1.44 ± 0.26 | 1.44 ± 0.20 | 1.34 ± 0.11 | |
6% | 0.017 ± 0.001 | 1.48 ± 0.05 | 1.42 ± 0.04 | 1.18 ± 0.02 | ||
Feedstock (F) | ns | ns | ns | ns | ||
PT (T) | *** | *** | *** | *** | ||
Application proportion (P) | ns | ns | ns | *** | ||
F × T | ns | ns | ns | ns | ||
F × P | ns | ns | ns | ns | ||
T × P | ns | ns | ns | ns | ||
F × T × P | ns | ns | ns | ns |
Feedstock | PT(°C) | Application Proportion (%) | RA (%/h) | R25 (%/h) | R50 (%/h) | R75 (%/h) |
---|---|---|---|---|---|---|
CK | 0.025 ± 0.003 | 1.84 ± 0.20 | 1.83 ± 0.20 | 1.78 ± 0.23 | ||
Saw dust | 260 | 2% | 0.016 ± 0.003 | 1.43 ± 0.17 | 1.43 ± 0.13 | 1.33 ± 0.07 |
6% | 0.020 ± 0.002 | 1.71 ± 0.10 | 1.63 ± 0.10 | 1.39 ± 0.06 | ||
Wheat straw | 260 | 2% | 0.023 ± 0.003 | 1.80 ± 0.13 | 1.76 ± 0.14 | 1.56 ± 0.10 |
6% | 0.020 ± 0.002 | 1.65 ± 0.14 | 1.60 ± 0.12 | 1.40 ± 0.07 | ||
Feedstock (F) | ns | ns | ns | * | ||
Application proportion (P) | ns | ns | ns | ns | ||
F×P | * | * | * | * |
2% | RA | R25 | R50 | R75 | 6% | RA | R25 | R50 | R75 |
---|---|---|---|---|---|---|---|---|---|
PT | −0.460 | −0.450 | −0.473 | −0.481 | PT | −0.528 | −0.586 | −0.574 | −0.673 |
BDc | 0.850 * | 0.849 * | 0.858 * | 0.861 * | BDc | 0.815 * | 0.825 * | 0.835 * | 0.908 * |
SSA | −0.322 | −0.303 | −0.320 | −0.307 | SSA | −0.399 | −0.481 | −0.389 | −0.343 |
APD | 0.665 | 0.663 | 0.676 | 0.649 | APD | 0.821 * | 0.847 * | 0.859 * | 0.920 ** |
TPV | −0.355 | −0.335 | −0.353 | −0.332 | TPV | −0.415 | −0.493 | −0.400 | −0.331 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, X.; Ren, N.; Feng, Y.; Xue, L.; Yang, L. Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation. Int. J. Environ. Res. Public Health 2019, 16, 2580. https://doi.org/10.3390/ijerph16142580
Liu Y, Liu X, Ren N, Feng Y, Xue L, Yang L. Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation. International Journal of Environmental Research and Public Health. 2019; 16(14):2580. https://doi.org/10.3390/ijerph16142580
Chicago/Turabian StyleLiu, Yang, Xiaoyu Liu, Ni Ren, Yanfang Feng, Lihong Xue, and Linzhang Yang. 2019. "Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation" International Journal of Environmental Research and Public Health 16, no. 14: 2580. https://doi.org/10.3390/ijerph16142580
APA StyleLiu, Y., Liu, X., Ren, N., Feng, Y., Xue, L., & Yang, L. (2019). Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation. International Journal of Environmental Research and Public Health, 16(14), 2580. https://doi.org/10.3390/ijerph16142580