Determination of Polycyclic Aromatic Hydrocarbons in Sludge from Water and Wastewater Treatment Plants by GC-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Sampling
2.3. Sample Preparation
2.4. GC-MS Analysis
2.5. Quality Control
3. Results
3.1. GC-MS Separation and Identification
3.2. Analytical Characteristics
3.3. Concentration Level of PAHs in Sludge
3.4. Composition of PAHs in Sludge
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stevens, J.L.; Northcott, G.L.; Stern, G.A.; Tomy, G.T.; Jones, K.C. PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in UK sewage sludge: Survey results and implications. Environ. Sci. Technol. 2003, 37, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.Z.; Oakes, S.R.; Hysell, M.; Hay, A. Organic chemicals in sewage sludges. Sci. Total Environ. 2006, 367, 481–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.Z.; Venkatesan, A.K.; Ni, Y.L.; Steele, J.C.; Wu, L.L.; Bignert, A.; Bergman, Å.; Halden, R.U. Organic contaminants in Chinese sewage sludge: A meta-analysis of the literature of the past 30 years. Environ. Sci. Technol. 2016, 50, 5454–5466. [Google Scholar] [CrossRef] [PubMed]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Meador, J.P.; Stein, J.E.; Reichert, W.L.; Varanasi, U. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev. Environ. Contam. Toxicol. 1995, 143, 79–165. [Google Scholar]
- Chen, C.F.; Dong, C.D.; Chen, C.W. Evaluation of sediment toxicity in Kaohsiung Harbor, Taiwan. Soil Sediment Contam. 2013, 22, 301–314. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Z.; Liang, J.; Kuo, D.T.F.; Chen, S.; Hu, X.; Deng, M.; Zhang, H.; Lu, Y. Assessing pollution and risk of polycyclic aromatic hydrocarbons in sewage sludge from wastewater treatment plants in China’s top coal-producing region. Environ. Monit. Assess. 2019, 191, 102. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Luo, J.; Chen, Y. Dilemma of sewage sludge treatment and disposal in China. Environ. Sci. Technol. 2015, 49, 4781–4782. [Google Scholar] [CrossRef]
- Taiwan Environmental Protection Agency. Environmental Resource Database. 2019. Available online: https://erdb.epa.gov.tw/ERDBIndex.aspx (accessed on 15 Apri1 2019).
- Taiwan Water Corporation. 2019. Available online: https://www.water.gov.tw/ct.aspx?xItem=%206013&CtNode=990&mp=ep (accessed on 15 Apri1 2019).
- Council of Agriculture, Taiwan. Regulation: Categories, Types and Specifications of Fertilizers (2013/4/3 Revised); Council of Agriculture: Taipei, Taiwan, 2013. [Google Scholar]
- Dong, C.D.; Chen, C.F.; Chen, C.W. Vertical profile, sources, and equivalent toxicity of polycyclic aromatic hydrocarbons in sediment cores from the river mouths of Kaohsiung Harbor, Taiwan. Mar. Pollut. Bull. 2014, 85, 665–671. [Google Scholar] [CrossRef]
- Dong, C.D.; Chen, C.F.; Chen, C.W. Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. Int. J. Environ. Res. Public Health 2012, 9, 2175–2188. [Google Scholar] [CrossRef]
- Chen, C.F.; Chen, C.W.; Ju, Y.R.; Dong, C.D. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan. Environ. Sci. Pollut. Res. Int. 2016, 23, 4786–4796. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons; EPA/600/R/089; Office of Research and Development, US Environmental Protection Agency: Washington, DC, USA, 1993.
- Boruszko, D. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms. Environ. Res. 2017, 155, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Jiries, A.; Hussain, H.; Lintelmann, J. Determination of polycyclic aromatic hydrocarbons in wastewater, sediments, sludge and plants in Karak province, Jordan. Water Air Soil Pollut. 2000, 121, 217–228. [Google Scholar] [CrossRef]
- Ozaki, N.; Takamura, Y.; Kojima, K.; Kindaichi, T. Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Res. 2015, 80, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Busetti, F.; Heitz, A.; Cuomo, M.; Badoer, S.; Traverso, P. Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. J. Chromatogr. A 2006, 1102, 104–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadhar, S.; Higashi, T.; Hamdi, H.; Matsuyama, S.; Charef, A. Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants. J. Hazard. Mater. 2010, 183, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- State Standard of the People’s Republic of China. Control Standards of Pollutants in Sludges from Agricultural Use; GB, 4284-2018; Standardization Administration of the People’s Republic of China: Beijing, China, 2018. [Google Scholar]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on Spreading of Sludge on Land; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Hua, L.; Wu, W.X.; Liu, Y.X.; Tientchen, C.M.; Chen, Y.X. Heavy metals and PAHs in sewage sludge from twelve wastewater treatment plants in Zhejiang province. Biomed. Environ. Sci. 2008, 21, 345–352. [Google Scholar] [CrossRef]
- Dai, J.Y.; Xu, M.Q.; Chen, J.P.; Yang, X.P.; Ke, Z.S. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China. Chemosphere 2007, 66, 353–361. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Lin, Z.; Gui, H.Y.; Shao, W.L.; Sheng, G.Y.; Fu, J.M.; Yu, Z.Q. Occurrence and distribution of polycyclic aromatic carbons in sludges from wastewater treatment plants in Guangdong, China. Environ. Monit. Assess. 2010, 169, 89–100. [Google Scholar] [CrossRef]
- Tian, W.J.; Bai, J.; Liu, K.K.; Sun, H.M.; Zhao, Y.G. Occurrence and removal of polycyclic aromatic hydrocarbons in the wastewater treatment process. Ecotoxicol. Environ. Saf. 2012, 82, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.J.; Jia, L.R.; Li, B.; Yuan, A.N.; Kong, L.J.; Qi, H.; Ma, W.L.; Zhang, A.P.; Wu, Y.N. The occurrence and fate of PAHs over multiple years in a wastewater treatment plant of Harbin, Northeast China. Sci. Total Environ. 2018, 624, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Salihoglu, N.K.; Salihoglu, G.; Tasdemir, Y.; Cindoruk, S.S.; Yolsal, D.; Ogulmus, R.; Karaca, G. Comparison of polycyclic aromatic hydrocarbons levels in sludges from municipal and industrial wastewater treatment plants. Arch. Environ. Contam. Toxicol. 2010, 58, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.H.; Lee, I.S.; Sim, W.J.; Eun, H.; Oh, J.E. Analysis and evaluation of chlorinated persistent organic compounds and PAHs in sludge in Korea. Chemosphere 2009, 74, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Berset, J.D.; Holzer, R. Quantitative determination of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in sewage sludges using supercritical fluid extraction and mass spectrometric detection. J. Chromatogr. A 1999, 852, 545–558. [Google Scholar] [CrossRef]
- Helaleh, M.I.H.; Al-Omair, A.; Nisar, A.; Gevao, B. Validation of various extraction techniques for the quantitative analysis of polycyclic aromatic hydrocarbons in sewage sludges using gas chromatography-ion trap mass spectrometry. J. Chromatogr. A 2005, 1083, 153–160. [Google Scholar] [CrossRef]
- Perez, S.; Guillamon, M.; Bracelo, D. Quantitative analysis of polycyclic aromatic hydrocarbons in sewage sludge from wastewater treatment plants. J. Chromatogr. A 2001, 938, 57–65. [Google Scholar] [CrossRef]
- Villar, P.; Callejon, M.; Alonso, E.; Jimenez, J.C.; Guiraum, A. Temporal evolution of polycyclic aromatic hydrocarbons (PAHs) in sludge from wastewater treatment plants: Comparison between PAHs and heavy metals. Chemosphere 2006, 64, 535–541. [Google Scholar] [CrossRef]
- Khillare, P.S.; Sattawan, V.K.; Jyethi, D.S. Profile of polycyclic aromatic hydrocarbons in digested sewage sludge. Environ. Technol. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Baran, S.; Oleszczuk, P. The concentration of polycyclic aromatic hydrocarbons in sewage sludge in relation to the amount and origin of purified sewage. Pol. J. Environ. Stud. 2003, 12, 523–529. [Google Scholar]
- Wołejko, E.; Wydro, U.; Jabłońska-Trypuć, A.; Butarewicz, A.; Łoboda, T. The effect of sewage sludge fertilization on the concentration of PAHs in urban soils. Environ. Pollut. 2018, 232, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.K.; Baker, J.E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, L.; Huang, Q.H.; Li, W.Y.; Tang, Y.J.; Zhao, J.F. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Sci. Total Environ. 2009, 407, 2931–2938. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Chen, C.F.; Dong, C.D.; Tu, Y.T. Composition and source apportionment of PAHs in sediments at river mouths and channel in Kaohsiung Harbor, Taiwan. J. Environ. Monit. 2012, 14, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.H.; Lee, W.J.; Chen, S.J.; Lai, S.O. PAH emission from various industrial stacks. J. Hazard. Mater. 1998, 60, 159–174. [Google Scholar] [CrossRef]
- Chen, C.F.; Chen, C.W.; Dong, C.D.; Kao, C.M. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. Sci. Total Environ. 2013, 463–464, 1174–1181. [Google Scholar] [CrossRef]
- Hu, Y.; Li, G.; Yan, M.; Ping, C.; Ren, J. Investigation into the distribution of polycyclic aromatic hydrocarbons (PAHs) in wastewater sewage sludge and its resulting pyrolysis bio-oils. Sci. Total Environ. 2014, 473–474, 459–464. [Google Scholar] [CrossRef]
Parameter | Set Condition |
---|---|
Gas chromatography (GC) | Agilent 7890B (with Agilent 7693A autosampler) |
Injection volume | 1 µL |
Inlet temperature | 280 °C |
Capillary column | HP-5MS (30 m × 0.25 mm i.d. with 0.25 μm film) |
Injection mode | Splitless |
Carrier gas | Helium, 1 mL/min |
Temperature program | 40 °C (1 min) → 120 °C (35 °C/min) → 160 °C (10 °C/min) → 300 °C (5 °C/min, hold for 10 min) |
Mass selective detector (MS) | Agilent 5977A |
Ionization mode | Electron ionization (EI) |
Transfer line temperature | 280 °C |
Ion source temperature | 230 °C |
Quadrupole temperature | 150 °C |
Electronic energy | 70 eV |
Scan mode | Selective ion monitoring (SIM) (see Table 2) |
Solvent delay | 4 min |
Compounds | Abbreviation | Retention Time (min) | Selected Ions (m/z) |
---|---|---|---|
Naphthalene-d8 | IS1 a | 4.679 | 136c |
Naphthalene | NA | 4.964 | 128, 129, 127 |
2-Fluorobiphenyl | SS1 | 6.134 | 172 |
Acenaphthylene | ACY | 6.845 | 152, 151, 153 |
Acenaphthene-d10 | IS2 | 7.125 | 164 |
Acenaphthene | ACE | 7.176 | 154, 153, 152 |
Fluorene | FL | 8.177 | 166, 165, 167 |
Phenanthrene-d10 | IS3 | 10.511 | 188 |
Phenanthrene | PH | 10.557 | 178, 179, 176 |
Anthracene | AN | 10.700 | 178, 176, 179 |
Fluoranthene | FLU | 14.624 | 202, 229, 226 |
Pyrene | PY | 15.399 | 202, 200, 203 |
4-Terphenyl-d14 | SS2 b | 16.622 | 244 |
Benzo[a]anthracene | BaA | 20.582 | 228, 229, 226 |
Chrysene-d12 | IS4 | 20.626 | 240 |
Chrysene | CH | 20.724 | 228, 226, 229 |
Benzo[b]fluoranthene | BbF | 25.085 | 252, 253, 125 |
Benzo[k]fluoranthene | BkF | 25.188 | 252, 253, 125 |
Benzo[a]pyrene | BaP | 26.249 | 252, 253, 125 |
Perylene-d12 | IS5 | 26.500 | 264 |
Indeno[1,2,3-cd]pyrene | IP | 30.298 | 276, 138, 277 |
Dibenz[a,h]anthracene | DBA | 30.571 | 278, 139, 279 |
Benzo[g,h,i]perylene | BP | 31.026 | 276, 138, 277 |
PAHs a | Response Factor (RF) (n = 5) | Check Standard (n = 3) R b (%) | Duplicate Sample (n = 6) RPD b (%) | Spike Sample (n = 3) P b (%) | Detection Limits (mg/kg dw) | |
---|---|---|---|---|---|---|
Average ± SD a | RSD b (%) | |||||
NA | 1.11 ± 0.02 | 1.5 | 91 ± 3.5 | 6.1 ± 3.7 | 82.3 ± 0.6 | 0.0010 |
ACY | 1.26 ± 0.04 | 3.3 | 94 ± 1.0 | 7.1 ± 4.6 | 108.0 ± 3.6 | 0.0012 |
ACE | 1.17 ± 0.03 | 2.8 | 86 ± 0.6 | 3.4 ± 4.1 | 100.7 ± 3.1 | 0.0017 |
FL | 0.95 ± 0.04 | 4.6 | 88 ± 1.2 | 7.1 ± 5.3 | 105.3 ± 5.5 | 0.0018 |
PH | 1.18 ± 0.03 | 2.8 | 98 ± 0.3 | 5.5 ± 4.4 | 108.7 ± 2.9 | 0.0013 |
AN | 0.64 ± 0.03 | 5.5 | 102 ± 2.1 | 8.1 ± 2.8 | 74.7 ± 2.5 | 0.0028 |
FLU | 0.86 ± 0.05 | 5.6 | 93 ± 0.6 | 9.4 ± 3.6 | 76.0 ± 1.7 | 0.0022 |
PY | 1.48 ± 0.11 | 7.4 | 98 ± 4.3 | 1.7 ± 0.9 | 76.3 ± 2.9 | 0.0045 |
BaA | 0.42 ± 0.03 | 7.6 | 90 ± 3.3 | 4.8 ± 3.9 | 74.3 ± 2.3 | 0.0039 |
CH | 1.20 ± 0.08 | 6.3 | 90 ± 2.4 | 7.1 ± 1.4 | 87.3 ± 2.1 | 0.0033 |
BbF | 1.23 ± 0.05 | 4.2 | 96 ± 5.6 | 6.2 ± 3.7 | 94.3 ± 3.8 | 0.0032 |
BkF | 1.36 ± 0.12 | 8.6 | 98 ± 2.8 | 7.5 ± 6.4 | 88.0 ± 0.0 | 0.0031 |
BaP | 0.66 ± 0.05 | 8.3 | 92 ± 3.6 | 3.4 ± 1.5 | 93.3 ± 0.6 | 0.0045 |
IP | 0.44 ± 0.04 | 9.4 | 98 ± 0.9 | 7.3 ± 2.4 | 90.3 ± 7.0 | 0.0046 |
DBA | 0.59 ± 0.04 | 6.8 | 97 ± 8.1 | 8.5 ± 4.1 | 79.3 ± 1.5 | 0.0045 |
BP | 1.81 ± 0.17 | 9.5 | 97 ± 2.9 | 5.5 ± 1.7 | 83.0 ± 1.0 | 0.0033 |
SS1 | 1.54 ± 0.11 | 7.4 | 102 ± 7.1 | 5.1± 2.7 | 92.3 ± 6.7 | - |
SS2 | 1.11 ± 0.02 | 1.5 | 107 ± 1.8 | 6.7± 3.7 | 89.5 ± 8.8 | - |
PAHs a | DWTP | WWTP | |||||
---|---|---|---|---|---|---|---|
DW 1 | DW 2 | WW 1 | WW2 | WW3 | WW4 | ||
2-ring | NA | 0.0117 | ND (0.0008) e | 0.0981 | 0.0185 | 0.0290 | 0.0518 |
3-ring | ACY | ND (0.0007) e | ND (0.0002) e | 0.0285 | 0.0009 | 0.0058 | 0.0146 |
ACE | 0.0019 | 0.0017 | 0.0064 | 0.0017 | 0.0028 | 0.0117 | |
FL | 0.0054 | 0.0043 | 0.0104 | 0.0034 | 0.0139 | 0.0097 | |
PH | 0.0201 | 0.0204 | 0.1291 | 0.0114 | 0.0511 | 0.1018 | |
AN | 0.0396 | ND (0.0005) e | 0.0827 | 0.0122 | 0.0384 | 0.0683 | |
4-ring | FLU | 0.0067 | 0.0075 | 0.1516 | 0.0129 | 0.0829 | 0.1275 |
PY | 0.0081 | 0.0100 | 0.1475 | 0.1336 | 0.0657 | 0.1195 | |
BaA b | 0.0119 | ND (0.0014) e | 0.0568 | 0.0163 | 0.0236 | 0.0382 | |
CH b | 0.0107 | 0.0093 | 0.0884 | 0.0924 | 0.0452 | 0.0622 | |
5-ring | BbF b | 0.0015 | 0.0042 | 0.0301 | 0.0087 | 0.0195 | 0.0257 |
BkF b | 0.0018 | ND (0.0006) e | 0.0297 | 0.0097 | 0.0186 | 0.0255 | |
BaP b | 0.0059 | ND (0.0011) e | 0.0685 | 0.0070 | 0.0373 | 0.0527 | |
IP b | 0.0049 | ND (0.0010) e | 0.0754 | 0.0640 | 0.0526 | 0.0750 | |
6-ring | DBA b | ND (0.0042) e | ND (0.0002) e | 0.0228 | 0.0434 | 0.0134 | 0.0210 |
BP | 0.0008 | 0.0037 | 0.0408 | 0.0997 | 0.0344 | 0.0635 | |
ΣPAHs c | 0.1357 | 0.0668 | 1.0666 | 0.5357 | 0.5342 | 0.8684 | |
ΣLPAHs c | 0.0793 | 0.0279 | 0.0355 | 0.0480 | 0.1410 | 0.2577 | |
ΣHPAHs c | 0.0564 | 0.0389 | 0.7116 | 0.4877 | 0.3931 | 0.6107 | |
ΣLPAHs/ΣHPAHs | 1.40 | 0.72 | 0.50 | 0.10 | 0.36 | 0.42 | |
ΣCPAHs c | 0.0409 | 0.0177 | 0.3716 | 0.2415 | 0.2101 | 0.3002 | |
ΣTEQ d | 0.0041 | 0.0018 | 0.0372 | 0.0242 | 0.0210 | 0.0300 |
Location | Sludge Type | ΣPAHs (mg/kg) | ΣCPAHs (mg/kg) | Dominant PAHs a (percentage) | Dominant PAHs Ring (percentage) | Ref. |
---|---|---|---|---|---|---|
China (Zhejiang) | Sewage (dom/ind) b | 33.73–82.58 56.7 ± 18.5 | 5.8–28.7 15.4 ± 7.5 | PH (27) d, FLU (12) | 3 (42), 4 (30) | [24] |
China (Beijing) | Sewage (dom/ind) | 2.47–25.92 8.31 ± 8.79 | 2.08–23.0 6.15 ± 8.24 | CH (10), BbF (22), BaP (15), BP (18) | 4 (23), 5 (51), 6 (21) | [25] |
China (Guangdong) | Sewage (dom/ind) | 2.53–6.93 4.40 ± 2.27 | 0.70–1.01 0.87 ± 0.16 | PH (30), FLU (16), PY (18) | 3 (43), 4 (42) | [26] |
China (Taian) | Sewage (dom/ind) | 2.81–3.18 3.00 ± 0.26 | 0.12–0.61 0.36 ± 0.35 | NA (26), PH (22), FLU (13) | 2 (26), 3 (42), 4 (29) | [27] |
China (Harbin) | Sewage (dom/ind) | 2.2–20 8.2 | Na c | na | 5&6 (55), 4 (25), 2 (20) | [28] |
Japan | Sewage | 0.069 ± 0.038 | na | na | na | [18] |
Turkey (Bursa) | Sewage (dom/ind) | 1.78–19.9 6.08 ± 4.69 | 1.31–11.57 4.18 ± 2.77 | na | na | [29] |
Korea | Sewage (urban/rural) | 1.30–44.9 10.4 ± 17.0 | 0.23–25.6 4.8 ± 10.2 | FLU (14), PY (13), BbF (11) | 4 (39), 5 (32) | [30] |
Tunisia | Sewage (various) | 0.096–7.72 1.25 ± 2.45 | 0.005–1.37 0.21 ± 0.44 | PH (28), PY (16), NA (16) | 3 (34), 4 (40), 2 (16) | [20] |
Switzerland | Sewage (dom/ind/runoff) | 1.01–22.6 7.10 ± 5.73 | 0.46–12.41 3.18 ± 3.25 | PH (11), FLU (17), PY (14), BbF (11) | 3 (17), 4 (44), 5 (29) | [31] |
Kuwait | Sewage (urban) | 2.01–7.76 4.33 ± 2.22 | 0.02–2.06 1.42 ± 0.74 | PH (14), AN (11), DBA (11) | 3 (45), 4 (23), 5 (19) | [32] |
Italy (Venice) | Sewage (urban) | 1.26–1.44 1.35 ± 0.13 | 0.57–0.73 0.65 ± 0.11 | PY (8.7), BaA (8.6), CH (8.2) | 3 (28), 4 (32), 5 (26) | [19] |
Spain (Catalonia) | Sewage (urban) | 1.13–5.52 3.02 ± 1.55 | 0.34–2.25 0.76 ± 0.64 | PH (25), PY (13), FLU (9.0) | 3 (43), 4 (31) | [33] |
Spain (Cadiz) | Sewage (urban) | 1.97–10.1 4.97 ± 1.9 | 0.47–4.61 1.93 ± 0.99 | ACY (11), PH (9.3), PY (19) | 3 (28), 4 (38) | [34] |
India (Delhi) | Sewage | 14.9–24.2 20.67 ± 4.14 | 9.81 ± 2.35 | BP, DBA. | 6 (33), 5 (31) | [35] |
Poland | Sewage | 2.04–36.44 11.61 ± 8.72 | 4.30 | ACY (18), FLU (17), BbF (16) | 3 (34), 4 (39) | [36] |
Poland | Dairy sewage | 0.498 | 0.12 | ACY (2), FL (13), PY (21) | 3 (45), 4 (36) | [16] |
United Kingdom | Sewage | 18–94 44.8 | 4.5–27.6 13.2 | FL (13), PH (17), FLU (11) | 3 (39), 4 (30) | [1] |
Jordan (Karak) | Sewage (dom/ind) | 0.029–0.039 0.034 ± 0.005 | 0.009–0.016 0.013 ± 0.004 | FL (14), PH (17), BP (17) | 3 (34), 4 (30), 6 (21) | [17] |
Taiwan | Sewage (urban) | 0.53–1.07 0.75 ± 0.26 | 0.021–0.037 0.028 ± 0.007 | PY (16), FLU (12), CH (10) | 3 (19), 4 (42), 5 (20) | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-F.; Ju, Y.-R.; Lim, Y.C.; Hsieh, S.-L.; Tsai, M.-L.; Sun, P.-P.; Katiyar, R.; Chen, C.-W.; Dong, C.-D. Determination of Polycyclic Aromatic Hydrocarbons in Sludge from Water and Wastewater Treatment Plants by GC-MS. Int. J. Environ. Res. Public Health 2019, 16, 2604. https://doi.org/10.3390/ijerph16142604
Chen C-F, Ju Y-R, Lim YC, Hsieh S-L, Tsai M-L, Sun P-P, Katiyar R, Chen C-W, Dong C-D. Determination of Polycyclic Aromatic Hydrocarbons in Sludge from Water and Wastewater Treatment Plants by GC-MS. International Journal of Environmental Research and Public Health. 2019; 16(14):2604. https://doi.org/10.3390/ijerph16142604
Chicago/Turabian StyleChen, Chih-Feng, Yun-Ru Ju, Yee Cheng Lim, Shu-Ling Hsieh, Mei-Ling Tsai, Pei-Pei Sun, Ravi Katiyar, Chiu-Wen Chen, and Cheng-Di Dong. 2019. "Determination of Polycyclic Aromatic Hydrocarbons in Sludge from Water and Wastewater Treatment Plants by GC-MS" International Journal of Environmental Research and Public Health 16, no. 14: 2604. https://doi.org/10.3390/ijerph16142604
APA StyleChen, C. -F., Ju, Y. -R., Lim, Y. C., Hsieh, S. -L., Tsai, M. -L., Sun, P. -P., Katiyar, R., Chen, C. -W., & Dong, C. -D. (2019). Determination of Polycyclic Aromatic Hydrocarbons in Sludge from Water and Wastewater Treatment Plants by GC-MS. International Journal of Environmental Research and Public Health, 16(14), 2604. https://doi.org/10.3390/ijerph16142604