A Systematic Review of Physiological Measures of Mental Workload
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Study Selection
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
3. Results
3.1. Study Characteristics
3.2. Physiological Measures of MWL
3.2.1. Cardiovascular Measures
3.2.2. Eye Movement Measures
3.2.3. EEG Measures
3.2.4. Respiration Measures
3.2.5. Skin Measures
3.2.6. EMG Measures
3.2.7. Neuroendocrine Measures
4. Discussion
4.1. Primary Findings
4.2. Implications
4.3. Relevance To Previous Review Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A Electronic Search Strategy
Appendix A.1. MEDLINE via EBSCOhost Research Databases
- AB (physiol* OR heart rate OR blood pressure OR electrocardiogram OR electrodermal* OR electroencephalogram OR electrooculogram OR event related potential* OR breath* OR respirat* OR eye* OR skin* OR ocular* OR brain* OR blink* OR pupil OR ERP OR EMG OR EEG OR ECG) MEDLINE (1,479,297)
- SU (physiol* OR heart rate OR blood pressure OR electrocardiogram OR electrodermal* OR electroencephalogram OR electrooculogram OR event related potential* OR breath* OR respirat* OR eye* OR skin* OR ocular* OR brain* OR blink* OR pupil OR ERP OR EMG OR EEG OR ECG) MEDLINE (2,870,838)
- AB (cognitive OR mental) MEDLINE (380,887)
- SU (cognitive OR mental) MEDLINE (287,903)
- AB (workload OR task load OR effort* OR load) MEDLINE (308,376)
- SU (workload OR task load OR effort* OR load) MEDLINE (48,533)
- 1 AND 3 AND 5 MEDLINE (4644)
- 2 AND 4 AND 6 MEDLINE (386)
- 7 OR 8 MEDLINE (4882) limited to academic journals
Appendix A.2. PsycINFO, PsycARTICLES and ABI/INFORM Collection via ProQuest
- ab(physiol* OR heart rate OR blood pressure OR electrocardiogram OR electrodermal* OR electroencephalogram OR electrooculogram OR event related potential* OR breath* OR respirat* OR eye* OR skin* OR ocular* OR brain* OR blink* OR pupil OR ERP OR EMG OR EEG OR ECG) PsycINFO (398,184) PsycARTICLES (14,366) ABI/INFORM Collection (812,519)
- su(physiol* OR heart rate OR blood pressure OR electrocardiogram OR electrodermal* OR electroencephalogram OR electrooculogram OR event related potential* OR breath* OR respirat* OR eye* OR skin* OR ocular* OR brain* OR blink* OR pupil OR ERP OR EMG OR EEG OR ECG) PsycINFO (447,280) PsycARTICLES (15,062) ABI/INFORM Collection (324,894)
- ab(cognitive OR mental) PsycINFO (485,515) PsycARTICLES (32,999) ABI/INFORM Collection (159,250)
- su(cognitive OR mental) PsycINFO (655,764) PsycARTICLES (50,688) ABI/INFORM Collection (207,335)
- ab(workload OR task load OR effort* OR load) PsycINFO (125,139) PsycARTICLES (8408) ABI/INFORM Collection (1,296,666)
- su(workload OR task load OR effort* OR load) PsycINFO (15,679) PsycARTICLES (1254) ABI/INFORM Collection (36,362)
- 1 AND 3 AND 5 PsycINFO (3848) PsycARTICLES (156) ABI/INFORM Collection (280)
- 2 AND 4 AND 6 PsycINFO (814) PsycARTICLES (37) ABI/INFORM Collection (12)
- 7 OR 8 PsycINFO (4205) PsycARTICLES (178) ABI/INFORM Collection (288) limited to peer-reviewed journals
References
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Galy, E. Consideration of several mental workload categories: Perspectives for elaboration of new ergonomic recommendations concerning shiftwork AU—Galy, Edith. Theor. Issues Ergon. Sci. 2018, 19, 483–497. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Y.; Song, F.; Li, Z.; Dong, X. Mental workload measurement for emergency operating procedures in digital nuclear power plants. Ergonomics 2013, 56, 1070–1085. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.L.; Wickens, C.D.; Merwin, D.H. Perspective and coplanar cockpit displays of traffic information: Implications for maneuver choice, flight safety, and mental workload. Int. J. Aviat. Psychol. 2005, 15, 1–21. [Google Scholar] [CrossRef]
- Marquart, G.; Cabrall, C.; Winter, J.D. Review of eye-related measures of drivers’ mental workload. Procedia Manuf. 2015, 3, 2854–2861. [Google Scholar] [CrossRef]
- Tao, D.; Yuan, J.; Liu, S.; Qu, X. Effects of button design characteristics on performance and perceptions of touchscreen use. Int. J. Ind. Ergon. 2018, 64, 59–68. [Google Scholar] [CrossRef]
- Lean, Y.; Shan, F. Brief review on physiological and biochemical evaluations of human mental workload. Hum. Factors Ergon. Manuf. Serv. Ind. 2012, 22, 177–187. [Google Scholar] [CrossRef]
- Young, M.S.; Stanton, N.A. Mental workload. In Handbook of Human Factors and Ergonomics Methods; Stanton, N.A., Hedge, A., Brookhuis, K., Salas, E., Hendrick, H.W., Eds.; Taylor & Francis: London, UK, 2005. [Google Scholar]
- Brookhuis, K.A. Assessment of Drivers’ Workload: Performance, Subjective and Physiological Indices. In Stress, Workload and Fatigue; Hancock, P.A., Desmond, P.A., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 2001; pp. 321–333. [Google Scholar]
- Wickens, C.D. Multiple Resources and Mental Workload. Hum. Factors 2008, 50, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Young, M.S.; Stanton, N.A. Attention and automation: New perspectives on mental underload and performance. Theor. Issues Ergon. Sci. 2002, 3, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Charles, R.L.; Nixon, J. Measuring mental workload using physiological measures: A systematic review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef]
- Nixon, J.; Charles, R. Understanding the human performance envelope using electrophysiological measures from wearable technology. Cogn. Technol. Work 2017, 19, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Fairclough, S.H.; Houston, K. A metabolic measure of mental effort. Biol. Psychol. 2004, 66, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.F.; Fullenkamp, P.; Davis, I. Evoked potential, cardiac, blink, and respiration measures of pilot workload in air-to-ground missions. Aviat. Space Environ. Med. 1994, 65, 100–105. [Google Scholar] [PubMed]
- Jorna, P.G.A.M. Spectral analysis of heart rate and psychological state: A review of its validity as a workload index. Biol. Psychol. 1992, 34, 237–257. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, 2535. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.; Reinerman-Jones, L.E.; Barber, D.J.; Abich, J.t. The psychometrics of mental workload: Multiple measures are sensitive but divergent. Hum. Factors 2015, 57, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.; Reinerman-Jones, L.; Abich, I.V.J.; Kustubayeva, A. Metrics for individual differences in EEG response to cognitive workload: Optimizing performance prediction. Personal. Individ. Differ. 2017, 118, 22–28. [Google Scholar] [CrossRef]
- Ahlstrom, U.; Friedman-Berg, F.J. Using eye movement activity as a correlate of cognitive workload. Int. J. Ind. Ergon. 2006, 36, 623–636. [Google Scholar] [CrossRef]
- Allison, B.Z.; Polich, J. Workload assessment of computer gaming using a single-stimulus event-related potential paradigm. Biol. Psychol. 2008, 77, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Backs, R.W.; Seljos, K.A. Metabolic and cardiorespiratory measures of mental effort: The effects of level of difficulty in a working memory task. Int. J. Psychophysiol. 1994, 16, 57–68. [Google Scholar] [CrossRef]
- Berka, C.L.; Daniel, J.; Lumicao, M.N.; Yau, A.; Davis, G.; Zivkovic, V.T.; Olmstead, R.E.; Tremoulet, P.D.; Craven, P.L. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 2007, 78, 231–244. [Google Scholar]
- Bernardi, L.; Wdowczyk-Szulc, J.; Valenti, C.; Castoldi, S.; Passino, C.; Spadacini, G.; Sleight, P. Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J. Am. Coll. Cardiol. 2000, 35, 1462–1469. [Google Scholar] [CrossRef] [Green Version]
- Bousefsaf, F.; Maaoui, C.; Pruski, A. Remote detection of mental workload changes using cardiac parameters assessed with a low-cost webcam. Comput. Biol. Med. 2014, 53, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Boutcher, Y.N.; Boutcher, S.H. Cardiovascular response to stroop: Effect of verbal response and task difficulty. Biol. Psychol. 2006, 73, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Braby, C.D.; Harris, D.; Muir, H.C. A psychophysiological approach to the assessment of work underload. Ergonomics 1993, 36, 1035–1042. [Google Scholar] [CrossRef]
- Brookings, J.B.; Wilson, G.F.; Swain, C.R. Psychophysiological responses to changes in workload during simulated air traffic control. Biol. Psychol. 1996, 42, 361–377. [Google Scholar] [CrossRef]
- Causse, M.; Senard, J.M.; Demonet, J.F.; Pastor, J. Monitoring cognitive and emotional processes through pupil and cardiac response during dynamic versus logical task. Appl. Psychophysiol. Biofeedback 2010, 35, 115–123. [Google Scholar] [CrossRef]
- Chen, J.; Song, X.; Lin, Z. Revealing the “Invisible Gorilla” in construction: Estimating construction safety through mental workload assessment. Autom. Constr. 2016, 63, 173–183. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, S.; Tran, C.C. Comprehensive evaluation method for user interface design in nuclear power plant based on mental workload. Nucl. Eng. Technol. 2019, 51, 453–462. [Google Scholar] [CrossRef]
- Choi, M.K.; Lee, S.M.; Ha, J.S.; Seong, P.H. Development of an EEG-based workload measurement method in nuclear power plants. Ann. Nucl. Energy 2018, 111, 595–607. [Google Scholar] [CrossRef]
- Collet, C.; Salvia, E.; Petit-Boulanger, C. Measuring workload with electrodermal activity during common braking actions. Ergonomics 2014, 57, 886–896. [Google Scholar] [CrossRef] [PubMed]
- De Rivecourt, M.; Kuperus, M.N.; Post, W.J.; Mulder, L.J. Cardiovascular and eye activity measures as indices for momentary changes in mental effort during simulated flight. Ergonomics 2008, 51, 1295–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaney, J.P.A.; Brodie, D.A. Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept. Mot. Skills 2000, 91, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.K.; Mann, D.D. A complete task analysis to measure the workload associated with operating an agricultural sprayer equipped with a navigation device. Appl. Ergon. 2010, 41, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Di Stasi, L.L.; Antoli, A.; Canas, J.J. Main sequence: An index for detecting mental workload variation in complex tasks. Appl. Ergon. 2011, 42, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Di Stasi, L.L.; Antolí, A.; Cañas, J.J. Evaluating mental workload while interacting with computer-generated artificial environments. Entertain. Comput. 2013, 4, 63–69. [Google Scholar] [CrossRef]
- Di Stasi, L.L.; Antolí, A.; Gea, M.; Cañas, J.J. A neuroergonomic approach to evaluating mental workload in hypermedia interactions. Int. J. Ind. Ergon. 2011, 41, 298–304. [Google Scholar] [CrossRef]
- Di Stasi, L.L.; Marchitto, M.; Antolí, A.; Baccino, T.; Cañas, J.J. Approximation of on-line mental workload index in ATC simulated multitasks. J. Air Transp. Manag. 2010, 16, 330–333. [Google Scholar] [CrossRef]
- Durantin, G.; Gagnon, J.F.; Tremblay, S.; Dehais, F. Using near infrared spectroscopy and heart rate variability to detect mental overload. Behav. Brain Res. 2014, 259, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussault, C.; Jouanin, J.C.; Philippe, M.; Guezennec, C.Y. EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviat. Space Environ. Med. 2005, 76, 344–351. [Google Scholar] [PubMed]
- Fairclough, S.H.; Venables, L. Prediction of subjective states from psychophysiology: A multivariate approach. Biol. Psychol. 2006, 71, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.H.; Venables, L.; Tattersall, A. The influence of task demand and learning on the psychophysiological response. Int. J. Psychophysiol. 2005, 56, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, M.; Motamedzade, M.; Heidarimoghadam, R.; Soltanian, A.R.; Miyake, S. Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study. Appl. Ergon. 2016, 52, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Faure, V.; Lobjois, R.; Benguigui, N. The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior. Transp. Res. Part F Traffic Psychol. Behav. 2016, 40, 78–90. [Google Scholar] [CrossRef]
- Fibiger, W.; Evans, O.; Singer, G. Hormonal responses to a graded mental workload. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Finsen, L.; Sogaard, K.; Jensen, C.; Borg, V.; Christensen, H. Muscle activity and cardiovascular response during computer-mouse work with and without memory demands. Ergonomics 2001, 44, 1312–1329. [Google Scholar] [CrossRef] [PubMed]
- Fournier, L.R.; Wilson, G.F.; Swain, C.R. Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: Manipulations of task difficulty and training. Int. J. Psychophysiol. 1999, 31, 129–145. [Google Scholar] [CrossRef]
- Foy, H.J.; Chapman, P. Mental workload is reflected in driver behaviour, physiology, eye movements and prefrontal cortex activation. Appl. Ergon. 2018, 73, 90–99. [Google Scholar] [CrossRef]
- Grassmann, M.; Vlemincx, E.; von Leupoldt, A.; Van den Bergh, O. Individual differences in cardiorespiratory measures of mental workload: An investigation of negative affectivity and cognitive avoidant coping in pilot candidates. Appl. Ergon. 2017, 59, 274–282. [Google Scholar] [CrossRef]
- Heine, T.; Lenis, G.; Reichensperger, P.; Beran, T.; Doessel, O.; Deml, B. Electrocardiographic features for the measurement of drivers’ mental workload. Appl. Ergon. 2017, 61, 31–43. [Google Scholar] [CrossRef]
- Hjortskov, N.; Rissen, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Sogaard, K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef]
- Hogervorst, M.A.; Brouwer, A.M.; van Erp, J.B. Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload. Front. Neurosci 2014, 8, 322. [Google Scholar] [CrossRef] [PubMed]
- Hoover, A.; Singh, A.; Fishel-Brown, S.; Muth, E. Real-time detection of workload changes using heart rate variability. Biomed. Signal Process. Control 2012, 7, 333–341. [Google Scholar] [CrossRef]
- Horat, S.K.; Herrmann, F.R.; Favre, G.; Terzis, J.; Debatisse, D.; Merlo, M.C.G.; Missonnier, P. Assessment of mental workload: A new electrophysiological method based on intra-block averaging of ERP amplitudes. Neuropsychologia 2016, 82, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, B.W.; Wang, M.J.; Chen, C.Y.; Chen, F. Effective Indices for monitoring mental workload while performing multiple tasks. Percept. Mot. Skills 2015, 121, 94–117. [Google Scholar] [CrossRef]
- Hwang, S.-L.; Yau, Y.-J.; Lin, Y.-T.; Chen, J.-H.; Huang, T.-H.; Yenn, T.-C.; Hsu, C.-C. Predicting work performance in nuclear power plants. Saf. Sci. 2008, 46, 1115–1124. [Google Scholar] [CrossRef]
- Jaquess, K.J.; Lo, L.C.; Oh, H.; Lu, C.; Ginsberg, A.; Tan, Y.Y.; Lohse, K.R.; Miller, M.W.; Hatfield, B.D.; Gentili, R.J. Changes in mental workload and motor performance throughout multiple practice sessions under various levels of task difficulty. Neuroscience 2018, 393, 305–318. [Google Scholar] [CrossRef]
- Jorna, P.G. Heart rate and workload variations in actual and simulated flight. Ergonomics 1993, 36, 1043–1054. [Google Scholar] [CrossRef]
- Kathner, I.; Wriessnegger, S.C.; Muller-Putz, G.R.; Kubler, A.; Halder, S. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol. Psychol. 2014, 102, 118–129. [Google Scholar] [CrossRef]
- Tripathi, K.K.; Mukundan, C.R.; Mathew, T.L. Attentional modulation of heart rate variability (HRV) during execution of PC based cognitive tasks. Ind. J. Aerosp. Med. 2003, 47, 1–10. [Google Scholar]
- Kosti, M.V.; Georgiadis, K.; Adamos, D.A.; Laskaris, N.; Spinellis, D.; Angelis, L. Towards an affordable brain computer interface for the assessment of programmers’ mental workload. Int. J. Hum. Comput. Stud. 2018, 115, 52–66. [Google Scholar] [CrossRef]
- Lahtinen, T.M.M.K.; Jukka, P.; Laitinen, T.; Leino, T.K. Heart rate and performance during combat missions in a flight simulator. Aviat. Space Environ. Med. 2007, 78, 387–391. [Google Scholar] [PubMed]
- Lehrer, P.; Karavidas, M.; Lu, S.E.; Vaschillo, E.; Vaschillo, B.; Cheng, A. Cardiac data increase association between self-report and both expert ratings of task load and task performance in flight simulator tasks: An exploratory study. Int. J. Psychophysiol. 2010, 76, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Leino, T.K.; Leppaluoto, J.; Ruokonen, A.; Kuronen, P. Neuroendocrine responses to psychological workload of instrument flying in student pilots. Aviat. Space Environ. Med. 1999, 70, 565–570. [Google Scholar] [PubMed]
- Luque-Casado, A.; Perales, J.C.; Cardenas, D.; Sanabria, D. Heart rate variability and cognitive processing: The autonomic response to task demands. Biol. Psychol. 2016, 113, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mandrick, K.; Peysakhovich, V.; Remy, F.; Lepron, E.; Causse, M. Neural and psychophysiological correlates of human performance under stress and high mental workload. Biol. Psychol. 2016, 121, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Mansikka, H.; Simola, P.; Virtanen, K.; Harris, D.; Oksama, L. Fighter pilots’ heart rate, heart rate variation and performance during instrument approaches. Ergonomics 2016, 59, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Mansikka, H.; Virtanen, K.; Harris, D.; Simola, P. Fighter pilots’ heart rate, heart rate variation and performance during an instrument flight rules proficiency test. Appl. Ergon. 2016, 56, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Marchitto, M.; Benedetto, S.; Baccino, T.; Cañas, J.J. Air traffic control: Ocular metrics reflect cognitive complexity. Int. J. Ind. Ergon. 2016, 54, 120–130. [Google Scholar] [CrossRef]
- May, J.G.; Kennedy, R.S.; Williams, M.C.; Dunlap, W.P.; Brannan, J.R. Eye movement indices of mental workload. Acta Psychol. 1990, 75, 75–89. [Google Scholar] [CrossRef]
- Mehler, B.; Reimer, B.; Coughlin, J.F.; Dusek, J.A. Impact of Incremental Increases in cognitive workload on physiological arousal and performance in young adult drivers. Transp. Res. Rec. J. Transp. Res. Board 2009, 2138, 6–12. [Google Scholar] [CrossRef]
- Miller, M.W.; Rietschel, J.C.; McDonald, C.G.; Hatfield, B.D. A novel approach to the physiological measurement of mental workload. Int. J. Psychophysiol. 2011, 80, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Miyake, S. Multivariate workload evaluation combining physiological and subjective measures. Int. J. Psychophysiol. 2001, 40, 233–238. [Google Scholar] [CrossRef]
- Miyake, S.; Yamada, S.; Shoji, T.; Takae, Y.; Kuge, N.; Yamamura, T. Physiological responses to workload change:A test/retest examination. Appl. Ergon. 2009, 40, 987–996. [Google Scholar] [CrossRef]
- Morales, J.M.; Ruiz-Rabelo, J.F.; Diaz-Piedra, C.; Di Stasi, L.L. Detecting mental workload in surgical teams using a wearable single-channel electroencephalographic device. J. Surg. Educ. 2019, 76, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.; Whang, M.; Park, S.; Park, M.C. Effects of mental workload on involuntary attention: A somatosensory ERP study. Neuropsychologia 2017, 106, 7–20. [Google Scholar] [CrossRef]
- Myrtek, M.; Deutschmann-Janicke, E.; Strohmaier, H.; Zimmermann, W.; Lawerenz, S.; Brugner, G.; Muller, W. Physical, mental, emotional, and subjective workload components in train drivers. Ergonomics 1994, 37, 1195–1203. [Google Scholar] [CrossRef]
- Nickel, P.; Nachreiner, F. Sensitivity and diagnosticity of the 0.1-Hz component of heart rate variability as an indicator of mental workload. Hum. Factors 2003, 45, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, L.; Brooks, B. Measuring mental workload and physiological reactions in marine pilots: Building bridges towards redlines of performance. Appl. Ergon. 2018, 69, 74–92. [Google Scholar] [CrossRef]
- Puma, S.; Matton, N.; Paubel, P.V.; Raufaste, E.; El-Yagoubi, R. Using theta and alpha band power to assess cognitive workload in multitasking environments. Int. J. Psychophysiol. 2018, 123, 111–120. [Google Scholar] [CrossRef]
- Recarte, M.A.; Nunes, L.M. Mental workload while driving: Effects on visual search, discrimination, and decision making. J. Exp. Psychol. 2003, 9, 119–137. [Google Scholar] [CrossRef]
- Reiner, M.; Gelfeld, T.M. Estimating mental workload through event-related fluctuations of pupil area during a task in a virtual world. Int. J. Psychophysiol. 2014, 93, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.; Myung, R. Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Int. J. Ind. Ergon. 2005, 35, 991–1009. [Google Scholar] [CrossRef]
- Sauer, J.; Nickel, P.; Wastell, D. Designing automation for complex work environments under different levels of stress. Appl. Ergon. 2013, 44, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Schellekens, J.M.H.; Sijtsma, G.J.; Vegter, E.; Meijman, T.F. Immediate and delayed after-effects of long lasting mentally demanding work. Biol. Psychol. 2000, 53, 37–56. [Google Scholar] [CrossRef]
- Shaw, E.P.; Rietschel, J.C.; Hendershot, B.D.; Pruziner, A.L.; Miller, M.W.; Hatfield, B.D.; Gentili, R.J. Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking. Biol. Psychol. 2018, 134, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Sirevaag, E.J.; Kramer, A.F.; Wickens, C.D.; Reisweber, M.; Strayer, D.L.; Grenell, J.F. Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics 1993, 36, 1121–1140. [Google Scholar] [CrossRef] [PubMed]
- Solís-Marcos, I.; Kircher, K. Event-related potentials as indices of mental workload while using an in-vehicle information system. Cogn. Technol. Work 2019, 21, 55–67. [Google Scholar] [CrossRef]
- Svensson, E.A.I.; Wilson, G.F. Psychological and psychophysiological models of pilot performance for systems development and mission evaluation. Int. J. Aviat. Psychol. 2009, 12, 95–110. [Google Scholar] [CrossRef]
- Tattersall, A.J.; Foord, P.S. An experimental evaluation of instantaneous self-assessment as a measure of workload. Ergonomics 1996, 39, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Tattersall, A.J.; Hockey, G.R.J. Level of operator control and changes in heart rate variability during simulated flight maintenance. Hum. Factors 1995, 37, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Veltman, J.A. A comparative study of psychophysiological reactions during simulator and real flight. Int. J. Aviat. Psychol. 2009, 12, 33–48. [Google Scholar] [CrossRef]
- Veltman, J.A.; Gaillard, A.W. Physiological workload reactions to increasing levels of task difficulty. Ergonomics 1998, 41, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Veltman, J.A.; Gaillard, A.W.K. Physiological indices of workload in a simulated flight task. Biol. Psychol. 1996, 42, 323–342. [Google Scholar] [CrossRef]
- Vera, J.; Jimenez, R.; Garcia, J.A.; Cardenas, D. Intraocular pressure is sensitive to cumulative and instantaneous mental workload. Appl. Ergon. 2017, 60, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Hagemann, T.; Kastner, M. The Impact of workload on heart rate and blood pressure in enroute and tower air traffic control. J. Psychophysiol. 2006, 20, 297–314. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, L.; Lu, Y.; Fu, S. Physiological indices of pilots’ abilities under varying task demands. Aerosp. Med. Hum. Perform. 2016, 87, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Wanyan, X.; Zhuang, D.; Lin, Y.; Xiao, X.; Song, J.-W. Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation. Int. J. Ind. Ergon. 2018, 64, 1–7. [Google Scholar] [CrossRef]
- Wanyan, X.; Zhuang, D.; Zhang, H. Improving pilot mental workload evaluation with combined measures. BioMed Mater. Eng. 2014, 24, 2283–2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Zhuang, D.; Wanyan, X.; Liu, C.; Zhuang, H. A model for discrimination and prediction of mental workload of aircraft cockpit display interface. Chin. J. Aeronaut. 2014, 27, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.F. Air-to-ground training missions: A psychophysiological workload analysis. Ergonomics 1993, 36, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.F. An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 2009, 12, 3–18. [Google Scholar] [CrossRef]
- Wilson, G.F.; Russell, C.A. Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Hum. Factors 2003, 45, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Tran, C.C.; Chen, Y.; Tan, K.; Habiyaremye, J.L. Effect of user interface layout on the operators’ mental workload in emergency operating procedures in nuclear power plants. Nucl. Eng. Des. 2017, 322, 266–276. [Google Scholar] [CrossRef]
- Yan, S.; Wei, Y.; Tran, C.C. Evaluation and prediction mental workload in user interface of maritime operations using eye response. Int. J. Ind. Ergon. 2019, 71, 117–127. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Xie, D. Effects of mental tasks on the cardiorespiratory synchronization. Respir. Physiol. Neurobiol. 2010, 170, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Hancock, P.A.; Meshkati, N.; Robertson, M.M. Physiological reflections of mental workload. Aviat. Space Environ. Med. 1985, 56, 1110–1114. [Google Scholar]
- Kok, A. Event-related-potential (ERP) reflections of mental resources: A review and synthesis. Biol. Psychol. 1997, 45, 19–56. [Google Scholar] [CrossRef]
- Mohanavelu, K.; Lamshe, R.; Poonguzhali, S.; Adalarasu, K.; Jagannath, M. Assessment of human fatigue during physical performance using physiological signals: A review. Biomed. Pharmacol. J. 2017, 10, 1887–1896. [Google Scholar] [CrossRef]
- Ying, L.; Fu, S.; Qian, X.; Sun, X. Effects of mental workload on long-latency auditory-evoked-potential, salivary cortisol, and immunoglobulin A. Neurosci. Lett. 2011, 491, 31–34. [Google Scholar] [CrossRef]
Abbreviations | Descriptions |
---|---|
ECG | Electrocardiogram |
EMG | Electromyogram |
EEG | Electroencephalogram |
ERP | Event-related Brain Potentials |
HR | Heart rate |
HRV | Heart rate variability |
LF/HF ratio | The ratio of high frequency to low frequency |
IBI | Interbeat interval |
NN | Normal-to-normal intervals |
NNmin | Minimum of NN |
NNmax | Maximum of NN |
NN50 | The number of successive NN interval pairs that differ by more than 50 ms |
NN20 | The number of successive NN interval pairs that differ by more than 20 ms |
pNN50 | Percentage of NN50 intervals |
PNN20 | Percentage of NN20 intervals |
SDNN | Standard deviation of the NN intervals |
RMSSD | The square root of the mean of the sum of the squares of difference between successive NN intervals differences |
HRVTRI | The integral of the NN interval density distribution divided by the maximum of the distribution |
TINN | Base of the triangle used to approximate the histogram of NN time series |
SaEn | Measure of irregularity or complexity in the series called sample entropy |
ApEn | Measure of irregularity or complexity in the series called approximate entropy |
SD1/SD2 | Ratio between the standard deviations SD1 and SD2 obtained from the Poincare plot |
WPAband 2 | Normalized spectral power of the RR time series in the band [0.0375 Hz, 0.0750 Hz] obtained using wavelet packet analysis. |
WPAband 4 | Normalized spectral power of the RR time series in the band [0.1125 Hz, 0.1500 Hz] obtained using wavelet packet analysis |
SDSD | Standard deviation of the difference of all subsequent NN intervals |
α power | Alpha power |
θ power | Theta power |
β power | Beta power |
δ power | Delta power |
γ power | Gamma power |
Characteristics | N | % |
---|---|---|
Year of publication | ||
Before 2000 | 15 | 16% |
2000–2009 | 27 | 30% |
2010–2019 | 49 | 54% |
Research domain where the studies were conducted | ||
Aviation | 35 | 38% |
Driving | 11 | 12% |
Nuclear power | 6 | 7% |
Domain-free | 24 | 26% |
Not specified | 15 | 16% |
Type of participants | ||
Students | 31 | 34% |
Pilots | 22 | 24% |
Drivers | 6 | 7% |
Operators | 6 | 7% |
Not specified | 25 | 27% |
Type of physiological measures | ||
Cardiovascular measures | 59 | 65% |
Eye movement measures | 38 | 42% |
EEG measures | 26 | 29% |
Respiration measures | 17 | 19% |
Skin measures | 7 | 8% |
EMG measures | 2 | 2% |
Neuroendocrine measures | 2 | 2% |
Number of physiological measures used | ||
1 to 2 | 25 | 27% |
3 to 5 | 39 | 43% |
6 to 10 | 23 | 25% |
16 to 20 | 4 | 4% |
Studies that also employed subjective MWL measures | ||
NASA-Task Load Index | 41 | 45% |
Subjective Workload Assessment Technique (SWAT) | 3 | 3% |
Rating Scale of Mental Effort (RSME) | 5 | 5% |
Bedford Rating Scale (BRS) | 2 | 2% |
Other self-reported scales | 17 | 19% |
Type of Physiological Measures | Driving | Nuclear Power | Aviation | Domain-Free | Not Specified | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | |
Cardiovascular measures | 34 | 30 | 4 | 7 | 5 | 2 | 96 | 69 | 27 | 41 | 32 | 8 | 9 | 6 | 3 | 187 | 142 | 44 |
Eye movement measures | 7 | 6 | 1 | 17 | 11 | 6 | 44 | 25 | 19 | 10 | 9 | 1 | 11 | 9 | 2 | 89 | 60 | 29 |
EEG measures | 6 | 5 | 1 | 1 | 1 | 0 | 27 | 20 | 7 | 27 | 16 | 11 | 24 | 20 | 4 | 85 | 62 | 23 |
Respiration measures | 2 | 1 | 1 | 0 | 0 | 0 | 11 | 4 | 7 | 7 | 5 | 2 | 2 | 2 | 0 | 22 | 12 | 10 |
Skin measures | 3 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 1 | 0 | 7 | 6 | 1 |
EMG measures | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 3 | 2 | 1 |
Neuroendocrine measures | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 6 | 0 | 4 | 2 | 2 | 0 | 0 | 0 | 10 | 8 | 2 |
Total | 52 | 45 | 7 | 25 | 17 | 8 | 186 | 125 | 61 | 93 | 67 | 25 | 47 | 38 | 9 | 403 | 292 | 110 |
Measures | Driving | Nuclear Power | Aviation | Domain-Free | Not Specified | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | |
ECG measures | ||||||||||||||||||
Heart rate | 4 | 3 | 1 | 1 | 1 | 0 | 21 | 12 | 9 | 7 | 6 | 1 | 3 | 3 | 0 | 36 | 25 | 11 |
Frequency-domain HRV | ||||||||||||||||||
High frequency | 1 | 1 | 0 | 11 | 7 | 4 | 6 | 4 | 2 | 18 | 12 | 6 | ||||||
Mid frequency | 1 | 1 | 0 | 12 | 8 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 17 | 11 | 6 | |||
LF/HF ratio | 2 | 1 | 1 | 2 | 1 | 1 | 5 | 5 | 0 | 6 | 5 | 1 | 1 | 0 | 1 | 16 | 12 | 4 |
Low frequency | 1 | 1 | 0 | 3 | 1 | 2 | 2 | 2 | 0 | 6 | 4 | 2 | ||||||
Very low frequency | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | |||||||||
HRVTRI | 2 | 2 | 0 | 2 | 2 | 0 | ||||||||||||
Total power | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | |||||||||
WPAband 2 | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
WPAband 4 | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Time-domain HRV | ||||||||||||||||||
Interbeat interval | 2 | 1 | 1 | 11 | 9 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 19 | 13 | 6 | |||
pNN50 | 1 | 1 | 0 | 8 | 5 | 3 | 2 | 1 | 1 | 11 | 7 | 4 | ||||||
SDNN | 2 | 2 | 0 | 1 | 1 | 0 | 7 | 6 | 1 | 10 | 9 | 1 | ||||||
RMSSD | 2 | 2 | 0 | 4 | 3 | 1 | 3 | 2 | 1 | 9 | 7 | 2 | ||||||
NN50 | 2 | 1 | 1 | 2 | 1 | |||||||||||||
TINN | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
SaEn | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
ApEn | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
SD1/SD2 | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
T-wave amplitude | 2 | 2 | 0 | 2 | 2 | 0 | ||||||||||||
T-wave width | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
T-wave symmetry | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
T-wave kurtosis | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
ST-segment amplitude | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
SDSD | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
NNMin | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
NNMax | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
PNN20 | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
P-wave amplitude | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Other cardiovascular measures | ||||||||||||||||||
Systolic blood pressure | 1 | 1 | 0 | 3 | 3 | 0 | 4 | 4 | 0 | 8 | 8 | 0 | ||||||
Diastolic blood pressure | 1 | 0 | 1 | 2 | 2 | 0 | 3 | 3 | 0 | 6 | 5 | 1 | ||||||
Blood oxygenation | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 3 | 3 | 0 | ||||||
Mean arterial pressure | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | |||||||||
Blood flow velocity | 1 | 0 | 1 | 1 | 0 | 1 |
Measures | Driving | Nuclear Power | Aviation | Domain-Free | Not Specified | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | |
Blink rate | 1 | 1 | 0 | 5 | 5 | 0 | 8 | 4 | 4 | 2 | 2 | 0 | 1 | 0 | 1 | 17 | 12 | 5 |
Pupil diameter | 2 | 2 | 0 | 4 | 2 | 2 | 3 | 2 | 1 | 3 | 3 | 0 | 2 | 2 | 0 | 14 | 11 | 3 |
Blink duration | 1 | 0 | 1 | 2 | 1 | 1 | 6 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 12 | 7 | 5 |
Fixation duration | 2 | 2 | 0 | 2 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 0 | 3 | 3 | 0 | 11 | 8 | 3 |
Saccade velocity | 4 | 3 | 1 | 3 | 2 | 1 | 7 | 5 | 2 | |||||||||
Fixation rate | 3 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 6 | 3 | 3 | ||||||
Saccade rate | 1 | 1 | 0 | 4 | 1 | 3 | 5 | 2 | 3 | |||||||||
Saccadic amplitude | 5 | 3 | 2 | 5 | 3 | 2 | ||||||||||||
Blink amplitude | 3 | 2 | 1 | 1 | 1 | 0 | 4 | 3 | 1 | |||||||||
Blink interval | 3 | 2 | 1 | 3 | 2 | 1 | ||||||||||||
Fixation spread | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | |||||||||
Saccade duration | 2 | 1 | 1 | 2 | 1 | 1 | ||||||||||||
Dwell time | 1 | 1 | 0 | 1 | 1 | 0 |
Measures | Driving | Nuclear Power | Aviation | Domain-Free | Not Specified | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | |
Frequency-domain | ||||||||||||||||||
α power | 1 | 0 | 1 | 7 | 4 | 3 | 6 | 4 | 2 | 4 | 3 | 1 | 18 | 11 | 7 | |||
θ power | 1 | 1 | 0 | 6 | 5 | 1 | 6 | 4 | 2 | 4 | 3 | 1 | 17 | 13 | 4 | |||
β power | 2 | 2 | 0 | 4 | 2 | 2 | 3 | 1 | 2 | 4 | 3 | 1 | 13 | 8 | 5 | |||
δ power | 3 | 3 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 6 | 5 | 1 | ||||||
γ power | 1 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 4 | 3 | 1 | ||||||
α/θ | 2 | 2 | 0 | 1 | 1 | 0 | 3 | 3 | 0 | |||||||||
θ/β | 1 | 0 | 1 | 1 | 0 | 1 | ||||||||||||
β/(α+θ) | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
(β+γ)/(α+θ) | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Time-domain (ERP) | ||||||||||||||||||
P300 | 1 | 1 | 0 | 3 | 3 | 0 | 4 | 4 | 0 | |||||||||
N100 | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 4 | 3 | 1 | ||||||
P2 | 2 | 0 | 2 | 2 | 2 | 0 | 4 | 2 | 2 | |||||||||
P3a | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 4 | 3 | 1 | ||||||
N200 | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Late positive potential amplitude | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | |||||||||
P3b | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Mismatch negativity | 1 | 1 | 0 | 1 | 1 | 0 |
Measures | Driving | Nuclear Power | Aviation | Domain-Free | Not Specified | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | NTotal | NSig | NNsig | |
Respiration | ||||||||||||||||||
Respiration rate | 2 | 1 | 1 | 7 | 2 | 5 | 6 | 5 | 1 | 2 | 2 | 0 | 17 | 10 | 7 | |||
Respiration amplitude | 4 | 2 | 2 | 1 | 0 | 1 | 5 | 2 | 3 | |||||||||
Skin | ||||||||||||||||||
Skin conductance | 3 | 3 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 1 | 0 | 7 | 6 | 1 | |||
EMG | ||||||||||||||||||
EMG amplitude | 1 | 1 | 0 | 2 | 1 | 1 | 3 | 2 | 1 | |||||||||
Neuroendocrine | ||||||||||||||||||
Plasma cortisol | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Adrenaline excretion | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Dopamine | 1 | 0 | 1 | 1 | 0 | 1 | ||||||||||||
Noradrenaline | 1 | 0 | 1 | 1 | 0 | 1 | ||||||||||||
Salivary cortisol concentration | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Plasma adrenocorticotropic hormone | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Beta-endorphin | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Plasma prolactin | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Plasma noradrenaline | 1 | 1 | 0 | 1 | 1 | 0 | ||||||||||||
Plasma adrenaline | 1 | 1 | 0 | 1 | 1 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, D.; Tan, H.; Wang, H.; Zhang, X.; Qu, X.; Zhang, T. A Systematic Review of Physiological Measures of Mental Workload. Int. J. Environ. Res. Public Health 2019, 16, 2716. https://doi.org/10.3390/ijerph16152716
Tao D, Tan H, Wang H, Zhang X, Qu X, Zhang T. A Systematic Review of Physiological Measures of Mental Workload. International Journal of Environmental Research and Public Health. 2019; 16(15):2716. https://doi.org/10.3390/ijerph16152716
Chicago/Turabian StyleTao, Da, Haibo Tan, Hailiang Wang, Xu Zhang, Xingda Qu, and Tingru Zhang. 2019. "A Systematic Review of Physiological Measures of Mental Workload" International Journal of Environmental Research and Public Health 16, no. 15: 2716. https://doi.org/10.3390/ijerph16152716
APA StyleTao, D., Tan, H., Wang, H., Zhang, X., Qu, X., & Zhang, T. (2019). A Systematic Review of Physiological Measures of Mental Workload. International Journal of Environmental Research and Public Health, 16(15), 2716. https://doi.org/10.3390/ijerph16152716