Work Fatigue in a Non-Deployed Military Setting: Assessment, Prevalence, Predictors, and Outcomes
Abstract
:1. Introduction
2. Assessment of Work Fatigue in the Military
3. Prevalence of Work Fatigue in a Military Non-Deployed Setting
4. Predictors and Outcomes of Work Fatigue in a Military Non-Deployed Setting
4.1. Theoretical Lens
4.2. Predictors of Work Fatigue
4.2.1. Job Demands
4.2.2. Job Resources
4.2.3. Personal Resources
4.3. Outcomes of Work Fatigue
4.3.1. Military Morale
4.3.2. Workplace Cognitive Failure
4.3.3. Turnover Intentions
4.3.4. Work-to-Family Conflict
5. Materials and Methods
5.1. Study Design
5.2. Sampling Weights
5.3. Respondent Characteristics
5.4. Measures
5.4.1. Work Fatigue
5.4.2. Role Overload
5.4.3. Role Ambiguity
5.4.4. Abusive Supervision
5.4.5. Distributive Justice
5.4.6. Interpersonal Justice
5.4.7. Perceived Organizational Support
5.4.8. Physical Activity
5.4.9. Sleep Quantity
5.4.10. Sleep Quality
5.4.11. Military Morale
5.4.12. Workplace Cognitive Failure
5.4.13. Turnover Intentions
5.4.14. Work-to-Family Conflict
5.5. Statitical Analyses
5.5.1. Confirmatory Factor Analyses and Measurement Invariance
5.5.2. Predictor and Outcome Regression Analyses
6. Results
6.1. Confirmatory Factor Analyses and Measurement Invariance
6.1.1. Overall Sample
6.1.2. Subgroups and Measurement Invariance
6.2. Prevalence of Work Fatigue
6.3. Predictors of Work Fatigue
6.4. Outcomes of Work Fatigue
7. Discussion
7.1. Assessment of Work Fatigue in the Military
7.2. Prevalence of Work Fatigue in the Non-Deployed Military Setting
7.3. Predictors of Work Fatigue
7.4. Outcomes of Work Fatigue
7.5. Practical Implications
7.6. Study Strengths and Limitations
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caldwell, J.A.; Caldwell, J.L. Fatigue in military aviation: An overview of US military-approved pharmacological countermeasures. Aviat. Space Environ. Med. 2005, 76 (Suppl. 1), C39–C51. [Google Scholar] [PubMed]
- Adler, A.B.; Huffman, A.H.; Bliese, P.D.; Castro, C.A. The impact of deployment length and experience on the well-being of male and female soldiers. J. Occup. Health. Psychol. 2005, 10, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Berthiaume, L. Royal Canadian Air Force down 275 Pilots as Demand Increases for Military Missions; The Canadian Press: Toronto, ON, Canada, 2018. [Google Scholar]
- Campbell, D.J.; Nobel, O.B.-Y. Occupational stressors in military service: A review and framework. Mil. Psychol. 2009, 21 (Suppl. 2), S47–S67. [Google Scholar] [CrossRef]
- Miller, N.L.; Matasangas, P.; Shattuck, L.G. Fatigue and its effects on performance in military environments. In Performance under Stress; Hancock, P.A., Szalma, J.L., Eds.; Ashgate Publishing: Farnham, UK, 2008; pp. 231–249. [Google Scholar]
- National Research Council. The Changing Nature of Work; National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Rabinowitz, Y.G.; Breitbach, J.E.; Warner, C.H. Managing aviator fatigue in a deployed environment: The relationship between fatigue and neurocognitive functioning. Mil. Med. 2009, 174, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Richard, L.S.; Huffman, A.H. The impact of commuter war on military personnel. Mil. Med. 2002, 167, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.W. The systematic effects of fatigue on military operations. In Proceedings of the 2nd IET Systems Safety Conference, London, UK, 22–24 October 2007. [Google Scholar]
- Krueger, G.P. Sustained military performance in contiuous operations: Combatant fatigue, rest, and sleep needs. In Handbook of Military Psychology; Gal, R., Maangelsdorff, A.D., Eds.; Wiley: New York, NY, USA, 1991; pp. 255–277. [Google Scholar]
- Krueger, G.P. Soldier fatigue and performance effectiveness: Yesterday, today, and tomorrow. In The Handbook of Operator Fatigue; Matthews, G., Desmond, P.A., Neubauer, C., Hancock, P.A., Eds.; Ashgate Publishing: Farnham, UK, 2012; pp. 393–412. [Google Scholar]
- Shattuck, N.L. Sleep and fatigue issues in military operations. In Sleep and Combat-Related Post Traumatic Stress Disorder; Vermetten, E., Germain, A., Neylan, T., Eds.; Springer: New York, NY, USA, 2018; pp. 69–76. [Google Scholar]
- Frone, M.R.; Tidwell, M.-C.O. The meaning and measurement of work fatigue: Development and evaluation of the three-dimensional work fatigue inventory (3D-WFI). J. Occup. Health Psychol. 2015, 20, 273–288. [Google Scholar] [CrossRef]
- Frone, M.R.; Reis, D.; Ottenstein, C. German version of the Three-Dimensional Work Fatigue Inventory (3D-WFI): Factor structure, internal consistency, and correlates. Stress Health 2018, 34, 674–680. [Google Scholar] [CrossRef]
- Boyle, M.H. Guidelines for evaluating prevalence studies. Evid. Based Ment. Health 1998, 1, 37–39. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.M. Estimating disease prevalence and incidence using administrative data: Some assembly required. J. Rheumatol. 2013, 40, 1241–1243. [Google Scholar] [CrossRef]
- Lerman, S.E.; Eskin, E.; Flower, D.J.; George, E.C.; Gerson, B.; Hartenbaum, N.; Hursh, S.R.; Moore-Ede, M. Fatigue risk management in the workplace. J. Occup. Environ. Med. 2012, 54, 231–258. [Google Scholar] [CrossRef]
- Shen, J.; Barbera, J.; Shapiro, C.M. Distinguishing sleepiness and fatigue: Focus on definition and measurement. Sleep Med. Rev. 2006, 10, 63–76. [Google Scholar] [CrossRef]
- Belland, K.M.; Bissell, C.A. Subjective study of fatigue during Navy flight operations over southern Iraq: Operation Southern Watch. Aviat. Space Environ. Med. 1994, 65, 557–561. [Google Scholar]
- Neville, K.J.; Bisson, R.U.; French, J.; Boll, P.A.; Storm, W.F. Subjective fatigue of C-141 aircrews during Operation Desert Storm. Hum. Factors 1994, 36, 339–349. [Google Scholar] [CrossRef]
- Westman, M.; Hobfoll, S.E.; Chen, S.; Davidson, O.B.; Laski, S. Organizational stress through the lens of Conservation of Resources (COR) theory. Res. Occup. Stress Well Being 2005, 4, 167–220. [Google Scholar]
- Hobfoll, S.E.; Freedy, J. Conservation of resources: A general stress theory applied to burnout. In Professional Burnout: Recent Developments in Theory and Research; Schaufeli, W.B., Maslach, C., Marek, T., Eds.; Taylor & Francis: Philadelphia, PA, USA, 1993; pp. 115–133. [Google Scholar]
- Hobfoll, S.E. Conservation of resources: A new attempt at conceptualizing stress. Am. Psychol. 1989, 44, 513–524. [Google Scholar] [CrossRef]
- Alarcan, G.M. A meta-analysis of burnout with job demands, resources, and attitudes. J. Vocat. Behav. 2011, 79, 549–562. [Google Scholar] [CrossRef]
- Bowling, N.A.; Alarcon, G.M.; Bragg, C.B.; Hartman, M.J. A meta-analytic examination of the potential correlates and consequences of workload. Work Stress 2015, 29, 95–113. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.E.; Leiter, M.P. Maslach Burnout Inventory Manual, 3rd ed.; Mind Garden: Menlo Park, CA, USA, 1996. [Google Scholar]
- Barling, J. The Science of Leadership; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Gallus, J.A.; Walsh, B.M.; van Driel, M.; Gouge, M.C.; Antolic, E. Intolerable cruelty: A multilevel examination of the impact of toxic leadership on U.S. military units and service members. Mil. Psychol. 2013, 25, 588–601. [Google Scholar] [CrossRef]
- Reed, D.M. Toxic leadership: Part deaux. Mil. Rev. 2010, 8, 407–418. [Google Scholar]
- Tepper, B.J.; Simon, L.; Park, H.M. Abusive supervision. Annu. Rev. Organ. Psychol. Organ. Behav. 2017, 4, 123–152. [Google Scholar] [CrossRef]
- Tepper, B.J. Consequences of abusive supervision. Acad. Manag. J. 2000, 43, 178–190. [Google Scholar]
- Mackey, J.D.; Frieder, R.E.; Brees, J.R.; Martinko, M.J. Abusive supervision: A meta-analysis and empirical review. J. Manag. 2017, 43, 1940–1965. [Google Scholar] [CrossRef]
- Colquitt, J.A. On the dimensionality of organizational justice: A construct validation of a measure. J. Appl. Psychol. 2001, 86, 386–400. [Google Scholar] [CrossRef]
- Moliner, C.; Matinez-Tur, V.; Peiro, J.M.; Ramos, J.; Cropanzano, R. Relationships between organizational justice and burnout at the work-group level. Int. J. Stress Manag. 2005, 12, 99–116. [Google Scholar] [CrossRef]
- Kurtessis, J.N.; Eisenberger, R.; Ford, M.T.; Buffardi, L.C.; Stewart, K.A.; Adis, C.S. Perceived organizational support: A meta-analytic evaluation of organizational support theory. J. Manag. 2017, 43, 1854–1884. [Google Scholar] [CrossRef]
- DiLorenzo, T.M.; Bargman, E.P.; Stucky-Ropp, R.; Brassington, G.S.; Frensch, P.A.; LaFontaine, T. Long-term effects of aerobic exercise on psychological outcomes. Prev. Med. 1999, 28, 75–85. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Balady, G.; Blair, S.N.; Blumenthal, J.; Caspersen, C.; Chaitman, B.; Epstein, S.; Sivarajan Froelicher, E.S.; Froelicher, V.F.; Pina, I.L.; et al. Statement on exercise: Benefits and recommendations for physical activity programs for all Americans. Circulation 1996, 94, 857–862. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Phsyical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- Etnier, J.L.; Salazar, W.; Landers, D.M.; Petruzzello, S.J.; Han, M.; Nowell, P. The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. J. Sport Exerc. Psychol. 1997, 19, 249–277. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Ahola, K.; Pulkki-Raback, L.; Kouvonen, A.; Rossi, H.; Aromaa, A.; Lonnqvist, J. Burnout and behavior-related health risk factors: Results from the population-based Finnish Health 2000 study. J. Occup. Environ. Med. 2012, 54, 17–22. [Google Scholar] [CrossRef]
- Kennedy-Armbruster, C.; Evans, E.M.; Sexauer, L.; Peterson, J.; Wyatt, W. Association among functional-movement ability, fatigue, sedentary time, and fitness in 40 years and older active duty military personnel. Mil. Med. 2013, 178, 1358–1364. [Google Scholar] [CrossRef]
- Lindwall, M.; Gerber, M.; Jonsdottir, I.H.; Borjesson, M.; Ahlborg, G., Jr. The relationships of change in physical activity with change in depression, anxiety, and burnout: A longitudinal study of Swedish healthcare workers. Health Psychol. 2014, 33, 1309–1318. [Google Scholar] [CrossRef]
- Mignot, E. Why we sleep: The temporal organization of recovery. PLoS Biol. 2008, 6, e106. [Google Scholar] [CrossRef]
- Krueger, J.M.; Frank, M.G.; Wisor, J.P.; Roy, S. Sleep function: Toward elucidating an enigma. Sleep Med. Rev. 2016, 28, 46–54. [Google Scholar] [CrossRef]
- Scharf, M.T.; Naidoo, N.; Zimmerman, J.E.; Pack, A.I. The energy hypothesis of sleep revisited. Prog. Neurobiol. 2008, 86, 264–280. [Google Scholar] [CrossRef] [Green Version]
- Vanitallie, T.B. Sleep and energy balance: Interactive homeostatic systems. Metabolism. 2006, 55 (Suppl. 2), S30–S35. [Google Scholar] [CrossRef]
- Wong, J.K.; Kelloway, E.K. Fatigue and safety at work. In Work and Sleep: Research Insights for the Workplace; Barling, J., Barnes, C.M., Carleton, E.L., Wagner, D.T., Eds.; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Han, G.H.; Harms, P.D.; Bai, Y.T. Nightmare bosses: The impact of abusive supervision on employees’ sleep, emotions, and creativity. J. Bus. Ethics 2017, 145, 21–31. [Google Scholar] [CrossRef]
- Lu, L.; Megahed, F.M.; Sesek, R.F.; Cavuoto, L.A. A survey of the prevalence of fatigue, its precursors and individual coping mechanisms among U.S. manufacturing workers. Appl. Ergon. 2017, 65, 139–151. [Google Scholar] [CrossRef]
- Peterson, U.; Demerouti, E.; Bergstrom, G.; Samuelsson, M.; Asberg, M.; Nygren, A. Burnout and physical and mental health among Swedish healthcare workers. J. Adv. Nurs. 2008, 62, 84–95. [Google Scholar] [CrossRef]
- Nagel, I.J.; Sonnentag, S. Exercise and sleep predict personal resources in employees’ daily lives. Appl. Psychol. Health Well Being 2013, 5, 348–368. [Google Scholar] [CrossRef]
- Britt, T.W.; Dickinson, J.M. Morale during military opertations: A positive psychology approach. In Military Life: The Psychology of Serving in Peace and Combat: Military Performance; Britt, T.W., Castro, C.A., Adler, A.B., Eds.; Prager Security International: Westport, CT, USA, 2006; Volume 1, pp. 157–184. [Google Scholar]
- Britt, T.W.; Dickinson, J.M.; Moore, D.; Castro, C.A.; Adler, A.B. Correlates and consequences of morale versus depression under stressful conditions. J. Occup. Health. Psychol. 2007, 12, 34–47. [Google Scholar] [CrossRef]
- Wallace, J.C.; Chen, G. Development and validation of a work-specific measure of cognitive failure: Implications for occupational safety. J. Occup. Organ. Psychol. 2005, 78, 615–632. [Google Scholar] [CrossRef]
- Allan, J.L.; Farquharson, B.; Johnston, D.W.; Jones, M.C.; Choudhary, C.J.; Johnston, M. Stress in telephone helpline nurses is associated with failures of concentration, attention and memory, and with more conservative referral decisions. Br. J. Psychol. 2014, 105, 200–213. [Google Scholar] [CrossRef]
- Brossoit, R.M.; Crain, T.L.; Leslie, J.J.; Hammer, L.B.; Truxillo, D.M.; Bodner, T.E. The effects of sleep on workplace cognitive failure and safety. J. Occup. Health Psychol. 2019, 24, 411–422. [Google Scholar] [CrossRef]
- Boksem, M.A.; Tops, M. Mental fatigue: Costs and benefits. Brain Res. Rev. 2008, 59, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Frone, M.R. Work-family balance. In Handbook of Occupational Health Psychology; Quick, J.C., Tetrick, L.E., Eds.; American Psychological Association: Washington, DC, USA, 2003; pp. 143–162. [Google Scholar]
- Bellavia, G.; Frone, M.R. Work-family conflict. In Handbook of Work Stress; Barling, J., Kelloway, E.K., Frone, M.R., Eds.; Sage: Thousand Oaks, CA, USA, 2005; pp. 113–147. [Google Scholar]
- Britt, T.W.; Dawson, C.R. Predicting work-family conflict from workload, job attitudes, group attributes, and health: A longitudinal study. Mil. Psychol. 2005, 17, 203–227. [Google Scholar] [CrossRef]
- Huyghebaert, T.; Gillet, N.; Fernet, C.; Lahiani, F.J.; Fouquereau, E. Leveraging psychosocial safety climate to prevent ill-being: The mediating role of psychological need thwarting. J. Vocat. Behav. 2018, 107, 111–125. [Google Scholar] [CrossRef]
- Raja, U.; Javed, Y.; Abbas, M. A Time Lagged Study of Burnout as a Mediator in the Relationship Between Workplace Bullying and Work-Family Conflict. Int. J. Stress Manag. 2018, 25, 377–390. [Google Scholar] [CrossRef]
- Thiagarajan, P.; Chakrabarty, S.; Taylor, R.D. A confirmatory factor analysis of Reilly’s role overload scale. Educ. Psychol. Meas. 2006, 66, 657–666. [Google Scholar] [CrossRef]
- Bowling, N.A.; Khazon, S.; Alarcon, G.M.; Blackmore, C.E.; Bragg, C.B.; Hoepf, M.R.; Barelka, A.; Kennedy, K.; Wang, Q.; Li, H.Y. Building better measures of role ambiguity and role conflict: The validation of new role stressor scales. Work Stress 2017, 31, 1–23. [Google Scholar] [CrossRef]
- Mitchell, M.S.; Ambrose, M.L. Abusive supervision and workplace deviance and the moderating effects of negative reciprocity beliefs. J. Appl. Psychol. 2007, 92, 1159–1168. [Google Scholar] [CrossRef]
- Spector, P.E. Measurement of human service staff satisfaction: Development of the Job Satisfaction Survey. Am. J. Community Psychol. 1985, 13, 693–713. [Google Scholar] [CrossRef]
- Eisenberger, R.; Huntington, R.; Hutchison, S.; Sowa, D. Perceived organizational support. J. Appl. Psychol. 1986, 71, 500–507. [Google Scholar] [CrossRef]
- Sliter, K.A.; Sliter, M.T. The Concise Physical Activity Questionnaire (CPAQ): Its development, validation, and application to firefighter occupational health. Int. J. Stress Manag. 2014, 21, 283–305. [Google Scholar] [CrossRef]
- Ivey, G.W.; Blanc, J.R.; Mantler, J. An assessment of the overlap between morale and work engagement in a nonoperational military sample. J. Occup. Health Psychol. 2015, 20, 338–347. [Google Scholar] [CrossRef]
- Colarelli, S.M. Methods of communication and mediating processes in realistic job previews. J. Appl. Psychol. 1984, 69, 633–642. [Google Scholar] [CrossRef]
- Netemeyer, R.G.; Boles, J.S.; McMurrian, R. Development and validation of work-family conflict and family-work conflict scales. J. Appl. Psychol. 1996, 81, 400–410. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998. [Google Scholar]
- Dimitrov, D.M. Testing for factorial invariance in the context of construct validation. Meas. Eval. Couns. Dev. 2010, 43, 121–149. [Google Scholar] [CrossRef]
- Little, T.D. Longitudinal Structural Equation Modeling; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Rigdon, E.E. CFI versus RMSEA: A comparison of two fit indexes for structural equation modeling. Struct. Equ. Model. 1996, 3, 369–374. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Evaluating goodness-of-fit indexes for testing measurement invariance. Struct. Equ. Model. 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Schat, A.C.H.; Frone, M.R. Exposure to psychological aggression at work and job performance: The mediating role of job attitudes and personal health. Work Stress 2011, 25, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Probst, T.M. A multilevel examination of affective job insecurity climate on safety outcomes. J. Occup. Health Psychol. 2016, 21, 366–377. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Why most published research findings are false. Plos Med. 2005, 2, 696–701. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Why most discovered true associations are inflated. Epidemiology 2008, 19, 640–648. [Google Scholar] [CrossRef]
- Schmidt, F.L. What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. Am. Psychol. 1992, 47, 1173–1181. [Google Scholar] [CrossRef]
- Curran, P.J.; Bauer, D.J. The disaggregation of within-person and between-person effects in longitudinal models of change. Annu. Rev. Psychol. 2011, 62, 583–619. [Google Scholar] [CrossRef]
- Conway, J.M.; Lance, C.E. What reviewers should expect from authors regarding common method bias in organizational research. J. Bus. Psychol. 2010, 25, 325–334. [Google Scholar] [CrossRef]
- Siemsen, E.; Roth, A.; Oliveira, P. Common method bias in regression models with linear, quadratic, and interaction effects. Organ. Res. Methods 2010, 13, 456–476. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef]
Variables | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Physical fatigue | 3.06 | 1.25 | — | |||||||||||||||
2. Mental fatigue | 3.08 | 1.28 | 0.79 | — | ||||||||||||||
3. Emotional fatigue | 2.50 | 1.35 | 0.71 | 0.80 | — | |||||||||||||
4. Role overload | 3.85 | 1.38 | 0.48 | 0.55 | 0.49 | — | ||||||||||||
5. Role ambiguity | 2.95 | 1.45 | 0.35 | 0.40 | 0.40 | 0.38 | — | |||||||||||
6. Abusive supervision | 1.35 | 0.73 | 0.23 | 0.26 | 0.32 | 0.24 | 0.25 | — | ||||||||||
7. Distributive justice | 3.66 | 1.24 | −0.37 | −0.40 | −0.45 | −0.38 | −0.42 | −0.35 | — | |||||||||
8. Interpersonal justice | 3.86 | 0.94 | −0.32 | −0.32 | −0.39 | −0.23 | −0.42 | −0.52 | 0.47 | — | ||||||||
9. Organizational support | 4.68 | 1.44 | −0.39 | −0.43 | −0.47 | −0.36 | −0.47 | −0.38 | 0.60 | 0.55 | — | |||||||
10. Physical activity | 9.25 | 4.78 | −0.22 | −0.17 | −0.16 | −0.05 | −0.13 | −0.01 | 0.09 | 0.08 | 0.07 | — | ||||||
11. Sleep quantity | 5.90 | 1.77 | −0.31 | −0.31 | −0.31 | −0.21 | −0.15 | −0.17 | 0.18 | 0.20 | 0.21 | 0.13 | — | |||||
12. Sleep quality | 20.88 | 9.34 | −0.46 | −0.46 | −0.48 | −0.30 | −0.24 | −0.20 | 0.28 | 0.26 | 0.30 | 0.15 | 0.49 | — | ||||
13. Morale | 3.32 | 0.99 | −0.43 | −0.49 | −0.50 | −0.31 | −0.49 | −0.25 | 0.42 | 0.43 | 0.57 | 0.24 | 0.19 | 0.34 | — | |||
14. Workplace cognitive failure | 1.99 | 0.57 | 0.43 | 0.47 | 0.46 | 0.32 | 0.38 | 0.23 | −0.22 | −0.29 | −0.34 | −0.11 | −0.24 | −0.34 | −0.42 | — | ||
15. Turnover intentions | 2.48 | 1.19 | 0.35 | 0.41 | 0.41 | 0.34 | 0.36 | 0.23 | −0.37 | −0.29 | −0.50 | −0.12 | −0.13 | −0.29 | −0.55 | 0.29 | — | |
16. Work–family conflict | 4.03 | 1.76 | 0.49 | 0.52 | 0.48 | 0.64 | 0.36 | 0.27 | −0.41 | −0.27 | −0.46 | −0.04 | −0.23 | −0.36 | −0.34 | 0.25 | 0.36 | — |
Model | S-B χ2 | df | CF | RMSEA | RMSEA 95% CI LLUL | CFI | SRMR | Model Comparison | ΔS-B χ2 | Δdf | ΔCFI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | ||||||||||||
Single-group | ||||||||||||
Male (n = 1175) | 548.30 | 114 | 2.39 | 0.057 | 0.052 | 0.062 | 0.965 | 0.027 | ||||
Female (n = 200) | 396.15 | 114 | 1.71 | 0.111 | 0.099 | 0.123 | 0.913 | 0.033 | ||||
Multiple-group invariance (N = 1375) | ||||||||||||
1. Configural | 969.71 | 228 | 2.05 | 0.069 | 0.064 | 0.073 | 0.956 | 0.028 | ||||
2. Weak | 1009.53 | 243 | 1.99 | 0.068 | 0.063 | 0.072 | 0.955 | 0.028 | 1 | 19.53 | 15 | −0.001 |
3. Strong | 1045.88 | 258 | 1.95 | 0.067 | 0.062 | 0.071 | 0.954 | 0.028 | 2 | 24.24 | 15 | 0.000 |
4. Strict | 1012.11 | 276 | 2.12 | 0.062 | 0.058 | .066 | .957 | 0.029 | 3 | 23.31 | 18 | +.002 |
5. Strict + correlated residuals | 1035.97 | 294 | 2.11 | 0.061 | 0.057 | 0.065 | 0.956 | 0.029 | 4 | 20.56 | 18 | −0.001 |
Age | ||||||||||||
Single-group | ||||||||||||
18–34 years old (n = 416) | 280.45 | 114 | 1.92 | 0.059 | 0.051 | 0.068 | 0.968 | 0.034 | ||||
35–54 years old (n = 803) | 574.68 | 114 | 2.35 | 0.071 | 0.064 | 0.077 | 0.947 | 0.028 | ||||
55 years and older (n = 156) | 200.58 | 114 | 1.70 | 0.070 | 0.054 | 0.085 | 0.969 | 0.021 | ||||
Multiple-group invariance (N = 1375) | ||||||||||||
1. Configural | 1120.70 | 342 | 1.99 | 0.070 | 0.066 | 0.075 | 0.956 | 0.029 | ||||
2. Weak | 1182.96 | 372 | 1.91 | 0.069 | 0.065 | 0.073 | 0.954 | 0.031 | 1 | 29.32 | 30 | −0.002 |
3. Strong | 1239.34 | 402 | 1.87 | 0.067 | 0.063 | 0.072 | 0.952 | 0.031 | 2 | 42.29 | 30 | −0.002 |
4. Strict | 1229.28 | 438 | 2.09 | 0.063 | 0.059 | 0.067 | 0.955 | 0.033 | 3 | 55.34 * | 36 | +0.003 |
5. Strict + correlated residuals | 1290.26 | 474 | 2.10 | 0.061 | 0.057 | 0.065 | 0.954 | 0.033 | 4 | 36.17 ** | 36 | −0.001 |
Military component | ||||||||||||
Single-group | ||||||||||||
Regular Force (n = 1143) | 547.52 | 114 | 2.33 | 0.058 | 0.053 | 0.063 | 0.965 | 0.026 | ||||
Primary Reserve (n = 232) | 373.51 | 114 | 1.75 | 0.099 | 0.088 | 0.110 | 0.927 | 0.040 | ||||
Multiple-group invariance (N = 1375) | ||||||||||||
1. Configural | 946.12 | 228 | 2.04 | 0.068 | 0.063 | 0.072 | 0.957 | 0.029 | ||||
2. Weak | 994.86 | 243 | 1.98 | 0.067 | 0.063 | 0.071 | 0.955 | 0.032 | 1 | 37.21** | 15 | −0.002 |
3. Strong | 1027.82 | 258 | 1.95 | 0.066 | 0.062 | 0.070 | 0.954 | 0.031 | 2 | 24.68 | 15 | −0.001 |
4. Strict | 991.56 | 276 | 2.13 | 0.061 | 0.057 | 0.066 | 0.958 | 0.034 | 3 | 22.88 | 18 | +0.004 |
5. Strict + correlated residuals | 1041.94 | 294 | 2.14 | 0.061 | 0.057 | 0.065 | 0.956 | 0.034 | 4 | 51.34*** | 18 | −0.002 |
Military role | ||||||||||||
Single-group | ||||||||||||
Aircrew (n = 282) | 479.64 | 114 | 1.66 | 0.107 | 0.097 | 0.117 | 0.902 | 0.041 | ||||
Maintenance technician (n = 422) | 255.63 | 114 | 2.00 | 0.054 | 0.045 | 0.063 | 0.970 | 0.038 | ||||
Other support role (n = 671) | 440.12 | 114 | 2.15 | 0.065 | 0.059 | 0.072 | 0.962 | 0.019 | ||||
Multiple-group invariance (N = 1375) | ||||||||||||
1. Configural | 1163.33 | 342 | 1.93 | 0.072 | 0.068 | 0.077 | 0.953 | 0.031 | ||||
2. Weak | 1234.05 | 372 | 1.86 | 0.071 | 0.067 | 0.076 | 0.951 | 0.033 | 1 | 47.18 | 30 | −0.002 |
3. Strong | 1290.09 | 402 | 1.82 | 0.069 | 0.065 | 0.074 | 0.949 | 0.034 | 2 | 39.75 | 30 | −0.002 |
4. Strict | 1270.35 | 438 | 2.08 | 0.064 | 0.060 | 0.069 | 0.953 | 0.034 | 3 | 59.07 ** | 36 | +0.004 |
5. Strict + correlated residuals | 1286.27 | 474 | 2.11 | 0.061 | 0.057 | 0.065 | 0.954 | 0.034 | 4 | 28.97 | 36 | +0.001 |
Physical Fatigue | Mental Fatigue | Emotional Fatigue | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | % ≥ Monthly | % ≥ Weekly | % Daily | % ≥ Monthly | % ≥ Weekly | % Daily | % ≥ Monthly | % ≥ Weekly | % Daily |
Overall sample (N = 1375) | 62.2 | 40.6 | 13.7 | 62.7 | 42.9 | 14.6 | 43.4 | 29.2 | 8.7 |
Sex | |||||||||
Male (n = 1175) | 62.4a | 40.2a | 12.6b | 61.6a | 41.2b | 13.7a | 42.1b | 27.8b | 7.9a |
Female (n = 200) | 60.8a | 42.5a | 20.6a | 69.0a | 53.8a | 20.5a | 51.3a | 37.9a | 13.5a |
Age | |||||||||
34 years and under (n = 416) | 64.0a | 38.7a | 12.1a | 65.3a | 42.2a | 14.5ab | 43.9ab | 28.4ab | 7.9a |
35-54 (n = 803) | 63.5a | 43.0a | 15.8a | 63.6a | 45.7a | 15.8a | 45.3a | 31.2a | 9.7a |
55 and over (n = 156) | 48.3b | 34.3a | 9.0b | 47.9b | 29.3b | 8.9b | 30.4b | 20.7b | 5.8a |
Military Component | |||||||||
Regular Force (n = 1143) | 65.3a | 43.5a | 14.8a | 65.6a | 46.0a | 16.0a | 46.0a | 30.9a | 9.5a |
Primary Reserve (n = 232) | 41.4b | 21.6b | 6.6b | 42.6b | 22.4b | 5.6b | 26.1b | 18.0b | 3.0b |
Military Role | |||||||||
Aircrew (n = 282) | 65.4a | 42.3a | 10.9b | 64.8a | 41.7a | 11.7a | 38.4a | 27.9a | 7.8a |
Maintenance technician (n = 422) | 64.1a | 40.5a | 10.7b | 63.3a | 42.3a | 13.1a | 45.0a | 28.8a | 8.1a |
Other support role (n = 671) | 59.4a | 40.0a | 17.4a | 61.3a | 43.9a | 17.0a | 44.0a | 30.0a | 9.5a |
Predictors | Physical Fatigue | Mental Fatigue | Emotional Fatigue | |||
---|---|---|---|---|---|---|
r | β | r | β | r | β | |
Work demands | ||||||
Role overload | 0.48 | 0.29*** | 0.55 | 0.35*** | 0.49 | 0.26*** |
Role ambiguity | 0.35 | 0.05 | 0.40 | 0.10*** | 0.40 | 0.07* |
Abusive supervision | 0.23 | −0.01 | 0.26 | 0.01 | 0.32 | 0.05 |
Work resources | ||||||
Distributive justice | −0.37 | −0.07* | −0.40 | −0.06* | −0.45 | −0.11** |
Interpersonal justice | −0.32 | −0.07* | −0.32 | −0.02 | −0.39 | −0.08* |
Perceived organizational support | −0.39 | −0.09* | −0.43 | −0.12** | −0.47 | −0.12*** |
Personal resources | ||||||
Physical activity | −0.22 | −0.14*** | −0.17 | −0.09*** | −0.16 | −0.07** |
Sleep quantity | −0.31 | −0.06 | −0.31 | −0.05 | −0.31 | −0.04 |
Sleep quality | −0.46 | −0.25*** | −0.46 | −0.24*** | −0.48 | −0.26*** |
R2 | 0.40*** | 0.46*** | 0.46*** |
Morale | Workplace Cognitive Failure | Turnover Intentions | Work–Family Conflict | |||||
---|---|---|---|---|---|---|---|---|
Predictors | r | β | r | β | r | β | r | β |
Physical fatigue | −0.43 | −0.05 | 0.43 | 0.10* | 0.35 | 0.02 | 0.49 | 0.19*** |
Mental fatigue | −0.49 | 0.22*** | 0.47 | 0.21*** | 0.41 | 0.22*** | 0.52 | 0.25*** |
Emotional fatigue | −0.50 | 0.29*** | 0.46 | 0.22*** | 0.41 | 0.23*** | 0.48 | 0.15** |
R2 | 0.27*** | 0.24*** | 0.19*** | 0.29*** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frone, M.R.; Blais, A.-R. Work Fatigue in a Non-Deployed Military Setting: Assessment, Prevalence, Predictors, and Outcomes. Int. J. Environ. Res. Public Health 2019, 16, 2892. https://doi.org/10.3390/ijerph16162892
Frone MR, Blais A-R. Work Fatigue in a Non-Deployed Military Setting: Assessment, Prevalence, Predictors, and Outcomes. International Journal of Environmental Research and Public Health. 2019; 16(16):2892. https://doi.org/10.3390/ijerph16162892
Chicago/Turabian StyleFrone, Michael R., and Ann-Renee Blais. 2019. "Work Fatigue in a Non-Deployed Military Setting: Assessment, Prevalence, Predictors, and Outcomes" International Journal of Environmental Research and Public Health 16, no. 16: 2892. https://doi.org/10.3390/ijerph16162892
APA StyleFrone, M. R., & Blais, A. -R. (2019). Work Fatigue in a Non-Deployed Military Setting: Assessment, Prevalence, Predictors, and Outcomes. International Journal of Environmental Research and Public Health, 16(16), 2892. https://doi.org/10.3390/ijerph16162892