5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Grouping of Selected Parameters
3.1.1. Frequency Ranges
Up to 30 GHz
Frequency Group 30.1–40 GHz
Frequency Group 40.1–50 GHz
Frequency Group 50.1–60 GHz
Frequency Group 60.1–65 GHz
Frequency Group 65.1–90 GHz
Frequency Group 90.1–100 GHz
3.1.2. Power Densities
3.1.3. Exposure Duration
3.2. Studies without Responses
3.3. Quality Analysis
4. Discussion
4.1. Temperature Controls in In Vitro Studies
4.2. Dosimetry
4.3. ICNIRP and other Exposure Recommendations
4.4. Knowledge Gaps and Research Recommendations
- Exact dosimetry with consideration of the skin for relevant frequency ranges, including the consideration of short intense pulses (bursts)
- Studies on inflammatory reactions starting from the skin and the associated tissues
- In vivo studies on the influence of a possible tissue temperature increase (e.g., nude mouse or hairless mouse model)
- In vivo dose-response studies of heat development
- Use of in vitro models (3D models) of the skin for molecular and cellular endpoints
- Clarification of the question about non-thermal effects (in vitro)
5. Conclusions
- Regarding the health effects of MMW in the 6–100 GHz frequency range at power densities not exceeding the exposure guidelines the studies provide no clear evidence, due to contradictory information from the in vivo and in vitro investigations.
- Regarding the possibility of “non-thermal” effects, the available studies provide no clear explanation of any mode of action of observed effects.
- Regarding the quality of the presented studies, too few studies fulfill the minimal quality criteria to allow any further conclusions.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chávez-Santiago, R.; Szydełko, M.; Kliks, A.; Foukalas, F.; Haddad, Y.; Nolan, K.E.; Kelly, M.Y.; Masonta, M.T.; Balasingham, I. 5G: The Convergence of Wireless Communications. Wirel. Pers. Commun. 2015, 83, 1617–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chih-Lin, I.; Han, S.; Xu, Z.; Sun, Q.; Pan, Z. 5G: Rethink mobile communications for 2020+. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20140432. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Non-Ionizing Radiation, Part. 2: Radiofrequency Electromagnetic Fields; International Agency for Research on Cancer: Lyon, France, 2013; Volume 102, pp. 1–460. [Google Scholar]
- Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Opinion on: Potential health effects of exposure to electromagnetic fields. Bioelectromagnetics 2015, 36, 480–484. [Google Scholar] [CrossRef] [PubMed]
- SSM’s Scientific Council on Electromagnetic Fields. Recent Research on EMF and Health Risk: Eleventh report from SSM’S Scientific Council on Electromagnetic Fields; Swedish Radiation Safety Authority: Stockholm, Sweden, 2016.
- Marques, M.M.; Berrington de Gonzalez, A.; Beland, F.A.; Browne, P.; Demers, P.A.; Lachenmeier, D.W.; Bahadori, T.; Barupal, D.K.; Belpoggi, F.; Comba, P.; et al. Advisory Group recommendations on priorities for the IARC Monographs. Lancet Oncol. 2019, 20, 763–764. [Google Scholar] [CrossRef]
- WHO. Available online: https://www.who.int/peh-emf/publications/facts/fs226/en/ (accessed on 8 August 2019).
- Mattsson, M.O.; Zeni, O.; Simkó, M. Is there a Biological Basis for Therapeutic Applications of Millimetre Waves and THz Waves? J. Infrared Millim. Terahertz Waves 2018, 39, 863–878. [Google Scholar] [CrossRef]
- Ziskin, M.C. Millimeter waves: Acoustic and electromagnetic. Bioelectromagnetics 2013, 34, 3–14. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (Up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- IEEE Standards Coordinating Committee. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz; Technical report No. C95.1-2005; IEEE: Piscataway, NJ, USA, 2006; pp. 1–1991. [Google Scholar]
- IEEE. Available online: https://spectrum.ieee.org/video/ telecom/wireless/ everything-you-need-to-know-about-5g (accessed on 8 August 2019).
- Zeni, O.; Scarfì, M.R. Experimental requirements for in vitro studies aimed to evaluate the biological effects of radiofrequency radiation. In Microwave Materials Characterization; InTech: Rijeka, Croatia, 2012; pp. 121–138. [Google Scholar]
- Simkó, M.; Remondini, D.; Zeni, O.; Scarfi, M.R. Quality Matters: Systematic Analysis of Endpoints Related to ‘Cellular Life’ in Vitro Data of Radiofrequency Electromagnetic Field Exposure. Int. J. Environ. Res. Public Health 2016, 13, 701. [Google Scholar] [CrossRef]
- SCHEER–Scientific Committee on Health Environmental and Emerging Risks. Memorandum on Weight of Evidence and Uncertainties; European Comission: Brussels, Belgium, 2018.
- Alekseev, S.I.; Gordiienko, O.V.; Radzievsky, A.A.; Ziskin, M.C. Millimeter wave effects on electrical responses of the sural nerve in vivo. Bioelectromagnetics 2010, 31, 180–190. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Radzievsky, A.A.; Szabo, I.; Ziskin, M.C. Local heating of human skin by millimeter waves: Effect of blood flow. Bioelectromagnetics 2005, 26, 489–501. [Google Scholar] [CrossRef]
- Bush, L.G.; Hill, D.W.; Riazi, A.; Stensaas, L.J.; Partlow, L.M.; Gandhi, O.P. Effects of millimeter-wave radiation on monolayer cell cultures. III. A search for frequency-specific athermal biological effects on protein synthesis. Bioelectromagnetics 1981, 2, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, I.; Yoon, J.; Wiese, R. Millimeter wave bioeffects at 94 GHz on skeletal muscle contraction. In Proceedings of the 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Austin, TX, USA, 20–23 January 2013; pp. 67–69. [Google Scholar]
- Chen, Q.; Zeng, Q.L.; Lu, D.Q.; Chiang, H. Millimeter Wave Exposure Reverses TPA Suppression of Gap Junction Intercellular Communication in HaCaT Human Keratinocytes. Bioelectromagnetics 2004, 25, 1–4. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, S.; Della Monica, C.; Palizzi, E.; Di Pietrantonio, F.; Benetti, M.; Cannatà, D.; Cavagnaro, M.; Sardari, D.; Stano, P.; Ramundo-Orlando, A. Extremely High Frequency Electromagnetic Fields Facilitate Electrical Signal Propagation by Increasing Transmembrane Potassium Efflux in an Artificial Axon Model. Sci. Rep. 2018, 8, 9299. [Google Scholar] [CrossRef] [PubMed]
- Deghoyan, A.; Heqimyan, A.; Nikoghosyan, A.; Dadasyan, E.; Ayrapetyan, S. Cell bathing medium as a target for non thermal effect of millimeter waves. Electromagn. Biol. Med. 2012, 31, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Egot-Lemaire, S.J.-P.; Ziskin, M.C. Dielectric properties of human skin at an acupuncture point in the 50–75 GHz frequency range: A pilot study. Bioelectromagnetics 2011, 32, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Franchini, V.; Franchini, V.; Regalbuto, E.; De Amicis, A.; De Sanctis, S.; Di Cristofaro, S.; Coluzzi, E.; Marinaccio, J.; Sgura, A.; Ceccuzzi, S.; et al. Genotoxic Effects in Human Fibroblasts Exposed to Microwave Radiation. Health Phys. 2018, 115, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Frei, M.R.; Ryan, K.L.; Berger, R.E.; Jauchem, J.R. Sustained 35-GHz radiofrequency irradiation induces circulatory failure. Shock 1995, 4, 289–293. [Google Scholar] [CrossRef]
- Gapeyev, A.B.; Kulagina, T.P.; Aripovsky, A.V.; Chemeris, N.K. The role of fatty acids in anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation. Bioelectromagnetics 2011, 32, 388–395. [Google Scholar] [CrossRef]
- Gapeyev, A.B.; Gapeyev, A.B.; Mikhailik, E.N.; Mikhailik, E.N.; Chemeris, N.K. Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: Frequency and power dependence. Bioelectromagnetics 2008, 29, 197–206. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Ziskin, M.C. Effects of millimeter waves on ionic currents of Lymnaea neurons. Bioelectromagnetics 1999, 20, 24–33. [Google Scholar] [CrossRef]
- Gapeyev, A.B.; Safronova, V.G.; Chemeris, N.K.; Fesenko, E.E. Inhibition of the production of reactive oxygen species in mouse peritoneal neutrophils by millimeter wave radiation in the near and far field zones of the radiator. Bioelectrochem. Bioenerg. 1997, 43, 217–220. [Google Scholar] [CrossRef]
- Geletyuk, V.; Kazachenko, V. Dual effects of microwaves on single Ca 2+-activated K+ channels in cultured kidney cells Vero. FEBS Lett. 1995, 359, 85–88. [Google Scholar] [CrossRef]
- Grundier, W.; Keilmann, F. Nonthermal Effects of Millimeter Microwaves on Yeast Growth. Z. Naturforsch. C 1978, 33, 15–22. [Google Scholar] [CrossRef]
- Haas, A.J.; Le Page, Y.; Zhadobov, M.; Boriskin, A.; Sauleau, R.; Le Dréan, Y. Impact of 60-GHz millimeter waves on stress and pain-related protein expression in differentiating neuron-like cells. Bioelectromagnetics 2016, 37, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Haas, A.J.; Le Page, Y.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y.; Saligaut, C. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells. J. Radiat. Res. 2017, 58, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Haas, A.J.; Le Page, Y.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening. Neurosci. Lett. 2016, 618, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Habauzit, D.; Le Quément, C.; Zhadobov, M.; Martin, C.; Aubry, M.; Sauleau, R.; Le Dréan, Y. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure. PLoS ONE 2014, 9, e109435. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Subbotina, T.I.; Khadartsev, A.A.; Yashin, M.A.; Yashin, A.A. Exposure to low-intensive superhigh frequency electromagnetic field as a factor of carcinogenesis in experimental animals. Bull. Exp. Biol. Med. 2005, 139, 241–244. [Google Scholar] [CrossRef]
- Jauchem, J.R.; Ryan, K.L.; Walters, T.J. Pathophysiological alterations induced by sustained 35-GHz radio-frequency energy heating. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 79–89. [Google Scholar] [CrossRef]
- Kojima, M.; Hanazawa, M.; Yamashiro, Y.; Sasaki, H.; Watanabe, S.; Taki, M.; Suzuki, Y.; Hirata, A.; Kamimura, Y.; Sasaki, K. Acute ocular injuries caused by 60-GHZ millimeter-wave exposure. Heal. Phys. 2009, 97, 212–218. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Ziskin, M.C.; Kochetkova, N.V.; Bolshakov, M.A. Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron. Bioelectromagnetics 1997, 18, 89–98. [Google Scholar] [CrossRef]
- Kojima, M.; Kojima, M.; Suzuki, Y.; Sasaki, K.; Taki, M.; Wake, K.; Watanabe, S.; Mizuno, M.; Tasaki, T.; Sasaki, H. Ocular Effects of Exposure to 40, 75, and 95 GHz Millimeter Waves. J. Infrared Millim. Terahertz Waves 2018, 39, 912–925. [Google Scholar] [CrossRef] [Green Version]
- Korenstein-Ilan, A.; Barbul, A.; Hasin, P.; Eliran, A.; Gover, A.; Korenstein, R. Terahertz Radiation Increases Genomic Instability in Human Lymphocytes. Radiat. Res. 2008, 170, 224–234. [Google Scholar] [CrossRef]
- Koschnitzke, C.; Kremer, F.; Santo, L.; Quick, P.; Poglitsch, A. A Non-Thermal Effect of Millimeter Wave Radiation on the Puffing of Giant Chromosomes. Zeitschrift für Naturforsch C 1983, 38, 883–886. [Google Scholar] [CrossRef]
- Koyama, S.; Narita, E.; Shimizu, Y.; Suzuki, Y.; Shiina, T.; Taki, M.; Shinohara, M.; Miyakoshi, J. Effects of long-term exposure to 60 GHz millimeter-wavelength radiation on the genotoxicity and heat shock protein (HSP) expression of cells derived from human eye. Int. J. Environ. Res. Public Health 2016, 13, 802. [Google Scholar] [CrossRef]
- Kues, H.A.; Anna, S.A.D.; Osiander, R.; Green, W.R.; Monahan, J.C. Absence of Ocular Effects After Either Single or Repeated Exposure to 10 mW/cm2 from a 60 GHz CW Source. Bioelectromagnetics 1999, 473, 463–473. [Google Scholar] [CrossRef]
- Le Quément, C.; Nicolas Nicolaz, C.; Zhadobov, M.; Desmots, F.; Sauleau, R.; Aubry, M.; Michel, D.; Le Dréan, Y. Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics 2012, 33, 147–158. [Google Scholar]
- LeQuément, C.; Nicolaz, C.N.; Habauzit, D.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y. Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression. Bioelectromagnetics 2014, 35, 444–451. [Google Scholar] [CrossRef]
- Li, X.; Ye, H.; Yu, F.; Cai, L.; Li, H.; Chen, J.; Wu, M.; Chen, W.; Lin, R.; Li, Z.; et al. Millimeter wave treatment promotes chondrocyte proliferation via G 1/S cell cycle transition. Int. J. Mol. Med. 2012, 29, 823–831. [Google Scholar] [CrossRef]
- Logani, M.K.; Agelan, A.; Ziskin, M.C. Effect of millimeter wave radiation on catalase activity. Electromagn. Biol. Med. 2002, 21, 303–308. [Google Scholar] [CrossRef]
- Logani, M.K.; Anga, A.; Szabo, I.; Agelan, A.; Irizarry, A.R.; Ziskin, M.C. Effect of millimeter waves on cyclophosphamide induced suppression of the immune system. Bioelectromagnetics 2002, 23, 614–621. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Ziskin, M.C. Millimeter microwave effect on ion transport across lipid bilayer membranes. Bioelectromagnetics 1995, 16, 124–131. [Google Scholar] [CrossRef]
- Makar, V.; Logani, M.; Szabo, I.; Zlskin, M. Effect of Millimeter Waves on Cyclophosphamide Induced Suppression of T Cell Functions. Bioelectromagnetics 2003, 24, 356–365. [Google Scholar] [CrossRef]
- Makar, V.R.; Logani, M.K.; Bhanushali, A.; Alekseev, S.I.; Ziskin, M.C. Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell, and macrophage functions. Bioelectromagnetics 2006, 27, 458–466. [Google Scholar] [CrossRef]
- Makar, V.R.; Logani, M.K.; Bhanushali, A.; Kataoka, M.; Ziskin, M.C. Effect of millimeter waves on natural killer cell activation. Bioelectromagnetics 2005, 26, 10–19. [Google Scholar] [CrossRef]
- Mason, P.A.; Walters, T.J.; DiGiovanni, J.; Beason, C.W.; Jauchem, J.R.; Dick, E.J., Jr.; Mahajan, K.; Dusch, S.J.; Shields, B.A.; Merritt, J.H.; et al. Lack of effect of 94 GHz radio frequency radiation exposure in an animal model of skin carcinogenesis in the radio frequency radiation (RFR) band is mutagenic, as either a promoter or co-promoter in some animal models of carcinogenesis. Recent develop. Carcinogenesis 2001, 22, 1701–1708. [Google Scholar] [CrossRef]
- Millenbaugh, N.J.; Kiel, J.L.; Ryan, K.L.; Blystone, R.V.; Kalns, J.E.; Brott, B.J.; Cerna, C.Z.; Lawrence, W.S.; Soza, L.L.; Mason, P.A. Comparison of blood pressure and thermal responses in rats exposed to millimeter wave energy or environmental heat. Shock 2006, 25, 625–632. [Google Scholar] [CrossRef]
- Millenbaugh, N.J.; Roth, C.; Sypniewska, R.; Chan, V.; Eggers, J.S.; Kiel, J.L.; Blystone, R.V.; Mason, P.A. Gene expression changes in the skin of rats induced by prolonged 35 GHz millimeter-wave exposure. Radiat. Res. 2008, 169, 288–300. [Google Scholar] [CrossRef]
- Narinyan, L.; Ayrapetyan, S. Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration. Electromagn. Biol. Med. 2017, 36, 182–191. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Pham, V.T.; Nguyen, S.H.; Baulin, V.; Croft, R.J.; Phillips, B.; Crawford, R.J.; Ivanova, E.P. The bioeffects resulting from prokaryotic cells and yeast being exposed to an 18 GHz electromagnetic field. PLoS ONE 2016, 11, e0158135. [Google Scholar] [CrossRef]
- Nicolaz, C.N.; Zhadobov, M.; Desmots, F.; Ansart, A.; Sauleau, R.; Thouroude, D.; Michel, D.; Le Drean, Y. Study of narrow band millimeter-wave potential interactions with endoplasmic reticulum stress sensor genes. Bioelectromagnetics 2009, 30, 365–373. [Google Scholar] [CrossRef]
- Nicolas Nicolaz, C.; Zhadobov, M.; Desmots, F.; Sauleau, R.; Thouroude, D.; Michel, D.; Le Drean, Y. Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol. Toxicol. 2009, 25, 471–478. [Google Scholar] [CrossRef]
- Bellossi, A.; Dubost, G.; Moulinoux, J.P.; Himdi, M.; Ruelloux, M.; Rocher, C. Biological Effects of Millimeter-Wave Irradiation on Mice—Preliminary Results. IEEE Trans. Microw. Theory Tech. 2000, 48, 2104–2110. [Google Scholar]
- Pakhomov, A.G.; Prol, H.K.; Mathur, S.P.; Akyel, Y.; Campbell, C.B.G.B.G. Role of field intensity in the biological effectiveness of millimeter waves at a resonance frequency. Bioelectrochem. Bioenerg. 1997, 43, 27–33. [Google Scholar] [CrossRef]
- Pakhomov, A.G.; Prol, H.K.; Mathur, S.P.; Akyel, Y.; Campbell, C.B. Search for frequency-specific effects of millimeter-wave radiation on isolated nerve function. Bioelectromagnetics 1997, 18, 324–334. [Google Scholar] [CrossRef]
- Partlow, L.M.; Bush, L.G.; Stensaas, L.J.; Hill, D.W.; Riazi, A.; Gandhi, O.P. Effects of millimeter-wave radiation on monolayer cell cultures. I. Design and validation of a novel exposure system. Bioelectromagnetics 1981, 2, 123–140. [Google Scholar] [CrossRef]
- Partyla, T.; Hacker, H.; Edinger, H.; Leutzow, B.; Lange, J.; Usichenko, T. Remote Effects of Electromagnetic Millimeter Waves on Experimentally Induced Cold Pain: A Double-Blinded Crossover Investigation in Healthy Volunteers. Anesth. Analg. 2017, 124, 980–985. [Google Scholar] [CrossRef]
- Pikov, V.; Arakaki, X.; Harrington, M.; Fraser, S.E.; Siegel, P.H. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J. Neural Eng. 2010, 7, 045003. [Google Scholar] [CrossRef]
- Radzievsky, A.; Gordiienko, O.; Cowan, A.; Alekseev, S.; Ziskin, M. Millimeter-Wave-Induced Hypoalgesia in Mice: Dependence on Type of Experimental Pain. IEEE Trans. Plasma Sci. 2004, 32, 1634–1643. [Google Scholar] [CrossRef]
- Radzievsky, A.A.; Cowan, A.; Byrd, C.; Radzievsky, A.A.; Ziskin, M.C. Single millimeter wave treatment does not impair gastrointestinal transit in mice. Life Sci. 2002, 71, 1763–1770. [Google Scholar] [CrossRef]
- Radzievsky, A.A.; Gordiienko, O.V.; Alekseev, S.; Szabo, I.; Cowan, A.; Ziskin, M.C. Electromagnetic millimeter wave induced hypoalgesia: Frequency dependence and involvement of endogenous opioids. Bioelectromagnetics 2008, 29, 284–295. [Google Scholar] [CrossRef]
- Radzievsky, A.; Gordiienko, O.; Szabo, I.; Alekseev, S.I.; Ziskin, M.C. Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: Involvement of endogenous opioids. Bioelectromagnetics 2004, 25, 466–473. [Google Scholar] [CrossRef]
- Radzievsky, A.A.; Rojavin, M.A.; Cowan, A.; Alekseev, S.I.; Radzievsky, A.A.; Ziskin, M.C. Peripheral neural system involvement in hypoalgesic effect of electromagnetic millimeter waves. Life Sci. 2001, 62, 1143–1151. [Google Scholar] [CrossRef]
- Beneduci, A.; Chidichimo, G.; De Rose, R.; Filippelli, L.; Straface, S.V.; Venuta, S. Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line. Anticancer Res. 2005, 25, 1023–1028. [Google Scholar]
- Radzievsky, A.A.; Rojavin, M.A.; Cowan, A.; Alekseev, S.I.; Ziskin, M.C. Hypoalgesic effect of millimeter waves in mice: Dependence on the site of exposure. Life Sci. 2000, 66, 2101–2111. [Google Scholar] [CrossRef]
- Radzievsky, A.A.; Rojavin, M.A.; Cowan, A.; Ziskin, M.C. Suppression of pain sensation caused by millimeter waves: A double-blinded, cross-over, prospective human volunteer study. Anesth. Analg. 1999, 88, 836–840. [Google Scholar] [CrossRef]
- Rojavin, M.A.; Cowan, A.; Radzievsky, A.A.; Ziskin, M.C. Antipruritic effect of millimeter waves in mice: Evidence for opioid involvement. Life Sci. 1998, 63, 251–257. [Google Scholar] [CrossRef]
- Rojavin, M.A.; Radzievsky, A.A.; Cowan, A.; Ziskin, M.C. Pain relief caused by millimeter waves in mice: Results of cold water tail flick tests. Int. J. Radiat. Biol. 2000, 76, 575–579. [Google Scholar]
- Romanenko, S.; Siegel, P.H.; Wagenaar, D.A.; Pikov, V. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion. J. Neurophysiol. 2014, 112, 2423–2431. [Google Scholar] [CrossRef]
- Ryan, K.L.; Frei, M.R.; Berger, R.E.; Jauchem, J.R. Does nitric oxide mediate circulatory failure induced by 35-GHz microwave heating? Shock 1996, 6, 71–76. [Google Scholar] [CrossRef]
- Ryan, K.L.; Frei, M.R.; Jauchem, J.R. Circulatory failure induced by 35 GHz microwave heating: Effects of chronic nitric oxide synthesis inhibition. Shock 1997, 7, 70–76. [Google Scholar] [CrossRef]
- Safronova, V.G.; Gabdoulkhakova, A.G.; Santalov, B.F. Immunomodulating Action of Low Intensity Millimeter Waves on Primed Neutrophils. Bioelectromagnetics 2002, 23, 599–606. [Google Scholar] [CrossRef]
- Samoilov, V.O.; Shadrin, E.B.; Filippova, E.B.; Katsnelson, Y.; Backhoff, H.; Eventov, M. The effect of transcranial electromagnetic brain stimulation on the acquisition of the conditioned response in rats. Biophysics 2015, 60, 303–308. [Google Scholar] [CrossRef]
- Samsonov, A.; Popov, S.V. The effect of a 94 GHz electromagnetic field on neuronal microtubules. Bioelectromagnetics 2013, 34, 133–144. [Google Scholar] [CrossRef]
- Beneduci, A.; Chidichimo, G.; Tripepi, S.; Perrotta, E. Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Res. 2005, 25, 1009–1013. [Google Scholar]
- Shanin, S.N.; Rybakina, E.G.; Novikova, N.N.; Kozinets, I.A.; Rogers, V.J.; Korneva, E.A. Natural killer cell cytotoxic activity and c-Fos protein synthesis in rat hypothalamic cells after painful electric stimulation of the hind limbs and EHF irradiation of the skin. Med. Sci Monit. 2005, 11, BR309–BR315. [Google Scholar]
- Shapiro, M.G.; Priest, M.F.; Siegel, P.H.; Bezanilla, F. Thermal Mechanisms of Millimeter Wave Stimulation of Excitable Cells. Biophys. J. 2013, 104, 2622–2628. [Google Scholar] [CrossRef] [Green Version]
- Shckorbatov, Y.G.; Grigoryeva, N.N.; Shakhbazov, V.G.; Grabina, V.A.; Bogoslavsky, A.M. Microwave irradiation influences on the state of human cell nuclei. Bioelectromagnetics 1998, 19, 414–419. [Google Scholar] [CrossRef]
- Sivachenko, I.B.; Medvedev, D.S.; Molodtsova, I.D.; Panteleev, S.S.; Sokolov, A.Y.; Lyubashina, O.A. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine. Bull. Exp. Biol. Med. 2016, 160, 425–428. [Google Scholar] [CrossRef]
- Soubere Mahamoud, Y.; Aite, M.; Martin, C.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y.; Habauzit, D. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome. PLoS ONE 2016, 11, e0160810. [Google Scholar] [CrossRef]
- Stensaas, L.J.; Partlow, L.M.; Bush, L.G.; Iversen, P.L.; Hill, D.W.; Hagmann, M.J.; Gandhi, O.P. Effects of millimeter-wave radiation on monolayer cell cultures. II. Scanning and transmission electron microscopy. Bioelectromagnetics 1981, 2, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Titushkin, I.; Varner, J.; Cho, M. Millimeter Wave-induced Modulation of Calcium Dynamics in an Engineered Skin Co-culture Model: Role of Secreted ATP on Calcium Spiking. J. Radiat. Res. 2012, 53, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sypniewska, R.K.; Millenbaugh, N.J.; Kiel, J.L.; Blystone, R.V.; Ringham, H.N.; Mason, P.A.; Witzmann, F.A. Protein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter waves. Bioelectromagnetics 2010, 31, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Szabo, I.; Kappelmayer, J.; Alekseev, S.I.; Ziskin, M.C. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 2006, 27, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Szabo, I.; Manning, M.R.; Radzlevsky, A.A.; Wetzel, M.A.; Rogers, T.J.; Ziskin, M.C. Low Power Millimeter Wave Irradiation Exerts No Harmful Effect on Human Keratinocytes In Vitro. Bioelectromagnetics 2003, 24, 165–173. [Google Scholar] [CrossRef]
- Beneduci, A.; Chidichimo, G.; Tripepi, S.; Perrotta, E.; Cufone, F. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: Ultrastructural and metabolic-induced changes. Bioelectrochemistry 2007, 70, 214–220. [Google Scholar] [CrossRef]
- Szabo, I.; Rojavin, M.A.; Rogers, T.J.; Ziskin, M.C. Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics 2001, 22, 358–364. [Google Scholar] [CrossRef]
- Titushkin, I.A.; Rao, V.S.; Pickard, W.F.; Moros, E.G.; Shafirstein, G.; Cho, M.R. Altered Calcium Dynamics Mediates P19-Derived Neuron-Like Cell Responses to Millimeter-Wave Radiation. Radiat. Res. 2009, 172, 725–763. [Google Scholar] [CrossRef]
- Tong, Y.; Yang, Z.; Yang, D.; Chu, H.; Qu, M.; Liu, G.; Wu, Y.; Liu, S. Millimeter-wave exposure promotes the differentiation of bone marrow stromal cells into cells with a neural phenotype. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2009, 29, 409–412. [Google Scholar] [CrossRef]
- Logani, M.K.; Bhanushali, A.; Ziskin, M.C.; Prihoda, T.J. Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves. Radiat. Res. 2004, 161, 341–345. [Google Scholar] [CrossRef]
- Vlasova, I.I.; Mikhalchik, E.V.; Gusev, A.A.; Balabushevich, N.G.; Gusev, S.A.; Kazarinov, K.D. Extremely high-frequency electromagnetic radiation enhances neutrophil response to particulate agonists. Bioelectromagnetics 2018, 39, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Volkova, N.A.; Pavlovich, E.V.; Gapon, A.A.; Nikolov, O.T. Effects of millimeter-wave electromagnetic exposure on the morphology and function of human cryopreserved spermatozoa. Bull. Exp. Biol. Med. 2014, 157, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Sferra, T.; Chen, X.; Chen, Y.; Wu, M.; Xu, H.; Peng, J.; Liu, X. Millimeter wave treatment inhibits the mitochondrion-dependent apoptosis pathway in chondrocytes. Mol. Med. Rep. 2011, 4, 1001–1006. [Google Scholar] [PubMed]
- Wu, G.W.; Liu, X.X.; Wu, M.X.; Zhao, J.Y.; Chen, W.L.; Lin, R.H.; Lin, J.M. Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes. Int. J. Mol. Med. 2009, 23, 461–467. [Google Scholar] [PubMed] [Green Version]
- Xia, L.; Luo, Q.-L.; Lin, H.-D.; Zhang, J.-L.; Guo, H.; He, C.-Q. The effect of different treatment time of millimeter wave on chondrocyte apoptosis, caspase-3, caspase-8, and MMP-13 expression in rabbit surgically induced model of knee osteoarthritis. Rheumatol. Int. 2012, 32, 2847–2856. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Pei, J.; Cui, Y.; Zhang, J.; Qi, H.; Chen, S.; Qiao, D. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHZ millimeter waves. Health Phys. 2011, 100, 632–640. [Google Scholar] [CrossRef]
- Beneduci, A. Evaluation of the Potential In Vitro Antiproliferative Effects of Millimeter Waves at Some Therapeutic Frequencies on RPMI 7932 Human Skin Malignant Melanoma Cells. Cell Biochem. Biophys. 2009, 55, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Yaekashiwa, N.; Otsuki, S.; Hayashi, S.; Kawase, K. Investigation of the non-thermal effects of exposing cells to 70-300 GHz irradiation using a widely tunable source. J. Radiat. Res. 2018, 59, 116–121. [Google Scholar] [CrossRef]
- Yu, G.; Coln, E.A.; Schoenbach, K.H.; Gellerman, M.; Fox, P.; Rec, L.; Beebe, S.J.; Liu, S. A study on biological effects of low-intensity millimeter waves. IEEE Trans. Plasma Sci. 2002, 30, 1489–1496. [Google Scholar]
- Zhadobov, M.; Desmots, F.; Thouroude, D.; Michel, D.; Drean, Y. Evaluation of the potential biological effects of the 60-GHz millimeter waves upon human cells. IEEE Trans. Antennas Propag. 2009, 57, 2949–2956. [Google Scholar] [CrossRef]
- Zhadobov, M.; Sauleau, R.; Le Coq, L.; Debure, L.; Thouroude, D.; Michel, D.; Le Dréan, Y. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins. Bioelectromagnetics 2007, 28, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Aminzadeh, R.; Thielens, A.; Bamba, A.; Kone, L.; Gaillot, D.P.; Lienard, M.; Martens, L.; Joseph, W. On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments. Bioelectromagnetics 2016, 37, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombi, D.; Thors, B.; Tornevik, C.; Balzano, Q. RF Energy Absorption by Biological Tissues in Close Proximity to Millimeter-Wave 5G Wireless Equipment. IEEE Access 2018, 6, 4974–4981. [Google Scholar] [CrossRef]
- Neufeld, E.; Carrasco, E.; Murbach, M.; Balzano, Q.; Christ, A.; Kuster, N. Theoretical and numerical assessment of maximally allowable power-density averaging area for conservative electromagnetic exposure assessment above 6 GHz. Bioelectromagnetics 2018, 39, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R.; Ziskin, M.C.; Balzano, Q. Thermal modeling for the next generation of radiofrequency exposure limits: Commentary. Health Phys. 2017, 113, 41–53. [Google Scholar] [CrossRef]
- Foster, K.R.; Ziskin, M.C.; Balzano, Q. Thermal Response of Human Skin to Microwave Energy: A Critical Review. Health Phys. 2016, 111, 528–541. [Google Scholar] [CrossRef]
- Zhadobov, M.; Alekseev, S.I.; Sauleau, R.; Le Page, Y.; Le Drean, Y.; Fesenko, E.E. Microscale temperature and SAR measurements in cell monolayer models exposed to millimeter waves. Bioelectromagnetics 2017, 38, 11–21. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Gordiienko, O.V.; Ziskin, M.C. Reflection and penetration depth of millimeter waves in murine skin. Bioelectromagnetics 2008, 29, 340–344. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Radzievsky, A.A.; Logani, M.K.; Ziskin, M.C. Millimeter wave dosimetry of human skin. Bioelectromagnetics 2008, 29, 65–70. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Ziskin, M.C.; Fesenko, E.E. Frequency dependence of heating of human skin exposed to millimeter waves. Biophysics 2012, 57, 90–93. [Google Scholar] [CrossRef]
- Laakso, I.; Morimoto, R.; Heinonen, J.; Jokela, K.; Hirata, A. Human exposure to pulsed fields in the frequency range from 6 to 100 GHz. Phys. Med. Biol. 2017, 62, 6980–6992. [Google Scholar] [CrossRef]
- Feldman, Y.; Puzenko, A.; Ben Ishai, P.; Caduff, A.; Agranat, A.J. Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. In Proceedings of the 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 27 March 2008; pp. 1–2. [Google Scholar]
- Shafirstein, G.; Moros, E.G. Modelling millimetre wave propagation and absorption in a high resolution skin model: The effect of sweat glands. Phys. Med. Biol. 2011, 56, 1329. [Google Scholar] [CrossRef]
- Alekseev, S.I.; Ziskin, M.C. Enhanced absorption of millimeter wave energy in murine subcutaneous blood vessels. Bioelectromagnetics 2011, 32, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Wake, K.; Watanabe, S. Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz. Phys. Med. Biol. 2014, 59, 4739–4747. [Google Scholar] [CrossRef] [PubMed]
- Federal Communications Commission (FCC). Available online: https://www.fcc.gov /general/ radio-frequency-safety-0 (accessed on 8 August 2019).
- Foster, K.R.; Morrissey, J.J. Thermal aspects of exposure to radiofrequency energy: Report of a workshop. Int. J. Hyperth. 2011, 27, 307–319. [Google Scholar] [CrossRef] [Green Version]
Frequency Range | Use | Comments |
---|---|---|
<1 GHz | Net coverage, IoT | Already partly used for earlier MP generations, longer range coverage, less costly infrastructure |
1–6 GHz | Net coverage, IoT, capacity for data transfer | More spectrum available, shorter range and reduced performance compared to higher frequencies |
>6 GHz | Capacity for very high data transfer | Short range, allows high speed data transfer and short latency times |
All Publications (94) | No Response | Response | All |
---|---|---|---|
In vivo | 10 | 35 | 45 |
In vitro | 22 | 31 | 53 |
Primary cells | 6 | 18 | |
Cell lines | 16 | 13 |
Frequency (GHz) | No Response | |
---|---|---|
In Vivo | In Vitro | |
Up to 30 | 0 | 0 |
0.1–40 | 0 | 2 |
40.1–50 | 6 | 4 |
50.1–60 | 1 | 5 |
60.1–65 | 2 | 10 |
65.1–90 | 0 | 6 |
90.1–100 | 1 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simkó, M.; Mattsson, M.-O. 5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. Int. J. Environ. Res. Public Health 2019, 16, 3406. https://doi.org/10.3390/ijerph16183406
Simkó M, Mattsson M-O. 5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. International Journal of Environmental Research and Public Health. 2019; 16(18):3406. https://doi.org/10.3390/ijerph16183406
Chicago/Turabian StyleSimkó, Myrtill, and Mats-Olof Mattsson. 2019. "5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz" International Journal of Environmental Research and Public Health 16, no. 18: 3406. https://doi.org/10.3390/ijerph16183406
APA StyleSimkó, M., & Mattsson, M.-O. (2019). 5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. International Journal of Environmental Research and Public Health, 16(18), 3406. https://doi.org/10.3390/ijerph16183406