Hospitalization Services Utilization Between Permanent and Migrant Females in Underdeveloped Rural Regions and Contributing Factors—A Five-Time Data Collection and Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Calculation of Sample Size
2.3. Weighting Method
2.4. Indexes Construction
2.5. Quality Control
2.6. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Dupre, M.E.; Qiu, L.; Zhou, W.; Zhao, Y.; Gu, D. Urban-rural differences in the association between access to healthcare and health outcomes among older adults in China. BMC Geriatr. 2017, 17, 151. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Wang, P.; Dong, Q.; Ren, X.; Cai, J.; Coyte, P.C. A study on the equality and benefit of China’s national health care system. Int. J. Equity Health 2017, 16, 155. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, N.; Liu, C.; Ren, X.; Liu, D.; Gao, B.; Liu, Y. Urban-rural disparity in utilization of preventive care services in China. Medicine 2016, 95, e4783. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission. China Health Statistics Yearbook 2018; China Union Medical College Press: Beijing, China, 2018. [Google Scholar]
- Walls, H.L.; Vearey, J.; Modisenyane, M.; Chetty-Makkan, C.M.; Charalambous, S.; Smith, R.D.; Hanefeld, J. Understanding healthcare and population mobility in southern Africa: The case of South Africa. S. Afr. Med. J. 2015, 106, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.; Griffiths, S.M.; Fong, H.; Dawes, M.G. Health of China’s rural-urban migrants and their families: A review of literature from 2000 to 2012. Br. Med. Bull. 2013, 106, 19–43. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vignoli, J.; Rowe, F. How is internal migration reshaping metropolitan populations in Latin America? A new method and new evidence. Popul. Stud. 2018, 72, 253–273. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Chang, W.; Zhou, H.; Hu, H.; Liang, W. Factors associated with health-seeking behavior among migrant workers in Beijing, China. BMC Health Serv. Res. 2010, 10, 69. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, B.; Liu, Y.; Li, Y.; Shi, G.; Shen, T.; Jiang, Y.; Zhang, M.; Zhou, M.; Wang, L. Health insurance coverage and its impact on medical cost: Observations from the floating population in China. PLoS ONE 2014, 9, e111555. [Google Scholar] [CrossRef]
- Skeldon, R. Population pressure, mobility, and socio-economic change in mountainous environments: Regions of refuge in comparative perspective. Mt. Res. Dev. 1985, 5, 233–250. [Google Scholar] [CrossRef]
- Goldstein, A.; Goldstein, S. Varieties of population mobility in relation to development in China. Stud. Comp. Int. Dev. 1988, 22, 101–124. [Google Scholar] [CrossRef]
- Fang, H.; Yang, L.; Zhang, H.; Li, C.; Wen, L.; Sun, L.; Hanson, K.; Meng, Q. Strengthening health system to improve immunization for migrants in China. Int. J. Equity Health 2017, 16, 19. [Google Scholar] [CrossRef]
- Hu, X.; Cook, S.; Salazar, M.A. Internal migration and health in China. Lancet 2008, 372, 1717–1719. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, R.; Dong, Z.; Hao, Y. Comparing the needs and utilization of health services between urban residents and rural-to-urban migrants in China from 2012 to 2016. BMC Health Serv. Res. 2018, 18, 717. [Google Scholar] [CrossRef]
- Lu, L.; Zou, G.; Zeng, Z.; Han, L.; Guo, Y.; Ling, L. Health-related quality of life and its correlates among Chinese migrants in small- and medium-sized enterprises in two cities of Guangdong. PLoS ONE 2014, 9, e83315. [Google Scholar] [CrossRef]
- Chen, J.; Yu, H.; Dong, H. Effect of the new rural cooperative medical system on farmers’ medical service needs and utilization in Ningbo, China. BMC Health Serv. Res. 2016, 16, 593. [Google Scholar] [CrossRef]
- Waure, C.D.; Bruno, S.; Furia, G.; Sciullo, L.D.; Carovillano, S.; Specchia, M.L.; Geraci, S.; Ricciardi, W. Health inequalities: An analysis of hospitalizations with respect to migrant status, gender and geographical area. BMC Int. Health Hum. Rights 2015, 15, 2. [Google Scholar] [CrossRef]
- Tayeb, S.E.; Abdalla, S.; Bergh, G.V.D.; Heuch, I. Use of healthcare services by injured people in Khartoum State, Sudan. Int. Health 2015, 7, 183–189. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, Z.; Maddock, J.E.; Zou, J.; Zheng, Z.; Zhou, W.; Zheng, H. Chronic disease prevalence and influencing factors among rural residents in Jiangxi, China. Int. Health 2014, 6, 106–111. [Google Scholar] [CrossRef]
- Zou, J.; Yang, W.; Cook, D.M.; Yuan, Z.; Zhang, L.; Wang, X. New cooperative medical financing policy and hospitalization in rural China: Multi-stage cross-sectional surveys. Int. Health 2016, 8, 59–66. [Google Scholar] [CrossRef]
- Pan, B.; Yuan, Z.; Zou, J.; Cook, D.M.; Yang, W. Elderly hospitalization and the New-type Rural Cooperative Medical Scheme (NCMS) in China: Multi-stage cross-sectional surveys of Jiangxi province. BMC Health Serv. Res. 2016, 16, 436. [Google Scholar] [CrossRef]
- Platt, R.W.; Harper, S.B. Survey data with sampling weights: Is there a “best” approach? Environ. Res. 2013, 120, 143–144. [Google Scholar] [CrossRef]
- Pardeshi, G.S. Age heaping and accuracy of age data collected during a community survey in the yavatmal district, maharashtra. Indian J. Community Med. 2010, 35, 391–395. [Google Scholar] [CrossRef]
- Rader, K.A.; Lipsitz, S.R.; Fitzmaurice, G.M.; Harrington, D.P.; Parzen, M.; Sinha, D. Bias-corrected estimates for logistic regression models for complex surveys with application to the United States’ Nationwide Inpatient Sample. Stat. Methods Med Res. 2017, 26, 2257–2269. [Google Scholar] [CrossRef]
- Sun, J.; Luo, H. Evaluation on equality and efficiency of health resources allocation and health services utilization in China. Int. J. Equity Health 2017, 16, 127. [Google Scholar] [CrossRef]
- Pappa, E.; Niakas, D. Assessment of health care needs and utilization in a mixed public-private system: The case of the Athens area. BMC Health Serv. Res. 2006, 6, 146. [Google Scholar] [CrossRef]
- Janković, J.; Simić, S.; Marinković, J. Inequalities that hurt: Demographic, socio-economic and health status inequalities in the utilization of health services in Serbia. Eur. J. Public Health 2010, 20, 389–396. [Google Scholar] [CrossRef]
- Lu, L.; Zeng, J.; Zeng, Z. What limits the utilization of health services among china labor force? analysis of inequalities in demographic, socio-economic and health status. Int. J. Equity Health 2017, 16, 30. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, Z.; Yan, J.; Gao, J.; Wang, Y.; Yang, X.; Xu, Y.; Li, Y. An economy-ralated equity analysis of health service utilization by women in economically underdeveloped regions of western China. Int. J. Equity Health 2017, 16, 186. [Google Scholar] [CrossRef]
- Li, C.; Dou, L.; Wang, H.; Jing, S.; Yin, A. Horizontal Inequity in Health Care Utilization among the Middle-Aged and Elderly in China. Int J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A.; FitzGerald, G.; Si, L.; Jiang, Q.; Ye, D. Who benefited from the New Rural Cooperative Medical System in China? A case study on Anhui Province. BMC Health Serv. Res. 2016, 16, 195. [Google Scholar] [CrossRef]
- Guo, Z.; Guan, X.; Shi, L. The impacts of implementation of National Essential Medicines Policies on primary healthcare institutions: A cross-sectional study in China. BMC Health Serv. Res. 2017, 17, 723. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Zhang, G.; Wu, S. Internal migration and the health of the returned population: A nationally representative study of China. BMC Public Health 2015, 15, 719. [Google Scholar] [CrossRef]
- Cattell, V. Poor people, poor places, and poor health: The mediating role of social networks and social capital. Soc. Sci. Med. 2001, 52, 1501–1516. [Google Scholar] [CrossRef]
The Ending Figure of Age | 10–49 Years Old | 20–59 Years Old | Percentage (%) (8)/45039 | The Absolute Value of the Ninth Line Minus 10 | |||||
---|---|---|---|---|---|---|---|---|---|
Population | Weight | (2) * (3) | Population | Weight | (5) × (6) | (4) + (7) | |||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) a |
0 | 390 | 1 | 390 | 419 | 9 | 3771 | 4161 | 9.24 | 0.76 |
1 | 377 | 2 | 754 | 426 | 8 | 3408 | 4162 | 9.24 | 0.76 |
2 | 424 | 3 | 1272 | 456 | 7 | 3192 | 4464 | 9.91 | 0.09 |
3 | 376 | 4 | 1504 | 361 | 6 | 2166 | 3670 | 8.15 | 1.85 |
4 | 444 | 5 | 2220 | 482 | 5 | 2410 | 4630 | 10.28 | 0.28 |
5 | 518 | 6 | 3108 | 530 | 4 | 2120 | 5228 | 11.61 | 1.61 |
6 | 461 | 7 | 3227 | 480 | 3 | 1440 | 4667 | 10.36 | 0.36 |
7 | 464 | 8 | 3712 | 528 | 2 | 1056 | 4768 | 10.59 | 0.59 |
8 | 478 | 9 | 4302 | 517 | 1 | 517 | 4819 | 10.70 | 0.70 |
9 | 447 | 10 | 4470 | 477 | 0 | 0 | 4470 | 9.92 | 0.08 |
45,039 | 100.00 | 7.07 |
Total Females | Migrant Females | Permanent Females | χ2 | p | |
---|---|---|---|---|---|
Number of respondents | |||||
People surveyed | 15,600 | 3972 | 11,628 | ||
Weighted number | 2,245,284 | 624,257 | 1,621,027 | ||
Year | |||||
2006 | 24.9 (10.9, 47.5) | 28.7 (11.5, 55.5) | 23.5 (10.6, 44.3) | ||
2008 | 19.3 (9.7, 34.8) | 17.6 (8.1, 34.1) | 19.9 (10.2, 35.2) | ||
2010 | 19.3 (7.3, 42.1) | 17.1 (6.0, 39.9) | 20.2 (7.8, 43.1) | ||
2012 | 18.9 (9.7, 33.8) | 16.9 (7.7, 33.1) | 19.7 (10.4, 34.2) | ||
2014 | 17.5 (8.8, 31.9) | 19.7 (8.9, 38.1) | 16.7 (8.7, 29.7) | 4.367 | 0.011 |
Age | |||||
15~ | 43.6 (41.0, 46.1) | 78.3 (74.4, 81.8) | 30.2 (27.7, 32.7) | ||
35~ | 36.4 (35.4, 37.5) | 19.9 (17.2, 22.8) | 42.8 (41.6, 44.0) | ||
55~ | 20.0 (18.2, 21.9) | 1.8 (0.8, 3.9) | 27.0 (24.9, 29.3) | 260.438 | <0.001 |
Career status | |||||
Farmer | 54.4 (47.7, 60.9) | 12.2 (9.8, 15.1) | 70.6 (61.5, 78.3) | ||
Non-farmer | 45.6 (39.1, 52.3) | 87.8 (84.9, 90.2) | 29.4 (21.7, 38.5) | 309.545 | <0.001 |
Marital status | |||||
Unmarried | 19.4 (15.8, 23.4) | 36.9 (31.9, 42.2) | 12.6 (9.4, 16.7) | ||
Married | 73.8 (70.5, 76.8) | 61.6 (56.6, 66.2) | 78.5 (75.4, 81.3) | ||
Divorced or widowed | 6.8 (6.1, 7.8) | 1.5 (0.9, 2.7) | 8.9 (8.0, 10.0) | 123.015 | <0.001 |
Education level | |||||
Elementary school | 41.2 (37.1, 45.5) | 20.1 (18.4, 21.9) | 49.4 (44.1, 54.6) | ||
≥Junior high school | 58.8 (54.5, 62.9) | 79.9 (78.1, 81.6) | 50.6 (45.4, 55.9) | 445.106 | <0.001 |
Income level | |||||
Low | 25.2 (15.3, 38.8) | 21.7 (10.6, 39.2) | 26.6 (17.2, 38.8) | ||
Middle | 54.0 (50.1, 57.8) | 53.5 (48.0, 58.9) | 54.2 (50.4, 57.9) | ||
High | 20.8 (12.9, 31.8) | 24.8 (14.2, 39.7) | 19.2 (12.3, 28.7) | 5.542 | 0.018 |
Labor force | |||||
Yes | 74.5 (72.1, 76.7) | 85.9 (83.3, 88.1) | 70.1 (67.6, 72.4) | ||
No | 25.5 (23.3, 27.9) | 14.1 (11.9, 16.7) | 29.9 (27.6, 32.4) | 276.864 | <0.001 |
Chronic diseases | |||||
Yes | 11.2 (10.3, 12.2) | 2.8 (2.1, 3.7) | 14.5 (13.3, 15.7) | ||
No | 88.8 (87.8, 89.7) | 97.2 (96.3, 97.9) | 85.5 (84.3, 86.7) | 309.215 | <0.001 |
Migrant | |||||
Yes | 27.8 (26.6, 29.0) | ||||
No | 72.2 (71.0, 73.4) |
Demographic characteristics | Total Females | Migrant Females | Permanent Females | χ2 | p |
---|---|---|---|---|---|
Year | |||||
2006 | 2.7 | 3.3 | 1.4 | 2.417 | 0.171 |
2008 | 4.4 | 5.3 | 1.8 | 7.561 | 0.033 |
2010 | 3.7 | 4.5 | 1.5 | 4.716 | 0.073 |
2012 | 5.8 | 7.3 | 1.6 | 78.114 | <0.001 |
2014 | 6.7 | 8.5 | 3.0 | 63.859 | <0.001 |
χ2 | 5.612 | 7.447 | 1.105 | ||
p | 0.021 | 0.005 | 0.335 | ||
Age | |||||
15~ | 1.5 | 1.7 | 1.2 | 1.358 | 0.267 |
35~ | 5.3 | 5.5 | 4.0 | 1.230 | 0.289 |
55~ | 11.2 | 11.2 | 11.6 | 0.008 | 0.931 |
χ2 | 81.524 | 47.558 | 18.724 | ||
p | <0.001 | <0.001 | <0.001 | ||
Career status | |||||
Farmer | 2.8 | 3.8 | 2.0 | 10.066 | 0.008 |
Non-farmer | 6.1 | 6.6 | 1.9 | 17.005 | 0.001 |
χ2 | 27.575 | 10.467 | 0.037 | ||
p | <0.001 | 0.007 | 0.851 | ||
Marital status | |||||
Unmarried | 5.4 | 6.4 | 2.4 | 16.868 | 0.001 |
Married | 1.2 | 1.2 | 1.2 | <0.001 | 0.984 |
Divorced or widowed | 8.5 | 8.8 | 4.1 | 1.159 | 0.303 |
χ2 | 38.576 | 15.428 | 2.086 | ||
p | <0.001 | <0.001 | 0.158 | ||
Education level | |||||
Elementary school | 2.9 | 3.6 | 1.7 | 14.068 | 0.003 |
≥Junior high school | 7.5 | 8.3 | 2.9 | 14.119 | 0.003 |
χ2 | 118.982 | 94.690 | 2.878 | ||
p | <0.001 | <0.001 | 0.116 | ||
Income level | |||||
Low | 4.5 | 5.4 | 1.6 | 16.666 | 0.002 |
Middle | 4.5 | 5.5 | 1.7 | 18.102 | 0.001 |
High | 6.1 | 7.8 | 2.7 | 21.916 | 0.001 |
χ2 | 2.418 | 4.320 | 0.795 | ||
p | 0.119 | 0.030 | 0.429 | ||
Labor force | |||||
Yes | 3.7 | 4.6 | 1.9 | 21.893 | 0.001 |
No | 8.0 | 9.1 | 2.2 | 47.376 | <0.001 |
χ2 | 52.644 | 51.187 | 0.153 | ||
p | <0.001 | <0.001 | 0.703 | ||
Chronic diseases | |||||
Yes | 15.9 | 16.2 | 12.2 | 27.015 | <0.001 |
No | 3.4 | 4.2 | 1.7 | 1.208 | 0.293 |
χ2 | 378.394 | 307.702 | 109.593 | ||
p | <0.001 | <0.001 | <0.001 | ||
Migrant | |||||
Yes | 2.0 | ||||
No | 5.9 | ||||
χ2 | 41.986 | ||||
p | <0.001 |
Total Females aOR (95%CI) | Migrant Females aOR (95%CI) | Permanent Females aOR (95%CI) | |
---|---|---|---|
Year | |||
2006 | 1 | 1 | 1 |
2008 | 1.503 (0.958, 2.357) | 1.039 (0.644, 1.677) | 0.818 (0.338, 1.980) |
2010 | 1.284 (0.647, 2.549) | 1.197 (0.584, 1.631) | 1.169 (0.883, 1.346) |
2012 | 2.336 (1.637, 3.332) * | 1.360 (0.814, 1.956) | 1.039 (0.871, 3.985) |
2014 | 2.299 (1.154, 4.581) * | 1.412 (1.228, 1.744) * | 1.910 (1.186, 4.446) * |
Age | |||
15~ | 1 | 1 | 1 |
35~ | 2.246 (1.523, 3.313) * | 2.011 (1.110, 3.644) * | 2.803 (1.432, 5.488) * |
55~ | 3.296 (2.087, 5.208) * | 2.860 (1.543, 5.303) * | 7.526 (2.178, 26.008) * |
Career status | |||
Non-farmer | 1 | 1 | 1 |
Farmer | 1.101 (0.802, 1.512) | 1.171 (0.761, 1.801) | 0.413 (0.191, 0.893) * |
Marital status | |||
Unmarried | 1 | 1 | 1 |
Married | 0.875 (0.531, 1.439) | 0.669 (0.276, 1.625) | 0.911 (0.171, 4.856) |
Divorced or widowed | 1.634 (1.141, 2.340) * | 1.652 (1.151, 2.370) * | 1.107 (0.325, 3.773) |
Education level | |||
≤elementary school | 1 | 1 | 1 |
≥Junior high school | 0.789 (0.638, 0.976) * | 0.764 (0.610, 0.957) * | 1.059 (0.553, 2.029) |
Income level | |||
High | 1 | 1 | 1 |
Middle | 0.847 (0.627, 1.143) | 0.850 (0.676, 1.069) | 0.747 (0.259, 2.155) |
Low | 0.819 (0.610, 1.089) | 0.824 (0.614, 1.104) | 0.695 (0.215, 2.243) |
Labor force | |||
No | 1 | 1 | 1 |
Yes | 0.514 (0.380, 0.697) * | 0.490 (0.372, 0.645) * | 0.795 (0.370, 1.709) |
Chronic diseases | |||
No | 1 | 1 | 1 |
Yes | 3.098 (2.630, 3.650) * | 2.996 (2.550, 3.521) * | 5.402 (2.592, 11.260) * |
Total Females aOR (95%CI) | Migrant Females aOR (95%CI) | Permanent Females aOR (95%CI) | |
---|---|---|---|
Year | |||
2006 | 1 | 1 | 1 |
2008 | 0.167 (0.051, 0.548) * | 0.162 (0.048, 0.547) | 0.962 (0.838, 1.138) |
2010 | 0.918 (0.457, 1.845) | 1.179 (0.532, 2.614) | 0.320 (0.068, 1.507) |
2012 | 1.854 (0.968, 3.551) | 2.128 (1.147, 3.945) * | 1.751 (0.968, 2.750) |
2014 | 1.491 (0.707, 3.142) | 1.472 (0.671, 3.229) | 1.161 (0.707, 2.143) |
Age | |||
15~ | 1 | 1 | 1 |
35~ | 3.621 (1.563, 8.387) * | 3.745 (1.818, 7.716) * | 12.687 (0.791, 23.472) |
55~ | 2.451 (0.987, 6.090) | 2.424 (1.188, 4.945) * | 3.220 (2.988, 6.579) * |
Career status | |||
Non-farmer | 1 | 1 | 1 |
Farmer | 1.844 (1.246, 2.728) * | 2.681 (1.369, 5.251) * | 1.542 (1.367, 2.802) * |
Marital status | |||
Unmarried | 1 | 1 | 1 |
Married | 2.270 (1.060, 4.862) * | 1.875 (0.581, 6.058) | 2.270 (1.062, 4.853) * |
Divorced or widowed | 0.638 (0.409, 0.994) * | 0.603 (0.352, 1.033) | 0.839 (0.629, 1.697) |
Education level | |||
≤elementary school | 1 | 1 | 1 |
≥Junior high school | 0.777 (0.422, 1.432) | 0.743 (0.403, 1.372) | 0.912 (0.605, 3.862) |
Income level | |||
High | 1 | 1 | 1 |
Middle | 1.039 (0.628, 1.718) | 0.934 (0.530, 1.645) | 1.896 (0.827, 2.313) |
Low | 1.699 (0.828, 3.487) | 1.518 (0.734, 3.140) | 2.579 (0.936, 4.357) |
Labor force | |||
No | 1 | 1 | 1 |
Yes | 0.551 (0.325, 0.934) * | 0.644 (0.333, 1.246) | 0.421 (0.325, 0.834) * |
Chronic diseases | |||
No | 1 | 1 | 1 |
Yes | 25.766 (8.983, 73.906) * | 21.070 (8.887, 49.956) * | 34.657 (19.634, 56.852) * |
Total Females aOR (95%CI) | Migrant Females aOR (95%CI) | Permanent Females aOR (95%CI) | |
---|---|---|---|
Year | |||
2006 | 1 | 1 | 1 |
2008 | 0.363 (0.153, 0.858) | 0.433 (0.159, 1.183) | 0.352 (0.063, 1.423) |
2010 | 0.549 (0.253, 1.194) | 1.108 (0.477, 2.569) | 1.271 (0.717, 2.253) |
2012 | 0.652 (0.211, 2.017) | 1.013 (0.245, 4.197) | 1.595 (0.585, 2.394) |
2014 | 1.203 (0.413, 3.503) | 2.842 (0.736, 10.970) | 1.505 (0.046, 49.710) |
Age | |||
15~ | 1 | 1 | 1 |
35~ | 2.939 (1.069, 8.080) * | 4.729 (1.398, 16.003) * | 8.687 (1.077, 70.094) * |
55~ | 2.648 (0.913, 7.677) | 2.906 (0.913, 9.252) | 2.007 (1.724, 2.335) * |
Career status | |||
Non-farmer | 1 | 1 | 1 |
Farmer | 3.276 (1.310, 8.193) * | 2.948 (0.549, 15.842) | 3.186 (0.405, 25.069) |
Marital status | |||
Unmarried | 1 | 1 | 1 |
Married | 0.828 (0.054, 12.665) | 0.643 (0.096, 4.279) | 1.756 (0.086, 19.853) |
Divorced or widowed | 1.158 (0.441, 3.039) | 0.679 (0.242, 1.904) | 0.892 (0.539, 2.008) |
Education level | |||
≤elementary school | 1 | 1 | 1 |
≥Junior high school | 1.285 (0.642, 2.573) | 1.275 (0.586, 2.775) | 0.933 (0.070, 12.374) |
Income level | |||
High | 1 | 1 | 1 |
Middle | 0.956 (0.478, 1.913) | 1.152 (0.586, 2.264) | 1.240 (0.137, 11.225) |
Low | 0.643 (0.273, 1.515) | 0.904 (0.306, 2.668) | 0.044 (0.001, 1.410) |
Labor force | |||
No | 1 | 1 | 1 |
Yes | 0.785 (0.291, 2.116) | 1.419 (0.515, 3.909) | 3.039 (0.342, 7.042) |
Chronic diseases | |||
No | 1 | 1 | 1 |
Yes | 5.118 (2.134, 12.278) * | 2.313 (0.850, 6.296) | 10.009 (3.076, 13.704) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Zheng, H.; Feng, Z.; Tucker, W.; Lu, Y.; Yuan, Z. Hospitalization Services Utilization Between Permanent and Migrant Females in Underdeveloped Rural Regions and Contributing Factors—A Five-Time Data Collection and Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3419. https://doi.org/10.3390/ijerph16183419
Wen X, Zheng H, Feng Z, Tucker W, Lu Y, Yuan Z. Hospitalization Services Utilization Between Permanent and Migrant Females in Underdeveloped Rural Regions and Contributing Factors—A Five-Time Data Collection and Analysis. International Journal of Environmental Research and Public Health. 2019; 16(18):3419. https://doi.org/10.3390/ijerph16183419
Chicago/Turabian StyleWen, Xiaotong, Huilie Zheng, Zhenyi Feng, Winter Tucker, Yuanan Lu, and Zhaokang Yuan. 2019. "Hospitalization Services Utilization Between Permanent and Migrant Females in Underdeveloped Rural Regions and Contributing Factors—A Five-Time Data Collection and Analysis" International Journal of Environmental Research and Public Health 16, no. 18: 3419. https://doi.org/10.3390/ijerph16183419
APA StyleWen, X., Zheng, H., Feng, Z., Tucker, W., Lu, Y., & Yuan, Z. (2019). Hospitalization Services Utilization Between Permanent and Migrant Females in Underdeveloped Rural Regions and Contributing Factors—A Five-Time Data Collection and Analysis. International Journal of Environmental Research and Public Health, 16(18), 3419. https://doi.org/10.3390/ijerph16183419