Calibration and Validation of the Youth Activity Profile as a Physical Activity and Sedentary Behaviour Surveillance Tool for English Youth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Settings
2.2. Measures
2.2.1. Anthropometric Measures
2.2.2. Socioeconomic Status
2.2.3. Device-Measured Physical Activity and Sedentary Time
2.2.4. Self-Reported Physical Activity and Sedentary Time
2.3. Study Design
2.4. Data Processing
2.4.1. Predictive Ability of US Algorithms with an English Sample (Aim 1)
2.4.2. Generation of English-Specific YAP Algorithms (Aim 2)
2.4.3. Potential Surveillance Utility of the English YAP Algorithms (Aim 3)
3. Results
3.1. Descriptive Statistics
3.2. Predictive Ability of US YAP Algorithms with an English Sample (Aim 1)
3.3. Generation of English YAP Algorithms (Aim 2)
3.3.1. Calibration
3.3.2. Cross-Validation
3.4. Classification Accuracy of the YAP (Aim 3)
4. Discussion
4.1. Aim 1
4.2. Aim 2
4.3. Aim 3
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooper, A.; Goodman, A.; Page, A.; Sherar, L.; Esliger, D.; van Sluijs, E.; Andersen, L.; Anderssen, S.; Cardon, G.; Davey, R.; et al. Objectively measured physical activity and sedentary time in youth: The International children’s accelerometry database (ICAD). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.-P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.-P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Connor Gorber, S.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef]
- Crouter, S.E.; Horton, M.; Bassett, D.R. Validity of ActiGraph child-specific equations during various physical activities. Med. Sci. Sports Exerc. 2013, 45, 1403–1409. [Google Scholar] [CrossRef]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age-group comparibility of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- Kim, Y.; Barry, V.W.; Kang, M. Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Meas. Phys. Educ. Exerc. Sci. 2015, 19, 125–137. [Google Scholar] [CrossRef]
- Hurter, L.; Fairclough, S.J.; Knowles, Z.; Porcellato, L.; Cooper-Ryan, A.; Boddy, L. Establishing raw acceleration thresholds to classify sedentary and stationary behaviour in children. Children 2018, 5, 172. [Google Scholar] [CrossRef]
- Harrington, D.M.; Davies, M.J.; Bodicoat, D.H.; Charles, J.M.; Chudasama, Y.V.; Gorely, T.; Khunti, K.; Plekhanova, T.; Rowlands, A.V.; Sherar, L.B.; et al. Effectiveness of the ‘Girls Active’ school-based physical activity programme: A cluster randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Jago, R.; Solomon-Moore, E.; Macdonald-Wallis, C.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Change in children’s physical activity and sedentary time between Year 1 and Year 4 of primary school in the B-PROACT1V cohort. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 33. [Google Scholar] [CrossRef]
- Wilkie, H.J.; Standage, M.; Gillison, F.B.; Cumming, S.P.; Katzmarzyk, P.T. Multiple lifestyle behaviours and overweight and obesity among children aged 9–11 years: Results from the UK site of the International Study of Childhood Obesity, Lifestyle and the Environment. BMJ Open 2016, 6. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Oh, A.Y.; Perna, F.M.; Welk, G.J. Calibration and Validation of the Youth Activity Profile: The FLASHE Study. Am. J. Prev. Med. 2017, 52, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Dumuid, D.; Taylor, S.; Curry, W.; McGrane, B.; Stratton, G.; Maher, C.; Olds, T. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Noonan, R.J.; Boddy, L.M.; Kim, Y.; Knowles, Z.R.; Fairclough, S.J. Comparison of children’s free-living physical activity derived from wrist and hip raw accelerations during the segmented week. J. Sports Sci. 2017, 35, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; Corbin, C.B.; Dale, D. Measurement issues in the assessment of physical activity in children. Res. Q. Exerc. Sport 2000, 71, S59–S73. [Google Scholar] [CrossRef] [PubMed]
- van Kuppevelt, D.; Heywood, J.; Hamer, M.; Sabia, S.; Fitzsimons, E.; van Hees, V. Segmenting accelerometer data from daily life with unsupervised machine learning. PLoS ONE 2019, 14, e0208692. [Google Scholar] [CrossRef]
- Trost, S.G.; Wong, W.K.; Pfeiffer, K.A.; Zheng, Y. Artificial neural networks to predict activity type and energy expenditure in youth. Med. Sci. Sports Exerc. 2012, 44, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Koorts, H.; Mattocks, C.; Ness, A.R.; Deere, K.; Blair, S.N.; Pate, R.R.; Riddoch, C. The association between the type, context, and levels of physical activity amongst adolescents. J. Phys. Act. Health 2011, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Gorely, T.; Pearson, N.; Bull, F.C. An assessment of self-reported physical activity instruments in young people for population surveillance: Project ALPHA. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1. [Google Scholar] [CrossRef]
- Hidding, L.M.; Chinapaw, M.J.M.; van Poppel, M.N.M.; Mokkink, L.B.; Altenburg, T.M. An updated systematic review of childhood physical activity questionnaires. Sports Med. 2018, 48, 2797–2842. [Google Scholar] [CrossRef]
- Hidding, L.M.; Altenburg, T.M.; Mokkink, L.B.; Terwee, C.B.; Chinapaw, M.J.M. Systematic review of childhood sedentary behavior questionnaires: What do we know and what is next? Sports Med. 2017, 47, 677–699. [Google Scholar] [CrossRef]
- Craig, R.; Mindell, J.; Hirani, V. Health Survey for England 2008 Volume 1: Physical Activity and Fitness; The Health and Social Care Information Centre: London, UK, 2009. [Google Scholar]
- Sport England. Active Lives: Children and Young People. Available online: https://www.sportengland.org/research/active-lives-children-and-young-people/ (accessed on 25 October 2018).
- Saint-Maurice, P.F.; Welk, G.J.; Beyler, N.; Bartee, R.; Heelan, K. Calibration of self-report tools for physical activity research: The Physical Activity Questionnaire (PAQ). BMC Public Health 2014, 14, 461. [Google Scholar] [CrossRef] [PubMed]
- Saint-Maurice, P.F.; Welk, G.J.; Bartee, R.T.; Heelan, K. Calibration of context-specific survey items to assess youth physical activity behaviour. J. Sports Sci. 2017, 35, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Saint-Maurice, P.F.; Welk, G.J. Validity and clibration of the Youth Activity Profile. PLoS ONE 2015, 10, e0143949. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; Bai, Y.; Saint-Maurice, P.F.; Allums-Featherston, K.; Candelaria, N. Design and evaluation of the NFL PLAY 60 FITNESSGRAM® Partnership Project. Res. Q. Exerc. Sport 2016, 87, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hallal, P.; Andersen, L.; Bull, F.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.M.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1991. [Google Scholar]
- Department for Communities and Local Government. The English Indices of Deprivation. Available online: https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015 (accessed on 12 December 2017).
- Johannsen, D.; Calabro, M.; Stewart, J.; Franke, W.; Rood, J.; Welk, G. Accuracy of Armband Monitors for Measuring Daily Energy Expenditure in Healthy Adults. Med. Sci. Sports Exerc. 2010, 42, 2134–2140. [Google Scholar] [CrossRef]
- Lopez, G.A.; Brønd, J.C.; Andersen, L.B.; Dencker, M.; Arvidsson, D. Validation of SenseWear Armband in children, adolescents, and adults. Scan. J. Med. Sci. Sports 2018, 28, 487–495. [Google Scholar] [CrossRef] [PubMed]
- van Loo, C.M.T.; Okely, A.D.; Batterham, M.J.; Hinkley, T.; Ekelund, U.; Brage, S.; Reilly, J.J.; Peoples, G.E.; Jones, R.A.; Janssen, X.; et al. Validation of the SenseWear Mini activity monitor in 5−12-year-old children. J. Sci. Med. Sport 2017, 20, 55–59. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kim, Y.; Bai, Y.; Gaesser, G.A.; Welk, G.J. Validation of the SenseWear mini armband in children during semi-structure activity settings. J. Sci. Med. Sport 2016, 19, 41–45. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Kim, Y.; Welk, G.J.; Gaesser, G.A. Kids are not little adults: What MET threshold captures sedentary behavior in children? Eur. J. Appl. Physiol. 2016, 116, 29–38. [Google Scholar] [CrossRef]
- Welk, G.J.; Morrow, J.R., Jr.; Saint-Maurice, P.F. Measures Registry User Guide: Individual Physical Activity; National Collaborative on Childhood Obesity Research: Washington, DC, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Aibar, A.; Bois, J.E.; Zaragoza Casterad, J.; Generelo, E.; Paillard, T.; Fairclough, S.J. Weekday and weekend physical activity patterns of French and Spanish adolescents. Eur. J. Sport Sci. 2013, 14, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Boddy, L.M.; Mackintosh, K.A.; Valencia-Peris, A.; Ramirez-Rico, E. Weekday and weekend sedentary time and physical activity in differentially active children. J. Sci. Med. Sport 2015, 18, 444–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridgers, N.D.; Timperio, A.; Crawford, D.; Salmon, J. Five-year changes in school recess and lunchtime and the contribution to children’s daily physical activity. Br. J. Sports Med. 2012, 46, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Rich, C.; Geraci, M.; Griffiths, L.; Sera, F.; Dezateux, C.; Cortina-Borja, M. Quality control methods in accelerometer data processing: Defining minimum wear time. PLoS ONE 2013, 8, e67206. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.; Beets, M.; Saint-Maurice, P.F.; Weaver, R.; Cliff, D.; Drenowatz, C.; Moore, J.; Sui, X.; Brazendale, K. Wrist-based accelerometer cut-points to identify sedentary time in 5–11-year-old children. Children 2018, 5, 137. [Google Scholar] [CrossRef] [PubMed]
- Koenker, R. Quantile Regression in R: A Vignette. Available online: https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf (accessed on 1 April 2019).
- Wickham, H. Tidyverse. Available online: https://cloud.r-project.org/web/packages/tidyverse/index.html (accessed on 1 April 2019).
- Wickham, H. Modelr. Available online: https://cran.r-project.org/web/packages/modelr/index.html (accessed on 1 April 2019).
- Dixon, P.M.; Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Bai, Y.; Welk, G.J. A Primer on the use of equivalence testing for evaluating measurement agreement. Med. Sci. Sports Exerc. 2017, 50, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Social Care. UK Chief Medical Officers’ Physical Activity Guidelines; DHSC: London, UK, 2019. [Google Scholar]
- WHO. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Department of Health. Childhood Obesity. A Plan. for Action; Department of Health: London, UK, 2016. [Google Scholar]
- Institute of Medicine. Educating the Student Body. Taking Physical Activity and Physical Education to School; Institute of Medicine: Washington, DC, USA, 2013. [Google Scholar]
- Terwee, C.B.; Mokkink, L.B.; van Poppel, M.N.M.; Chinapaw, M.J.M.; van Mechelen, W.; de Vet, H.C.W. Qualitative attributes and measurement properties of physical activity questionnaires. Sports Med. 2010, 40, 525–537. [Google Scholar] [CrossRef]
- Aggio, D.; Fairclough, S.J.; Knowles, Z.; Graves, L. Validity and reliability of a modified English version of the physical activity questionnaire for adolescents. Arch. Public Health 2016, 74, 3. [Google Scholar] [CrossRef]
- Bassett, D.R., Jr.; Rowlands, A.V.; Trost, S.G. Calibration and validation of wearable monitors. Med. Sci. Sports Exerc. 2012, 44, S32–S38. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Nusser, S.M.; Beyler, N.K.; Welk, G.J.; Carriquiry, A.L.; Fuller, W.A.; King, B.M. Modelling errors in physical activity recall data. J. Phys. Act. Health 2012, 9, S56–S67. [Google Scholar] [CrossRef] [PubMed]
- Beyler, N.; Beyler, A. Adjusting for measurement error and nonresponse in physical activity surveys: A simulation study. J. Off. Stat. 2017, 33, 533–550. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Welk, G.J. Web-based assessments of physical activity in youth: Considerations for design and scale calibration. J. Med. Internet Res. 2014, 16, e269. [Google Scholar] [CrossRef] [PubMed]
- Brazendale, K.; Beets, M.W.; Weaver, R.G.; Pate, R.R.; Turner-McGrievy, G.M.; Kaczynski, A.T.; Chandler, J.L.; Bohnert, A.; von Hippel, P.T. Understanding differences between summer vs. school obesogenic behaviors of children: The structured days hypothesis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 100. [Google Scholar] [CrossRef]
- Friedman, W.J. The development of temporal metamemory. Child. Dev. 2007, 78, 1472–1491. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Olds, T.S.; Lewis, L.K.; Maher, C. Does home equipment contribute to socioeconomic gradients in Australian children’s physical activity, sedentary time and screen time? BMC Public Health 2016, 16. [Google Scholar] [CrossRef]
- Baranowski, T. Validity and reliability of self-report measures of physical activity: An information-processing perspective. Res. Q. Exerc. Sport 1988, 59, 314–327. [Google Scholar] [CrossRef]
- Willetts, M.; Hollowell, S.; Aslett, L.; Holmes, C.; Doherty, A. Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants. Sci. Rep. 2018, 8, 7961. [Google Scholar] [CrossRef]
- Nilsson, A.; Ekelund, U.; Yngve, A.; Sjostrom, M. Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Pediatric Exerc. Sci. 2002, 14, 87–96. [Google Scholar] [CrossRef]
Question/Segment | Date | Individualised Time | Start Time * | End Time * |
---|---|---|---|---|
1. Before travel to school | Every day | Yes | 60 min before start time for travel to school | Start time for travel to school |
2. Travel to school | Every day | Yes | 30 min before start time for school | Start time for school |
3. Play/Break time | When provided | Yes | Determined by school schedule | Determined by school schedule |
4. Physical Education | When provided | Yes | Determined by school schedule | Determined by school schedule |
5. Lunch | When provided | Yes | Determined by school schedule | Determined by school schedule |
6. Travel from school | Every day | Yes | End time for school | 30 min after end time for school |
7. After school | Every day | Yes | End time for travel from school | 18:00 |
8. Evening | Every day | No | 18:00 | 22:00 |
9. Saturday | Saturday | No | 07:00 | 22:00 |
10. Sunday | Sunday | No | 07:00 | 22:00 |
Variable | All | Calibration Sample | Cross-Validation Sample |
---|---|---|---|
n | 331 | 202 | 129 |
Sex | |||
Boys (%) | 51.4 | 59.4 | 38.8 |
Girls (%) | 48.6 | 40.6 | 61.2 |
Ethnicity | |||
White British (%) | 93.7 | 94.6 | 92.2 |
Other (%) | 6.3 | 5.4 | 7.8 |
Age (years) | 12.3 (2.1) | 12.3 (2.1) | 12.2 (2.3) |
Height (cm) | 154.9 (13.7) | 155.0 (14.1) | 154.6 (13.2) |
Weight (kg) | 49.6 (15.4) | 50.0 (15.3) | 49.0 (15.6) |
Body mass index (BMI) (kg∙m2) | 20.3 (4.3) | 20.4 (4.4) | 20.1 (4.3) |
Weight status | |||
% Normal weight | 71.6 | 71.3 | 72.1 |
% Overweight/Obese | 28.4 | 28.7 | 27.9 |
Waist Circumference (cm) | 71.0 (10.3) | 71.4 (10.3) | 70.4 (10.2) |
Socioeconomic status (SES; 2015 English Indices of Multiple Deprivation (IMD) score) | 19.4 (13.9) | 21.9 (15.5) | 15.7 (10.3) |
SenseWear Armband Mini devices (SWA) wear time (days) | 5.8 (1.2) | 5.8 (1.2) | 5.9 (1.3) |
SWA total wear time (min⋅day−1) | 1014.8 (114.7) | 1021.9 (115.2) | 1004.5 (113.5) |
Segment | YAP-Predicted Estimates (min·week−1) | SWA Estimates (min·week−1) | YAP-SWA Bias (min·week−1) |
---|---|---|---|
In-school MVPA | 241.1 (61.4) | 273.3 (81.3) | −32.1 (116.8) |
Out-of-school MVPA | 235.0 (42.6) | 341.8 (90.9) | −106.7 (60.1) |
Weekend MVPA | 175.4 (49.6) | 249.1 (74.0) | −73.7 (36.5) |
Out-of-school SB | 1496.0 (297.8) | 1050.4 (365.8) | 445.7 (106.4) |
Model | In-school MVPA (n = 200) | Out-of-School MVPA (n = 196) | Weekend MVPA (n = 187) | Sedentary Behaviour (n = 196) |
---|---|---|---|---|
Intercept (Primary stage) | 45.51 (9.14) | 12.75 (5.01) | 15.17 (5.02) | 34.92 (12.71) |
Intercept (Secondary stage) | 13.72 (5.58) | 2.61 (3.41) | 8.44 (3.18) | 48.95 (8.91) |
Sex | −11.34 (2.47) | −1.61 (1.95) | −4.33 (1.56) | 1.61 (2.99) |
YAP x Primary level | 1.78 (2.33) | 2.01 (2.06) | 1.13 (1.22) | −0.84 (5.22) |
YAP x Secondary level | 7.31 (1.66) | 4.44 (1.18) | 1.44 (0.90) | 5.65 (2.54) |
Segment | YAP-Predicted Estimates (min·week−1) | SWA Estimates (min·week−1) | YAP-SWA bias (min·week−1) | Equivalence Zone |
---|---|---|---|---|
In-school MVPA | 258.7 (74.9) | 241.4 (97.6) | 17.2 (34.4) | 20% |
Out-of-school MVPA | 319.2 (67.0) | 287.6 (93.2) | 31.6 (28.3) | 20% |
Weekend MVPA | 220.9 (83.6) | 225.8 (96.8) | −4.9 (13.2) | 15% |
Out-of-school SB | 1180.3 (408.6) | 1071.1 (416.1) | 109.2 (20.5) | 15% |
Segment | YAP-Predicted Estimates (min·week−1) | SWA Estimates (min·week−1) | YAP-SWA Bias (min·week−1) | Equivalence Zone |
---|---|---|---|---|
Primary stage | ||||
In-school MVPA | 353.4 (19.1) | 340.5 (24.8) | 12.9 (10.6) | 10% |
Out-of-school MVPA | 379.1 (3.9) | 408.4 (70.3) | −29.3 (69.5) | 25% |
Weekend MVPA | 300.1 (10.7) | 317.9 (19.2) | −17.8 (10.7) | 10% |
Out-of-school SB | 722.1 (5.5) | 674.9 (92.8) | 47.2 (91.5) | 20% |
Secondary stage | ||||
In-school MVPA | 230.4 (36.0) | 219.5 (68.0) | 10.9 (33.1) | 20% |
Out-of-school MVPA | 308.3 (42.2) | 288.5 (69.4) | 19.8 (36.4) | 20% |
Weekend MVPA | 192.0 (28.0) | 196.4 (50.7) | −4.5 (28.8) | 15% |
Out-of-school SB | 1469.1 (89.2) | 1350.7 (86.2) | 118.4 (50.0) | 15% |
Segment | YAP-Predicted Estimates (min·week−1) | SWA Estimates (min·week−1) | YAP-SWA Bias (min·week−1) | Equivalence Zone |
---|---|---|---|---|
Boys | ||||
In-school MVPA | 342.1 (63.1) | 328.7 (66.2) | 13.4 (36.9) | 15% |
Out-of-school MVPA | 366.7 (36.3) | 369.2 (66.8) | −2.5 (51.6) | 10% |
Weekend MVPA | 282.4 (56.6) | 262.7 (69.0) | 19.7 (54.2) | 20% |
Out-of-school SB | 1101.0 (426.9) | 1011.3 (404.8) | 89.7 (78.2) | 20% |
Girls | ||||
In-school MVPA | 242.4 (67.2) | 228.7 (81.6) | 13.7 (25.4) | 15% |
Out-of-school MVPA | 328.2 (51.4) | 332.2 (109.8) | −3.9 (71.1) | 15% |
Weekend MVPA | 211.7 (56.1) | 247.8 (86.9) | −36.1 (36.1) | 25% |
Out-of-school SB | 1093.8 (377.5) | 1032.6 (348.6) | 61.2 (84.1) | 15% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairclough, S.J.; Christian, D.L.; Saint-Maurice, P.F.; Hibbing, P.R.; Noonan, R.J.; Welk, G.J.; Dixon, P.M.; Boddy, L.M. Calibration and Validation of the Youth Activity Profile as a Physical Activity and Sedentary Behaviour Surveillance Tool for English Youth. Int. J. Environ. Res. Public Health 2019, 16, 3711. https://doi.org/10.3390/ijerph16193711
Fairclough SJ, Christian DL, Saint-Maurice PF, Hibbing PR, Noonan RJ, Welk GJ, Dixon PM, Boddy LM. Calibration and Validation of the Youth Activity Profile as a Physical Activity and Sedentary Behaviour Surveillance Tool for English Youth. International Journal of Environmental Research and Public Health. 2019; 16(19):3711. https://doi.org/10.3390/ijerph16193711
Chicago/Turabian StyleFairclough, Stuart J., Danielle L. Christian, Pedro F. Saint-Maurice, Paul R. Hibbing, Robert J. Noonan, Greg J. Welk, Philip M. Dixon, and Lynne M. Boddy. 2019. "Calibration and Validation of the Youth Activity Profile as a Physical Activity and Sedentary Behaviour Surveillance Tool for English Youth" International Journal of Environmental Research and Public Health 16, no. 19: 3711. https://doi.org/10.3390/ijerph16193711
APA StyleFairclough, S. J., Christian, D. L., Saint-Maurice, P. F., Hibbing, P. R., Noonan, R. J., Welk, G. J., Dixon, P. M., & Boddy, L. M. (2019). Calibration and Validation of the Youth Activity Profile as a Physical Activity and Sedentary Behaviour Surveillance Tool for English Youth. International Journal of Environmental Research and Public Health, 16(19), 3711. https://doi.org/10.3390/ijerph16193711