Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks
Abstract
:1. Introduction
1.1. Seasonal Predictors of Anthrax Epidemics
1.2. Modeling Episodic Anthrax
1.3. Soil pH and Calcium Content
2. Methods
2.1. Growth and Sporulation of Bacillus Anthracis
2.2. Bacillus Anthracis Growth Experiments
2.3. Engineering of Bioluminescent B. Anthracis Toxin Elaboration and Sporulation Reporter Strains
2.4. B. Anthracis Growth, Toxin Elaboration and Sporulation Induction Assays in the Presence of Geochemically Relevant Calcium Gradients
3. Results
3.1. Growth of B. Anthracis at Different pH
3.2. Tracking Toxin Elaboration and Sporulation Using Bioluminescent Reporter Strains
3.3. pH and Calcium Combine to Modify the Physiology of B. Anthracis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M.; Elkin, B.T.; Epp, T.; Shury, T.K.; Zhang, W.; et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Van Ert, M.N.; Easterday, W.R.; Huynh, L.Y.; Okinaka, R.T.; Hugh-Jones, M.E.; Ravel, J.; Zanecki, S.R.; Pearson, T.; Simonson, T.S.; U’Ren, J.M.; et al. Global genetic population structure of Bacillus anthracis. PLoS ONE 2007, 2, e461. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.L.; DeVos, V.; Bryden, H.; Price, L.B.; Hugh-Jones, M.E.; Keim, P. Bacillus anthracis diversity in Kruger National Park. J. Clin. Microbiol. 2000, 38, 3780–3784. [Google Scholar] [PubMed]
- Halvorson, H.O. Two generations of spore research: From father to son. Microbiologia (Madrid, Spain) 1997, 13, 131–148. [Google Scholar]
- Manchee, R.J.; Broster, M.G.; Stagg, A.J.; Hibbs, S.E. Formaldehyde solution effectively inactivates spores of Bacillus anthracis on the Scottish island of Gruinard. Appl. Environ. Microbiol. 1994, 60, 4167–4171. [Google Scholar] [PubMed]
- Blackburn, J.K.; Matakarimov, S.; Kozhokeeva, S.; Tagaeva, Z.; Bell, L.K.; Kracalik, I.T.; Zhunushov, A. Modeling the ecological niche of Bacillus anthracis to map anthrax risk in Kyrgyzstan. Am. J. Trop. Med. Hyg. 2017, 96, 550–556. [Google Scholar] [CrossRef]
- New, D.; Elkin, B.; Armstrong, T.; Epp, T. Anthrax in the Mackenzie wood bison (Bison bison athabascae) population: 2012 anthrax outbreak and historical exposure in nonoutbreak years. J. Wildl. Dis. 2017, 53, 769–780. [Google Scholar] [CrossRef]
- Munang’andu, H.M.; Banda, F.; Siamudaala, V.M.; Munyeme, M.; Kasanga, C.J.; Hamududu, B. The effect of seasonal variation on anthrax epidemiology in the upper Zambezi floodplain of western Zambia. J. Vet. Sci. 2012, 13, 293–298. [Google Scholar] [CrossRef]
- Noseda, R.; Cordeviola, J.; Bardón, C.; Martínez, A.; Cambessies, G. Bovine anthrax. Prevalence, annual and seasonal variations in 30 districts of the province of Buenos Aires during the period 1977–1994. Vet. Argent. 1995, 12, 606–611. [Google Scholar]
- Parkinson, R.; Rajic, A.; Jenson, C. Investigation of an anthrax outbreak in Alberta in 1999 using a geographic information system. Can. Vet. J. 2003, 44, 315. [Google Scholar]
- Kracalik, I.T.; Kenu, E.; Ayamdooh, E.N.; Allegye-Cudjoe, E.; Polkuu, P.N.; Frimpong, J.A.; Nyarko, K.M.; Bower, W.A.; Traxler, R.; Blackburn, J.K. Modeling the environmental suitability of anthrax in Ghana and estimating populations at risk: Implications for vaccination and control. PLoS Negl. Trop. Dis. 2017, 11, e0005885. [Google Scholar] [CrossRef] [PubMed]
- Cizauskas, C.A.; Bellan, S.E.; Turner, W.C.; Vance, R.E.; Getz, W.M. Frequent and seasonally variable sublethal anthrax infections are accompanied by short-lived immunity in an endemic system. J. Anim. Ecol. 2014, 83, 1078–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barro, A. Integrating Geographical Information Systems and the Ecological Niche Modeling Framework to Characterize the Spatial Ecology of Anthrax in Australia. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2016. [Google Scholar]
- Blackburn, J.K.; Goodin, D.G. Differentiation of springtime vegetation indices associated with summer anthrax epizootics in West Texas, USA deer. J. Wildl. Dis. 2013, 49, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.; Curtis, A.J.; Hadfield, T.; Hugh-Jones, M.E. Spatial and temporal patterns of anthrax in white-tailed deer, Odocoileus virginianus, and hematophagous flies in West Texas during the summertime anthrax risk period. Ann. Assoc. Am. Geogr. 2014, 104, 939–958. [Google Scholar] [CrossRef]
- Barro, A.S.; Fegan, M.; Moloney, B.; Porter, K.; Muller, J.; Warner, S.; Blackburn, J.K. Redefining the Australian anthrax belt: Modeling the ecological niche and predicting the geographic distribution of Bacillus anthracis. PLoS Negl. Trop. Dis. 2016, 10, e0004689. [Google Scholar] [CrossRef] [PubMed]
- Lequette, Y.; Garenaux, E.; Combrouse, T.; Dias Tdel, L.; Ronse, A.; Slomianny, C.; Trivelli, X.; Guerardel, Y.; Faille, C. Domains of BclA, the major surface glycoprotein of the B. cereus exosporium: Glycosylation patterns and role in spore surface properties. Biofouling 2011, 27, 751–761. [Google Scholar] [CrossRef]
- Lequette, Y.; Garenaux, E.; Tauveron, G.; Dumez, S.; Perchat, S.; Slomianny, C.; Lereclus, D.; Guerardel, Y.; Faille, C. Role played by exosporium glycoproteins in the surface properties of Bacillus cereus spores and in their adhesion to stainless steel. Appl. Environ. Microbiol. 2011, 77, 4905–4911. [Google Scholar] [CrossRef] [PubMed]
- Brahmbhatt, T.N.; Janes, B.K.; Stibitz, E.S.; Darnell, S.C.; Sanz, P.; Rasmussen, S.B.; O’Brien, A.D. Bacillus anthracis exosporium protein BclA affects spore germination, interaction with extracellular matrix proteins, and hydrophobicity. Infect. Immun. 2007, 75, 5233–5239. [Google Scholar] [CrossRef] [PubMed]
- Kracalik, I.; Malania, L.; Broladze, M.; Navdarashvili, A.; Imnadze, P.; Ryan, S.J.; Blackburn, J.K. Changing livestock vaccination policy alters the epidemiology of human anthrax, Georgia, 2000–2013. Vaccine 2017, 35, 6283–6289. [Google Scholar] [CrossRef]
- Blackburn, J.K.; McNyset, K.M.; Curtis, A.; Hugh-Jones, M.E. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling. Am. J. Trop. Med. Hyg. 2007, 77, 1103–1110. [Google Scholar] [CrossRef]
- Getz, W.M. Biomass transformation webs provide a unified approach to consumer–resource modelling. Ecol. Lett. 2011, 14, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Galvin, J.; Rubira, R.; Miller, G. Anthrax explodes in an Australian summer. J. App. Microbiol. 1999, 87, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Lindeque, P.M.; Turnbull, P.C.B. Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J. Vet. Res. 1994, 61, 71–83. [Google Scholar] [PubMed]
- Turner, W.C.; Kausrud, K.L.; Krishnappa, Y.S.; Cromsigt, J.P.; Ganz, H.H.; Mapaure, I.; Cloete, C.C.; Havarua, Z.; Kusters, M.; Getz, W.M.; et al. Fatal attraction: Vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. Biol. Sci. 2014, 281, 20141785. [Google Scholar] [CrossRef] [PubMed]
- Hugh-Jones, M.; Blackburn, J. The ecology of Bacillus anthracis. Mol. Asp. Med. 2009, 30, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.K.; Asher, V.; Stokke, S.; Hunter, D.L.; Alexander, K.A. Dances with anthrax: Wolves (Canis lupus) kill anthrax bacteremic plains bison (Bison bison bison) in southwestern Montana. J. Wildl. Dis. 2014, 50, 393–396. [Google Scholar] [CrossRef]
- Morris, L.R.; Proffitt, K.M.; Asher, V.; Blackburn, J.K. Elk resource selection and implications for anthrax management in Montana. J. Wildl. Manag. 2016, 80, 235–244. [Google Scholar] [CrossRef]
- Van Ness, G. Ecology of Anthrax. Science 1971, 172, 1303–1307. [Google Scholar] [CrossRef]
- Turner, W.C.; Kausrud, K.L.; Beyer, W.; Easterday, W.R.; Barandongo, Z.R.; Blaschke, E.; Cloete, C.C.; Lazak, J.; Van Ert, M.N.; Ganz, H.H.; et al. Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs. Sci. Rep. 2016, 6, 27311. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, F.E.; Prestwood, A.K.; Noble, R.E. Anthrax epizootic in white-tailed deer. J. Wildl. Dis. 1970, 6, 226–228. [Google Scholar] [CrossRef]
- Blackburn, J.K.; Ganz, H.H.; Ponciano, J.M.; Turner, W.C.; Ryan, S.J.; Kamath, P.; Cizauskas, C.; Kausrud, K.; Holt, R.D.; Stenseth, N.C. Modeling R0 for Pathogens with Environmental Transmission: Animal Movements, Pathogen Populations, and Local Infectious Zones. Int. J. Environ. Res. Pub. Health 2019, 16, 954. [Google Scholar] [CrossRef] [PubMed]
- Fulbright, T.E.; Ortega-s, J.A. White-Tailed Deer Habitat: Ecology and Management on Rangelands; Texas A & M University Press: College Station, TX, USA, 2006; ISBN 1-58544-499-5. [Google Scholar]
- Armstrong, W.E.; Harmel, D.E.; Anderegg, M.J.M.S. Traweek Vegetation of the Kerr Wildlife Management Area and Its Preference by White-Tailed Deer; Texas Parks and Wildlife Department: Austin, TX, USA, 1991. [Google Scholar]
- Blackburn, J.K.; Mullins, J.C.; Van Ert, M.; Hadfield, T.; O’Shea, B.; Hugh-Jones, M.E. The necrophagous fly anthrax transmission pathway: Empirical and genetic evidence from a wildlife epizootic in west Texas 2010. Vector Borne Zoonotic Dis. 2014, 14, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Debré, P. Louis Pasteur; Johns Hopkins University Press: Baltimore, MD, USA, 1998; ISBN 0801858089. [Google Scholar]
- Bellan, S.E.; Turnbull, P.C.; Beyer, W.; Getz, W.M. Effects of experimental exclusion of scavengers from anthrax-infected herbivore carcasses on Bacillus anthracis sporulation, survival and distribution. Appl. Environ. Microbiol. 2013, 79, 3756–3761. [Google Scholar] [CrossRef] [PubMed]
- Havarua, Z.; Turner, W.C.; Mfune, J.K. Seasonal variation in foraging behaviour of plains zebra (Equus quagga) may alter contact with the anthrax bacterium (Bacillus anthracis). Can. J. Zool. 2014, 92, 331–337. [Google Scholar] [CrossRef]
- Hugh-Jones, M.; De Vos, V. Anthrax and wildlife. Revue Sci. Tech. (Int. Off. Epizoot.) 2002, 21, 359. [Google Scholar] [CrossRef] [PubMed]
- Hoffmaster, A.R.; Ravel, J.; Rasko, D.A.; Chapman, G.D.; Chute, M.D.; Marston, C.K.; De, B.K.; Sacchi, C.T.; Fitzgerald, C.; Mayer, L.W.; et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 2004, 101, 8449–8454. [Google Scholar] [CrossRef]
- Zimmermann, F.; Kohler, S.M.; Nowak, K.; Dupke, S.; Barduhn, A.; Dux, A.; Lang, A.; De Nys, H.M.; Gogarten, J.F.; Grunow, R.; et al. Low antibody prevalence against Bacillus cereus biovar anthracis in Tai National Park, Cote d’Ivoire, indicates high rate of lethal infections in wildlife. PLoS Negl. Trop. Dis. 2017, 11, e0005960. [Google Scholar] [CrossRef] [PubMed]
- Antonation, K.S.; Grutzmacher, K.; Dupke, S.; Mabon, P.; Zimmermann, F.; Lankester, F.; Peller, T.; Feistner, A.; Todd, A.; Herbinger, I.; et al. Bacillus cereus biovar anthracis causing anthrax in sub-Saharan Africa-Chromosomal monophyly and broad geographic distribution. PLoS Negl. Trop. Dis. 2016, 10, e0004923. [Google Scholar] [CrossRef]
- Hoffmann, C.; Zimmermann, F.; Biek, R.; Kuehl, H.; Nowak, K.; Mundry, R.; Agbor, A.; Angedakin, S.; Arandjelovic, M.; Blankenburg, A.; et al. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. Nature 2017, 548, 82. [Google Scholar] [CrossRef]
- Furniss, P.; Hahn, B. A mathematical model of an anthrax epizootic in the Kruger National Park. Appl. Math. Model. 1981, 5, 130–136. [Google Scholar] [CrossRef]
- Hahn, B.D.; Furniss, P.R. A deterministic model of an anthrax epizootic: Threshold results. Ecol. Model. 1983, 20, 233–241. [Google Scholar] [CrossRef]
- Friedman, A.; Yakubu, A.A. Anthrax epizootic and migration: Persistence or extinction. Math. Biosci. 2013, 241, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.P.; Nekorchuk, D.M.; Mao, L.; Ryan, S.J.; Ponciano, J.M.; Blackburn, J.K. Decoupling environmental effects and host population dynamics for anthrax, a classic reservoir-driven disease. PLoS ONE 2018, 13, e0208621. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.W.; Silvestri, E.E.; Bowling, C.Y.; Boe, T.; Smith, D.B.; Nichols, T.L. Anthrax and the geochemistry of soils in the contiguous United States. Geosciences 2014, 4, 114–127. [Google Scholar] [CrossRef]
- Williams, G.; Linley, E.; Nicholas, R.; Baillie, L. The role of the exosporium in the environmental distribution of anthrax. J. Appl. Microbiol. 2013, 114, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Rode, L.J.; Foster, J.W. Quantitative aspects of exchangeable calcium in spores of Bacillus megaterium. J. Bacteriol. 1966, 91, 1589–1593. [Google Scholar] [PubMed]
- Rowley, D.B.; Levinson, H.S. Changes in spores of Bacillus megaterium treated with thioglycolate at a low pH and restoration of germinability and heat resistance by cations. J. Bacteriol. 1967, 93, 1017–1022. [Google Scholar]
- Reddy, M.S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 2013, 4, 314. [Google Scholar]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Hornstra, L.M.; de Vries, Y.P.; de Vos, W.M.; Abee, T. Influence of sporulation medium composition on transcription of ger operons and the germination response of spores of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2006, 72, 3746–3749. [Google Scholar] [CrossRef]
- Kim, H.U.; Goepfert, J.M. A sporulation medium for Bacillus anthracis. J. Appl. Bacteriol. 1974, 37, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Andreu, N.; Zelmer, A.; Fletcher, T.; Elkington, P.T.; Ward, T.H.; Ripoll, J.; Parish, T.; Bancroft, G.J.; Schaible, U.; Robertson, B.D.; et al. Optimisation of bioluminescent reporters for use with Mycobacteria. PLoS ONE 2010, 5, e10777. [Google Scholar] [CrossRef] [PubMed]
- Qazi, S.N.A.; Counil, E.; Morrissey, J.; Rees, C.E.D.; Cockayne, A.; Winzer, K.; Chan, W.C.; Williams, P.; Hill, P.J. Agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect. Immun. 2001, 69, 7074. [Google Scholar] [CrossRef] [PubMed]
- Plaut, R.D.; Stibitz, S. Improvements to a markerless allelic exchange system for Bacillus anthracis. PLoS ONE 2015, 10, e0142758. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.M.; Rholl, D.A.; Trunck, L.A.; Schweizer, H.P. Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei. App. Environ. Microbiol. 2009, 75, 6496–6503. [Google Scholar] [CrossRef] [PubMed]
- Briggs, J.C.; Ficke, J.F. Quality of Rivers of the United States, 1975 Water Year; Based on the National Stream Quality Accounting Network (NASQAN); U.S. Geological Survey: Reston, VA, USA, 1977; p. 446. [Google Scholar]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water: A Single Resource; U.S. Geological Survey: Reston, VA, USA, 1998. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norris, M.H.; Blackburn, J.K. Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks. Int. J. Environ. Res. Public Health 2019, 16, 3747. https://doi.org/10.3390/ijerph16193747
Norris MH, Blackburn JK. Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks. International Journal of Environmental Research and Public Health. 2019; 16(19):3747. https://doi.org/10.3390/ijerph16193747
Chicago/Turabian StyleNorris, Michael H., and Jason K. Blackburn. 2019. "Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks" International Journal of Environmental Research and Public Health 16, no. 19: 3747. https://doi.org/10.3390/ijerph16193747
APA StyleNorris, M. H., & Blackburn, J. K. (2019). Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks. International Journal of Environmental Research and Public Health, 16(19), 3747. https://doi.org/10.3390/ijerph16193747