Non-Medical Use of Novel Synthetic Opioids: A New Challenge to Public Health
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Epidemiology
3.2. Common Characteristics of NPSs
3.3. Illicit Opioids, NSOs
3.4. Kratom and O-Desmethyltramadol
3.4.1. Kratom—Mitragyna Speciosa
3.4.2. O-Desmethyltramadol
3.5. Fentanyl, Other Non-Pharmaceutical Fentanyls and Illicitly Manufactured Fentanyl Analogues
3.5.1. Fentanyl
3.5.2. Carfentanyl
3.5.3. Acetylfentanyl
3.5.4. Butyrylfentanyl
3.5.5. 4-Fluorobutyrylfentanyl
- Acryloylfentanyl (IUPAC name: N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]prop-2-enamide) or acrylfent or acrylfentanyl, acryloyl-F, Acr-F, ACF, [18F]ACF [2,22,75,89,90,91]. Acrylfentanyl is used in medicine as an adjunct to general anesthesia during surgery and for pain management [92]. Present on drug market in liquid and tablet form, less frequently in powder or capsule form [4,91], and is taken nasally (as a nasal solution or by snorting), orally or by intravenous injection [4,75,91,93];
- Others: valerylfentanyl (IUPAC name: N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]-pentanamide [7,22].; 4-methoxybutyrfentanyl (IUPAC name: N-(4-methoxyphenyl)-N-[1-(2-phenylethyl)piperidin-4-yl]butanamide) or 4-methoxybutyrylfentanyl or 4-MeO-BF [22].; depropionylfentanyl (IUPAC name: N-phenyl-1-(2-phenylethyl)piperidin-4-amine or despropionylfentanyl or ANPP [22].; isobutyrfentanyl (IUPAC name: 2-methyl-N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]propenamide or isobutyryl fentanyl [22].; despropionyl-2-fluorofentanyl, (iso)butyr-F-fentanyl N-benzyl analogue, methoxyacetylfentanyl, para-fluoroisobutyrfentanyl, etrahydrofuranylfentanyl, para-fluoroisobutyrfentanyl and others.
3.6. New Generation of Synthetic Opioids: Structurally Atypical Synthetic Opioids
3.7. Other Reported NSOs with Chemical Structures Different from Fentanyl
3.8. Potential Risks for First Responders and Reducing the Risk of NSO Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNODC. The Challenge of New Psychoactive Substances; Global SMART Programme; UNODC: Vienna, Austria, 2013; Available online: http://www.unodc.org/documents/scientific/NPS_Report.pdf (accessed on 5 May 2018).
- UNODC. Global Synthetic Drugs Assessment; UNODC: Vienna, Austria, 2017; Available online: http://www.unodc.org/documents/scientific/Global_Drugs_Assessment_2017.pdf (accessed on 5 May 2018).
- EMCDDA. European Drug Report 2017: Trends and Developments. 2017. Available online: http://www.emcdda.europa.eu/publications/edr/trends-developments/2017 (accessed on 10 July 2017).
- Breindahl, T.; Kimergård, A.; Andreasen, M.F.; Pedersen, D.S. Identification of a new psychoactive substance in seized material: The synthetic opioidN-phenyl-N-[1-(2-phenethyl)piperidin-4-yl]prop-2-enamide (Acrylfentanyl). Drug Test. Anal. 2016, 9, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Dargan, P.; Wood, D.M. Novel Psychoactive Substances: Classification, Pharmacology and Toxicology; Elsevier/Academic Press: Boston, MA, USA, 2013; Volume 15, pp. 63–64. [Google Scholar]
- Quintana, P.; Ventura, M.; Grifell, M.; Palma, A.; Galindo, L.; Fornís, I.; Gil, C.; Carbón, X.; Caudevilla, F.; Farré, M.; et al. The hidden web and the fentanyl problem: Detection of ocfentanil as an adulterant in heroin. Int. J. Drug Policy 2017, 40, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Prekupec, M.P.; Mansky, P.A.; Baumann, M.H. Misuse of Novel Synthetic Opioids. J. Addict. Med. 2017, 11, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Madras, B.K. The Growing Problem of New Psychoactive Substances (NPS). In Neuropharmacology of New Psychoactive Substances (NPS); Springer International Publishing: Berlin, Germany, 2016; pp. 1–18. [Google Scholar]
- Rech, M.A.; Donahey, E.; Cappiello Dziedzic, J.M.; Oh, L.; Greenhalgh, E. New Drugs of Abuse. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 35, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Schifano, F.; Orsolini, L.; Duccio Papanti, G.; Corkery, J.M. Novel psychoactive substances of interest for psychiatry. World Psychiatry 2015, 14, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liechti, M. Novel psychoactive substances (designer drugs): Overview and pharmacology of modulators of monoamine signaling. Swiss Med. Wkly. 2015, 145, w14043. [Google Scholar] [CrossRef] [PubMed]
- UNODC. World Drug Report 2013; UNODC: Vienna, Austria, 2013; Available online: https://www.unodc.org/unodc/secured/wdr/wdr2013/World_Drug_Report_2013.pdf (accessed on 5 May 2018).
- CCENDU—Canadian Community Epidemiology Network on Drug Use. CCENDU Bulletin: Novel Synthetic Opioids in Pharmaceuticals Counterfeit and Other Illicit Street Drugs; Canadian Centre on Substance Abuse: Ottawa, ON, Canada, 2016. [Google Scholar]
- FDA—United States Food and Drug Administration. Counterfeit Medicine. 2016. Available online: www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/CounterfeitMedicine/ (accessed on 1 June 2018).
- United States Federal Register; Drug Enforcement Administration. Schedules of Controlled Substances: Temporary Placement of Fentanyl-Related Substances in Schedule I. 2018. Available online: https://www.federalregister.gov/documents/2018/02/06/2018-02319/schedules-of-controlled-substances-temporary-placement-of-fentanyl-related-substances-in-schedule-i (accessed on 5 May 2018).
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Dart, R.C.; Surratt, H.L.; Cicero, T.J.; Parrino, M.W.; Severtson, S.G.; Bucher-Bartelson, B.; Green, J.L. Trends in Opioid Analgesic Abuse and Mortality in the United States. N. Engl. J. Med. 2015, 372, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Green, T.C.; Gilbert, M. Counterfeit Medications and Fentanyl. JAMA 2016, 176, 1555. [Google Scholar] [CrossRef]
- Government of Alberta. Announcements: Toxic Opioid Carfentanil Linked to 15 Deaths. 2016. Available online: https://www.alberta.ca/release.cfm?xID=449592B2D1813-CB6E-055D-0800F5C807A854D8 (accessed on 20 April 2017).
- Shoff, E.N.; Zaney, M.E.; Kahl, J.H.; Hime, G.W.; Boland, D.M. Qualitative Identification of Fentanyl Analogs and Other Opioids in Postmortem Cases by UHPLC-Ion Trap-MSn. J. Anal. Toxicol. 2017, 41, 484–492. [Google Scholar] [CrossRef]
- DEA—Drug Enforcement Administration. Counterfeit Prescription Pills Containing Fentanyls: A Global Threat. 2016. Available online: https://content.govdelivery.com/attachments/USDOJDEA/2016/07/22/file_attachments/590360/fentanyl%2Bpills%2Breport.pdf (accessed on 25 May 2018).
- National Center for Biotechnology Information. PubChem Compound Database [Database Online]. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 11 May 2018).
- Gregory, T.B. Hydromorphone: Evolving to Meet the Challenges of Today’s Health Care Environment. Clin. Ther. 2013, 35, 2007–2027. [Google Scholar] [CrossRef] [PubMed]
- Lydecker, A.G.; Sharma, A.; McCurdy, C.R.; Avery, B.A.; Babu, K.M.; Boyer, E.W. Suspected Adulteration of Commercial Kratom Products with 7-Hydroxymitragynine. J. Med. Toxicol. 2016, 12, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adkins, J.E.; Boyer, E.W.; McCurdy, C.R. Mitragyna speciosa, A Psychoactive Tree from Southeast Asia with Opioid Activity. Curr. Top. Med. Chem. 2011, 11, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.W.; Cooley, J.C.; Johnson, L.; Frazee, C.C.; Domanski, K.; Kleinschmidt, K.; Garg, U. Analysis of U-47700, a Novel Synthetic Opioid, in Human Urine by LC–MS–MS and LC–QToF. J. Anal. Toxicol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C. Update on the Pharmacology and Legal Status of Kratom. J. Am. Osteopat. Assoc. 2016, 116, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.; Law, R.; Schier, J. Notes from the Field: Kratom (Mitragyna speciosa) Exposures Reported to Poison Centers—United States, 2010–2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 748–749. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C. Pharmacology of kratom: An emerging botanical agent with stimulant, analgesic and opioid-like effects. J. Am. Osteopat. Assoc. 2012, 112, 792–799. [Google Scholar]
- Singh, D.; Müller, C.P.; Vicknasingam, B.K. Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend. 2014, 139, 132–137. [Google Scholar] [CrossRef]
- Swogger, M.T.; Hart, E.; Erowid, F.; Erowid, E.; Trabold, N.; Yee, K.; Parkhurst, K.A.; Priddy, B.M.; Walsh, Z. Experiences of Kratom Users: A Qualitative Analysis. J. Psychoact. Drugs 2015, 47, 360–367. [Google Scholar] [CrossRef]
- Dorman, C.; Wong, M.; Khan, A. Cholestatic hepatitis from prolonged kratom use: A case report. Hepatology 2015, 61, 1086–1087. [Google Scholar] [CrossRef] [Green Version]
- Kapp, F.G.; Maurer, H.H.; Auwärter, V.; Winkelmann, M.; Hermanns-Clausen, M. Intrahepatic Cholestasis Following Abuse of Powdered Kratom (Mitragyna speciosa). J. Med. Toxicol. 2011, 7, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wei, H.; Wu, J.; Jamil, M.F.A.; Tan, M.L.; Adenan, M.I.; Wong, P.; Shim, W. Evaluation of the Cardiotoxicity of Mitragynine and Its Analogues Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE 2014, 9, e115648. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, J.L.; Lapoint, J.; Hodgman, M.J.; Aldous, K.M. Seizure and Coma Following Kratom (Mitragynina speciosa Korth) Exposure. J. Med. Toxicol. 2010, 6, 424–426. [Google Scholar] [CrossRef] [PubMed]
- Pantano, F.; Tittarelli, R.; Mannocchi, G.; Zaami, S.; Ricci, S.; Giorgetti, R.; Terranova, D.; Busardò, F.; Marinelli, E. Hepatotoxicity Induced by “the 3Ks”: Kava, Kratom and Khat. Int. J. Mol. Sci. 2016, 17, 580. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, N.H.M.; Suhaimi, F.W.; Vadivelu, R.K.; Hassan, Z.; Rümler, A.; Rotter, A.; Amato, D.; Dringenberg, H.C.; Mansor, S.M.; Navaratnam, V.; et al. Abuse potential and adverse cognitive effects of mitragynine (kratom). Addict. Biol. 2014, 21, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Cabellon, M.; Aris, R.; Pathak, V. Adult respiratory distress syndrome secondary to the use of herbal drug kratom. Am. J. Respir. Crit. Care Med. 2014, 189, A6492. [Google Scholar]
- Sheleg, S.V.; Collins, G.B. A Coincidence of Addiction to “Kratom” and Severe Primary Hypothyroidism. J. Addict. Med. 2011, 5, 300–301. [Google Scholar] [CrossRef]
- Boyer, E.W.; Babu, K.M.; Adkins, J.E.; McCurdy, C.R.; Halpern, J.H. Self-treatment of opioid withdrawal using kratom (Mitragynia speciosa korth). Addiction 2008, 103, 1048–1050. [Google Scholar] [CrossRef]
- Roche, K.M.; Hart, K.; Sangall, B.; Lefberg, J. Kratom: A Case of a Legal High. J. Clin. Toxicol. 2008, 46, 598. [Google Scholar]
- Buxton, J.A.; Mehrabadi, A.; Preston, E.; Tu, A. Local Drug Use Epidemiology: Lessons Learned and Implications for Broader Comparisons. Contemp. Drug Probl. 2009, 36, 447–458. [Google Scholar] [CrossRef]
- Holler, J.M.; Vorce, S.P.; McDonough-Bender, P.C.; Magluilo, J.; Solomon, C.J.; Levine, B. A Drug Toxicity Death Involving Propylhexedrine and Mitragynine. J. Anal. Toxicol. 2011, 35, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kronstrand, R.; Thelander, G.; Lindstedt, D.; Roman, M.; Kugelberg, F.C. Fatal Intoxications Associated with the Designer Opioid AH-7921. J. Anal. Toxicol. 2014, 38, 599–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, I.M.; Trochta, A.; Stolberg, S.; Campman, S.C. Mitragynine ‘Kratom’ Related Fatality: A Case Report with Postmortem Concentrations. J. Anal. Toxicol. 2014, 39, 152–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neerman, M.F.; Frost, R.E.; Deking, J. A Drug Fatality Involving Kratom. J. Forensic Sci. 2012, 58, S278–S279. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.M.; Yeakel, J.K.; Logan, B.K. Identification of mitragynine andO-desmethyltramadol in Kratom and legal high products sold online. Drug Test. Anal. 2014, 6, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Tungtananuwat, W.; Lawanprasert, S. Fatal 4 × 100: Homemade Kratom juice cocktail. J. Health Res. 2010, 24, 43–47. [Google Scholar]
- Karinen, R.; Tuv, S.S.; Rogde, S.; Peres, M.D.; Johansen, U.; Frost, J.; Vindenes, V.; Øiestad, Å.M.L. Lethal poisonings with AH-7921 in combination with other substances. Forensic Sci. Int. 2014, 244, e21–e24. [Google Scholar] [CrossRef]
- Warner, M.L.; Kaufman, N.C.; Grundmann, O. The pharmacology and toxicology of kratom: From traditional herb to drug of abuse. Int. J. Leg. Med. 2015, 130, 127–138. [Google Scholar] [CrossRef]
- Kronstrand, R.; Roman, M.; Thelander, G.; Eriksson, A. Unintentional Fatal Intoxications with Mitragynine and O-Desmethyltramadol from the Herbal Blend Krypton. J. Anal. Toxicol. 2011, 35, 242–247. [Google Scholar] [CrossRef] [Green Version]
- McWhirter, L.; Morris, S. A Case Report of Inpatient Detoxification after Kratom (Mitragyna speciosa) Dependence. Eur. Addict. Res. 2010, 16, 229–231. [Google Scholar] [CrossRef]
- Stanley, T.H. The Fentanyl Story. J. Pain 2014, 15, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B. An Expanding World of Novel Psychoactive Substances: Opioids. Front. Psychiatry 2017, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.B.; Gladden, R.M.; Delcher, C.; Spies, E.; Garcia-Williams, A.; Wang, Y.; Halpin, J.; Zibbell, J.; McCarty, C.L.; DeFiore-Hyrmer, J.; et al. Increases in Fentanyl-Related Overdose Deaths—Florida and Ohio, 2013–2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 844–849. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.K.; Halpin, J.; Mattson, C.L.; Goldberger, B.A.; Gladden, R.M. Deaths Involving Fentanyl, Fentanyl Analogs, and U-47700—10 States, July–December 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1197–1202. [Google Scholar] [CrossRef]
- DEA—Drug Enforcement Administration. DEA Issues Carfentanil Warning to Police and Public. 2016. Available online: https://www.dea.gov/divisions/hq/2016/hq092216.shtml (accessed on 25 March 2018).
- Massey, J.; Kilkenny, M.; Batdorf, S.; Sanders, S.K.; Ellison, D.; Halpin, J.; Gladden, R.M.; Bixler, D.; Haddy, L.; Gupta, R. Opioid Overdose Outbreak—West Virginia, August 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Seither, J.; Reidy, L. Confirmation of Carfentanil, U-47700 and Other Synthetic Opioids in a Human Performance Case by LC-MS-MS. J. Anal. Toxicol. 2017, 41, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Shanks, K.G.; Behonick, G.S. Detection of Carfentanil by LC-MS-MS and Reports of Associated Fatalities in the USA. J. Anal. Toxicol. 2017, 41, 466–472. [Google Scholar] [CrossRef]
- Swanson, D.M.; Hair, L.S.; Strauch Rivers, S.R.; Smyth, B.C.; Brogan, S.C.; Ventoso, A.D.; Vaccaro, S.L.; Pearson, J.M. Fatalities Involving Carfentanil and Furanyl Fentanyl: Two Case Reports. J. Anal. Toxicol. 2017, 41, 498–502. [Google Scholar] [CrossRef]
- Forliti, A. Dangerous Drug Carfentanil Blamed in 5 Minnesota Overdoses. 2018. Available online: http://www.startribune.com/dangerous-drug-carfentanil-blamed-in-5-minnesota-overdoses/417691063 (accessed on 25 March 2018).
- Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man, 9th ed.; Biomedical Publications: Seal Beach, CA, USA, 2011. [Google Scholar]
- Cunningham, S.M.; Haikal, N.A.; Kraner, J.C. Fatal Intoxication with Acetyl Fentanyl. J. Forensic Sci. 2015, 61, S276–S280. [Google Scholar] [CrossRef]
- Fort, C.; Curtis, B.; Nichols, C.; Niblo, C. Acetyl Fentanyl Toxicity: Two Case Reports. J. Anal. Toxicol. 2016, 40, 754–757. [Google Scholar] [CrossRef]
- Helander, A.; Bäckberg, M.; Beck, O. Intoxications involving the fentanyl analogs acetylfentanyl, 4-methoxybutyrfentanyl and furanylfentanyl: Results from the Swedish STRIDA project. Clin. Toxicol. 2016, 54, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Lozier, M.J.; Boyd, M.; Stanley, C.; Ogilvie, L.; King, E.; Martin, C.; Lewis, L. Acetyl Fentanyl, a Novel Fentanyl Analog, Causes 14 Overdose Deaths in Rhode Island, March–May 2013. J. Med. Toxicol. 2015, 11, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, I.M.; Trochta, A.; Gary, R.D.; Malamatos, M.; Lucas, J.R. An Acute Acetyl Fentanyl Fatality: A Case Report With Postmortem Concentrations. J. Anal. Toxicol. 2015, 39, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Melent’ev, A.B.; Kataev, S.S.; Dvorskaya, O.N. Identification and analytical properties of acetyl fentanyl metabolites. J. Anal. Chem. 2015, 70, 240–248. [Google Scholar] [CrossRef]
- Mohr, A.L.A.; Friscia, M.; Papsun, D.; Kacinko, S.L.; Buzby, D.; Logan, B.K. Analysis of Novel Synthetic Opioids U-47700, U-50488 and Furanyl Fentanyl by LC–MS/MS in Postmortem Casework. J. Anal. Toxicol. 2016, 40, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Poklis, J.; Poklis, A.; Wolf, C.; Mainland, M.; Hair, L.; Devers, K.; Chrostowski, L.; Arbefeville, E.; Merves, M.; Pearson, J. Postmortem tissue distribution of acetyl fentanyl, fentanyl and their respective nor-metabolites analyzed by ultrahigh performance liquid chromatography with tandem mass spectrometry. Forensic Sci. Int. 2015, 257, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Takase, I.; Koizumi, T.; Fujimoto, I.; Yanai, A.; Fujimiya, T. An autopsy case of acetyl fentanyl intoxication caused by insufflation of ‘designer drugs’. Leg. Med. 2016, 21, 38–44. [Google Scholar] [CrossRef]
- US Department of Justice; Drug Enforcement Administration. Schedules of controlled substances: Temporary placement of acetyl fentanyl into schedule I. Fed. Regist. 2015, 80, 29227–29230. [Google Scholar]
- Yonemitsu, K.; Sasao, A.; Mishima, S.; Ohtsu, Y.; Nishitani, Y. A fatal poisoning case by intravenous injection of “bath salts” containing acetyl fentanyl and 4-methoxy PV8. Forensic Sci. Int. 2016, 267, e6–e9. [Google Scholar] [CrossRef]
- EMCDDA. Acetylfentanyl EMCDDA–Europol Joint Report on a New Psychoactive Substance: N-Phenyl-N-[1-(2-Phenylethyl)Piperidin-4-yl]Acetamide (Acetylfentanyl). European Monitoring Centre for Drugs and Drug Addiction, 2016. Available online: http://www.emcdda.europa.eu/system/files/publications/2693/TDAS16001ENN.PDF (accessed on 20 December 2017).
- Katselou, M.; Papoutsis, I.; Nikolaou, P.; Spiliopoulou, C.; Athanaselis, S. Old opioids, new concerns: The case of acetylfentanyl. Forensic Toxicol. 2016, 34, 201–212. [Google Scholar] [CrossRef]
- Mounteney, J.; Giraudon, I.; Denissov, G.; Griffiths, P. Fentanyls: Are we missing the signs? Highly potent and on the rise in Europe. Int. J. Drug Policy 2015, 26, 626–631. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA. Fentanyl Drug Profile. 2017. Available online: http://www.emcdda.europa.eu/publications/drug-profiles/fentanyl (accessed on 20 December 2017).
- WHO. Butyrfentanyl (Butyrylfentanyl) Critical Review Report. Agenda Item 4.2. In Proceedings of the Expert Committee on Drug Dependence Thirty-Eighth Meeting, Geneva, Switzerland, 14–18 November 2016; Available online: http://www.who.int/medicines/access/controlled-substances/4.2_Butyrfentanyl_CritReview.pdf (accessed on 5 May 2018).
- Papsun, D.; Krywanczyk, A.; Vose, J.C.; Bundock, E.A.; Logan, B.K. Analysis of MT-45, a Novel Synthetic Opioid, in Human Whole Blood by LC–MS-MS and Its Identification in a Drug-Related Death. J. Anal. Toxicol. 2016, 40, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staeheli, S.N.; Baumgartner, M.R.; Gauthier, S.; Gascho, D.; Jarmer, J.; Kraemer, T.; Steuer, A.E. Time-dependent postmortem redistribution of butyrfentanyl and its metabolites in blood and alternative matrices in a case of butyrfentanyl intoxication. Forensic Sci. Int. 2016, 266, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Higashikawa, Y.; Suzuki, S. Studies on 1-(2-phenethyl)-4-(N-propionylanilino)piperidine (fentanyl) and its related compounds. VI. Structure-analgesic activity relationship for fentanyl, methyl-substituted fentanyls and other analogues. Forensic Toxicol. 2008, 26, 1–5. [Google Scholar] [CrossRef]
- Dziadosz, M.; Klintschar, M.; Teske, J. Postmortem concentration distribution in fatal cases involving the synthetic opioid U-47700. Int. J. Leg. Med. 2017, 131, 1555–1556. [Google Scholar] [CrossRef] [PubMed]
- Stogner, J.M. The Potential Threat of Acetyl Fentanyl: Legal Issues, Contaminated Heroin, and Acetyl Fentanyl “Disguised” as Other Opioids. Ann. Emerg. Med. 2014, 64, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Bäckberg, M.; Beck, O.; Jönsson, K.-H.; Helander, A. Opioid intoxications involving butyrfentanyl, 4-fluorobutyrfentanyl, and fentanyl from the Swedish STRIDA project. Clin. Toxicol. 2015, 53, 609–617. [Google Scholar] [CrossRef]
- Guerrieri, D.; Rapp, E.; Roman, M.; Druid, H.; Kronstrand, R. Postmortem and Toxicological Findings in a Series of Furanylfentanyl-Related Deaths. J. Anal. Toxicol. 2017, 41, 242–249. [Google Scholar] [CrossRef]
- Coopman, V.; Cordonnier, J.; De Leeuw, M.; Cirimele, V. Ocfentanil overdose fatality in the recreational drug scene. Forensic Sci. Int. 2016, 266, 469–473. [Google Scholar] [CrossRef]
- Dussy, F.E.; Hangartner, S.; Hamberg, C.; Berchtold, C.; Scherer, U.; Schlotterbeck, G.; Wyler, D.; Briellmann, T.A. An Acute Ocfentanil Fatality: A Case Report with Postmortem Concentrations. J. Anal. Toxicol. 2016, 40, 761–766. [Google Scholar] [CrossRef]
- Bishop-Freeman, S.C.; Feaster, M.S.; Beal, J.; Miller, A.; Hargrove, R.L.; Brower, J.O.; Winecker, R.E. Loperamide-Related Deaths in North Carolina. J. Anal. Toxicol. 2016, 40, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Bäckberg, M.; Signell, P.; Beck, O. Intoxications involving acrylfentanyl and other novel designer fentanyls—Results from the Swedish STRIDA project. Clin. Toxicol. 2017, 55, 589–599. [Google Scholar] [CrossRef] [PubMed]
- UNODC. Fentanyl and Its Analogues—50 Years on; Global Smart Update; UNODC: Vienna, Austria, 2017; Available online: https://www.unodc.org/documents/scientific/Global_SMART_Update_17_web.pdf (accessed on 20 May 2017).
- Ujváry, I.; Jorge, R.; Christie, R.; Le Ruez, T.; Danielsson, H.V.; Kronstrand, R.; Elliott, S.; Gallegos, A.; Sedefov, R.; Evans-Brown, M. Acryloylfentanyl, a recently emerged new psychoactive substance: A comprehensive review. Forensic Toxicol. 2017, 35, 232–243. [Google Scholar] [CrossRef]
- Daniulaityte, R.; Juhascik, M.P.; Strayer, K.E.; Sizemore, I.E.; Harshbarger, K.E.; Antonides, H.M.; Carlson, R.R. Overdose Deaths Related to Fentanyl and Its Analogs—Ohio, January–February 2017. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Gergov, M.; Nokua, P.; Vuori, E.; Ojanperä, I. Simultaneous screening and quantification of 25 opioid drugs in post-mortem blood and urine by liquid chromatography—Tandem mass spectrometry. Forensic Sci. Int. 2009, 186, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Katselou, M.; Papoutsis, I.; Nikolaou, P.; Spiliopoulou, C.; Athanaselis, S. AH-7921: The list of new psychoactive opioids is expanded. Forensic Toxicol. 2015, 33, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Pleitez, O.; Anderson, D.; Mertens-Maxham, D.; Wade, N. Asenapine (Saphris(R)): GC-MS Method Validation and the Postmortem Distribution of a New Atypical Antipsychotic Medication. J. Anal. Toxicol. 2013, 37, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Vorce, S.P.; Knittel, J.L.; Holler, J.M.; Magluilo, J.; Levine, B.; Berran, P.; Bosy, T.Z. A Fatality Involving AH-7921. J. Anal. Toxicol. 2014, 38, 226–230. [Google Scholar] [CrossRef] [Green Version]
- EMCDDA. EMCDDA—Europol Joint Report on a New Psychoactive Substance: AH-7921 3,4-dicholo-N-{[1(dimethylamino)cyclohexyl]methyl}benzamide. 2014. Available online: http://www.emcdda.europa.eu/system/files/publications/816/AH-7921_465209.pdf (accessed on 15 April 2018).
- Fabregat-Safont, D.; Carbón, X.; Ventura, M.; Fornís, I.; Guillamón, E.; Sancho, J.V.; Hernández, F.; Ibáñez, M. Updating the list of known opioids through identification and characterization of the new opioid derivative 3,4-dichloro-N-(2-(diethylamino)cyclohexyl)-N-methylbenzamide (U-49900). Sci. Rep. 2017, 7, 6338. [Google Scholar] [CrossRef] [Green Version]
- Coppola, M.; Mondola, R. AH-7921: A new synthetic opioid of abuse. Drug Alcohol Rev. 2014, 34, 109–110. [Google Scholar] [CrossRef] [Green Version]
- Fels, H.; Krueger, J.; Sachs, H.; Musshoff, F.; Graw, M.; Roider, G.; Stoever, A. Two fatalities associated with synthetic opioids: AH-7921 and MT-45. Forensic Sci. Int. 2017, 277, e30–e35. [Google Scholar] [CrossRef] [PubMed]
- WHO. AH-7921 Critical Review Report. Agenda Item 4.21. In Proceedings of the Expert Committee on Drug Dependence Thirty-Sixth Meeting, Geneva, Switzerland, 16–20 June 2014; Available online: http://www.who.int/medicines/areas/quality_safety/4_21_review.pdf (accessed on 5 May 2018).
- Alzghari, S.K.; Fleming, S.W.; Rambaran, K.A.; Long, J.E.; Burkhart, S.; An, J.; Furmaga, J. U-47700: An Emerging Threat. Cureus 2017, 9, e1791. [Google Scholar] [CrossRef] [PubMed]
- Coopman, V.; Blanckaert, P.; Van Parys, G.; Van Calenbergh, S.; Cordonnier, J. A case of acute intoxication due to combined use of fentanyl and 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700). Forensic Sci. Int. 2016, 266, 68–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, I.M.; Gary, R.D.; Joseph, S.; Stabley, R. A Fatality Related to the Synthetic Opioid U-47700: Postmortem Concentration Distribution. J. Anal. Toxicol. 2016, 41, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, P.; Katselou, M.; Papoutsis, I.; Spiliopoulou, C.; Athanaselis, S. U-47700. An old opioid becomes a recent danger. Forensic Toxicol. 2016, 35, 11–19. [Google Scholar] [CrossRef]
- US Department of Justice; Drug Enforcement Administration. Schedules of controlled substances: Placement of butyryl fentanyl and U-47700 into schedule I. Final Order. Fed. Regist. 2018, 83, 17486–17488. [Google Scholar]
- Domanski, K.; Kleinschmidt, K.C.; Schulte, J.M.; Fleming, S.; Frazee, C.; Menendez, A.; Tavakoli, K. Two cases of intoxication with new synthetic opioid, U-47700. Clin. Toxicol. 2016, 55, 46–50. [Google Scholar] [CrossRef]
- Rambaran, K.A.; Fleming, S.W.; An, J.; Burkhart, S.; Furmaga, J.; Kleinschmidt, K.C.; Spiekerman, A.M.; Alzghari, S.K. U-47700: A Clinical Review of the Literature. J. Emerg. Med. 2017, 53, 509–519. [Google Scholar] [CrossRef]
- Ruan, X.; Chiravuri, S.; Kaye, A.D. Comparing fatal cases involving U-47700. Forensic Sci. Med. Pathol. 2016, 12, 369–371. [Google Scholar] [CrossRef]
- Elliott, S.P.; Brandt, S.D.; Smith, C. The first reported fatality associated with the synthetic opioid 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) and implications for forensic analysis. Drug Test. Anal. 2016, 8, 875–879. [Google Scholar] [CrossRef] [Green Version]
- US Department of Justice; Drug Enforcement Administration. Schedules of controlled substances: Placement of MT-45 into schedule I. Final Order. Fed. Regist. 2017, 82, 58557–58559. [Google Scholar]
- EMCDDA. Report on the Risk Assessment of MT-45 in the Framework of the Council Decision on New Psychoactive Substances. 2015. Available online: http://www.emcdda.europa.eu/system/files/publications/1865/TDAK14006ENN.pdf (accessed on 20 December 2017).
- Siddiqi, S.; Verney, C.; Dargan, P.; Wood, D.M. Understanding the availability, prevalence of use, desired effects, acute toxicity and dependence potential of the novel opioid MT-45. Clin. Toxicol. 2014, 53, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Bäckberg, M.; Beck, O. MT-45, a new psychoactive substance associated with hearing loss and unconsciousness. Clin. Toxicol. 2014, 52, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Bradley, M.; Hasselblad, A.; Norlén, L.; Vassilaki, I.; Bäckberg, M.; Lapins, J. Acute skin and hair symptoms followed by severe, delayed eye complications in subjects using the synthetic opioid MT-45. Br. J. Dermatol. 2016, 176, 1021–1027. [Google Scholar] [CrossRef]
- Huang, X.-P.; Che, T.; Mangano, T.J.; Le Rouzic, V.; Pan, Y.-X.; Cameron, M.D.; Baumann, M.H.; Pasternak, G.W.; Roth, B.L. Fentanyl-related designer drugs W-18 and W-15 lack appreciable opioid activity in vitro and in vivo. JCI Insight 2017, 2, 97222. [Google Scholar] [CrossRef] [PubMed]
- Riches, J.R.; Read, R.W.; Black, R.M.; Cooper, N.J.; Timperley, C.M. Analysis of Clothing and Urine from Moscow Theatre Siege Casualties Reveals Carfentanil and Remifentanil Use. J. Anal. Toxicol. 2012, 36, 647–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAMHSA Center for the Application of Prevention. Illicit Synthetic Opioids: Understanding Potential Risks for First Responders. 2017. Available online: https://www.samhsa.gov/capt/sites/default/files/resources/first-responders-synthetic-opioids-tool.pdf (accessed on 20 March 2018).
- Boyer, E.W. Management of opioid analgesic overdose. N. Engl. J. Med. 2012, 367, 146–155. [Google Scholar] [CrossRef]
- WHO. Guidelines for the Psychosocially Assisted Pharmacological Treatment of Opioid Dependence. 2009. Available online: www.who.int (accessed on 28 May 2010).
- Maremmani, I.; Pacini, M.; Pani, P.P. Basics on Addiction: A training package for medical practitioners or psychiatrists who treat opioid dependence. Heroin Addict. Relat. Clin. Probl. 2011, 13, 5–40. [Google Scholar]
- Reimer, J.; Boniakowski, E.; Bachner, C.; Weber, B.; Tietje, W.; Verthein, U.; Walcher, S. When higher doses in opioid replacement treatment are still inadequate—Association to multidimensional illness severity: A cohort study. Subst. Abuse Treat. Prev. Policy 2014, 9, 13. [Google Scholar] [CrossRef]
- Pollack, H.A.; D’Aunno, T. Dosage patterns in methadone treatment: Results from a national survey, 1988–2005. Health Serv. Res. 2008, 43, 2143–2163. [Google Scholar] [CrossRef]
- Maremmani, I.; Pacini, M.; Lubrano, S.; Giuntoli, G.; Lovrecic, M. Harm reduction and specific treatments for heroin addiction. Different approaches or levels of intervention?. An illness-centred perspective. Heroin Addict. Relat. Clin. Probl. 2002, 4, 5–11. [Google Scholar]
- Wells, B. Methadone Maintenance Treatment: Harm reduction or rehabilitation? Addiction 1994, 89, 806. [Google Scholar] [CrossRef]
- Dole, V.P.; Nyswander, M.E.; Kreek, M.J. Narcotic Blockade. Arch. Int. Med. 1966, 118, 304–309. [Google Scholar] [CrossRef]
- Dole, V.P.; Nyswander, M.E. Heroin Addiction: A Metabolic Disease. Arch. Int. Med. 1967, 120, 19–24. [Google Scholar] [CrossRef]
- Dole, V.P. Methadone Maintenance. Comes of Age. In Drug Addiction and Related Clinical Problems; Tagliamonte, A., Maremmani, I., Eds.; Springer: New York, NY, USA, 1995; pp. 45–49. [Google Scholar]
- Bizzarri, I.V.; Casetti, V.; Sanna, L.; Maremmani, A.G.I.; Rovai, L.; Bacciardi, S.; Piacentino, D.; Conca, A.; Maremmani, I. Agonist Opioid Treatment as historical comprehensive treatment (‘Dole & Nyswander’ methodology) is associated with better toxicology outcome than Harm Reduction Treatment. Ann. Gen. Psychiatry 2017, 16, 10. [Google Scholar] [PubMed]
- Newman, R.G. The Pharmacological Rationale for Methadone Treatment of Narcotic Addiction. In Drug Addiction and Related Clinical Problems; Tagliamonte, A., Maremmani, I., Eds.; Springer: New York, NY, USA, 1995; pp. 109–118. [Google Scholar]
- Clark, A.K.; Wilder, C.M.; Winstanley, E.L. A systematic review of community opioid overdose prevention and naloxone distribution programs. J. Addict. Med. 2014, 8, 153–163. [Google Scholar] [CrossRef]
- Barra, M.; Lelli, V. 30 Years of Naloxone. The Experience of Villa Maraini Foundation. Heroin Addict. Relat. Clin. Probl. 2014, 16, 101–104. [Google Scholar]
- Bradberry, J.C.; Raebel, M.A. Continuous infusion of naloxone in the treatment of narcotic overdose. Drug Intell. Clin. Pharm. 1981, 15, 945–950. [Google Scholar] [CrossRef]
- Best, D.; Gossop, M.; Man, L.; Finch, E.; Greenwood, J.; Strang, J. Accidental and deliberate overdose among opiate addicts in methadone maintenance treatment: Are deliberate overdoses systematically different? Drug Alcohol Rev. 2000, 19, 213–216. [Google Scholar] [CrossRef]
- Bradvik, L.; Frank, A.; Hulenvik, P.; Medvedeo, A.; Berglund, M. Heroin addicts reporting previous heroin overdoses also report suicide attempts. Suicide Life Threat. Behav. 2007, 37, 475–481. [Google Scholar] [CrossRef]
- Dole, V.P.; Nyswander, M.E. Rehabilitation of heroin addicts after blockade with methadone. N. Y. State J. Med. 1966, 66, 2011–2017. [Google Scholar]
- Dole, V.P.; Nyswander, M.E.; Warner, A. Successful treatment of 750 criminal addicts. JAMA 1968, 206, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Dole, V.P. Methadone maintenance treatment for 25,000 heroin addicts. JAMA 1971, 215, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Dole, V.P. Narcotic addiction, physical dependence and relapse. N. Engl. J. Med. 1972, 286, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Dole, V.P.; Nyswander, M.E. Methadone maintenance treatment: A ten-year perspective. JAMA 1976, 235, 2117–2119. [Google Scholar] [CrossRef]
- Dole, V.P. Methadone Maintenance. Comes of age. Heroin Addict. Relat. Clin. Probl. 1999, 1, 13–17. [Google Scholar]
- Maremmani, I. The Principles and Practice of Methadone Treatment; Pacini Editore Medicina & AU-CNS: Pisa, Italy, 2009. [Google Scholar]
- Brugal, M.T.; Domingo-Salvany, A.; Puig, R.; Barrio, G.; Garcia de Olalla, P.; de la Fuente, L. Evaluating the impact of methadone maintenance programmes on mortality due to overdose and aids in a cohort of heroin users in Spain. Addiction 2005, 100, 981–989. [Google Scholar] [CrossRef]
- Caplehorn, J.R.; Dalton, M.S.; Haldar, F.; Petrenas, A.M.; Nisbet, J.G. Methadone maintenance and addicts’ risk of fatal heroin overdose. Subst. Use Misuse 1996, 31, 177–196. [Google Scholar] [CrossRef]
- Gjersing, L.; Jonassen, K.V.; Biong, S.; Ravndal, E.; Waal, H.; Bramness, J.G.; Clausen, T. Diversity in causes and characteristics of drug-induced deaths in an urban setting. Scand. J. Public Health 2013, 41, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Kerr, T.; Wodak, A.; Elliott, R.; Montaner, J.S.; Wood, E. Opioid substitution and HIV/AIDS treatment and prevention. Lancet 2004, 364, 1918–1919. [Google Scholar] [CrossRef]
- WHO; UNODC; UNAIDS. WHO/UNODC/UNAIDS Position Paper: Substitution Maintenance Therapy in the Management of Opioid Dependence and HIV/AIDS Prevention. 2004. Available online: www.who.int/substance_abuse/publications/treatment/en/index.html (accessed on 28 May 2010).
- Maremmani, I.; Lamanna, F.; Pacini, M. Clinical Foundation for the Use of Methadone in Polyabuse Patients. In The Principles and Practice of Methadone Treatment; Maremmani, I., Ed.; Pacini Editore Medicina: Pisa, Italy, 2009; pp. 181–188. [Google Scholar]
- Maremmani, I.; Shinderman, M.S. Alcohol, benzodiazepines and other drugs use in heroin addicts treated with methadone. Polyabuse or undermedication? Heroin Addict. Relat. Clin. Probl. 1999, 1, 7–13. [Google Scholar]
- Strang, J.; McCambridge, J.; Best, D.; Beswick, T.; Bearn, J.; Rees, S.; Gossop, M. Loss of tolerance and overdose mortality after inpatient opiate detoxification: Follow up study. BMJ 2003, 326, 959–960. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.M.; Loipl, R.; Jagsch, R.; Gruber, D.; Risser, D.; Thau, K.; Fischer, G. Mortality in opioid-maintained patients after release from an addiction clinic. Eur. Addict. Res. 2008, 14, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Warner-Smith, M.; Darke, S.; Lynskey, M.; Hall, W. Heroin overdose: Causes and consequences. Addiction 2001, 96, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, K.C.; Hahn, J.A.; Seal, K.H.; Moss, A.R. Overdosing among young injection drug users in San Francisco. Addict. Behav. 2001, 26, 453–460. [Google Scholar] [CrossRef]
- Ishiyama, D.; Jones, J. Towards evidence based emergency medicine: Best BETs from the Manchester Royal Infirmary. BET 3: Is nebulised naloxone effective in opioid overdose? Emerg. Med. J. 2013, 30, 860. [Google Scholar] [PubMed]
- Walley, A.Y.; Xuan, Z.; Hackman, H.H.; Quinn, E.; Doe-Simkins, M.; Sorensen-Alawad, A.; Ruiz, S.; Ozonoff, A. Opioid overdose rates and implementation of overdose education and nasal naloxone distribution in Massachusetts: Interrupted time series analysis. BMJ 2013, 346, f174. [Google Scholar] [CrossRef]
- Wermeling, D.P. A Response to the Opioid Overdose Epidemic: Naloxone Nasal Spray. Drug Deliv. Transl. Res. 2013, 3, 63–74. [Google Scholar] [CrossRef]
- Behar, E.; Santos, G.M.; Wheeler, E.; Rowe, C.; Coffin, P.O. Brief overdose education is sufficient for naloxone distribution to opioid users. Drug Alcohol Depend. 2015, 148, 209–212. [Google Scholar] [CrossRef]
- Hansen, A. Norway tries naloxone in spray form to prevent deaths from drug overdose. BMJ 2014, 348, G1686. [Google Scholar] [CrossRef]
- Bagley, S.M.; Peterson, J.; Cheng, D.M.; Jose, C.; Quinn, E.; O’Connor, P.G.; Walley, A.Y. Overdose Education and Naloxone Rescue Kits for Family Members of Opioid Users: Characteristics, Motivations and Naloxone Use. Subst. Abus 2015, 36, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Maremmani, I. Methadone Maintenance in the 3th millenium: Still fear of Treatment. Heroin Addict. Relat. Clin. Probl. 2009, 10, 5–10. [Google Scholar]
Typology | Most Famous Brand Names | Forms in Which Found on the Market |
---|---|---|
Non-medical fentanyl, illicitly manufactured fentanyl | “China White”, “Synthetic Heroin”, “China Girl”, “Chinatown”, “Tango & Cash”, “TNT”, “Drop Dead”, “Flatline”, “Lethal Injection”, “Poison”, “Apache”, “Dance Fever”, “Great Bear”, “Perc-o-Pops”, “Lollipops”. | Tablets: buccal (Fentora™) and sublingual (Abstral®); oral transmucosal lozenges (Actiq®), film Onsolis®, spray: sublingual (Subsys™) and nasal (Lazanda®); transdermal patches (Ionsys®, (Duragesic® and generics; brand names: Duragesic, Duragesic Mat, Ionsys, Fentanyl Transdermal System Novaplus), injectable formulations (Sublimaze®). |
Kratom (Mitragyna speciosa) | “Thom”, “Thang”, “Biak”, “Krathom”, “Kakuam”, “Biak-Biak”, “Ketum”, “Mambog”, “Natural Kratom leaf”, “Phoriatm Borneo white vein”, “Phoriatm green”, “Phoriatm maeng da kava”, “Phoriatm Borneo green vein”, “Kratom shot” (liquid formulation), “Green vein extra strength” (liquid formulation) “Super Premium Powder”, “three ‘80X Extract”, Super Concentrated Liquid”, “‘Bali Kratom”, “Indo Kratom”, “Kratom tincture”, “Kratom Resin”, “Kratom Regular”. | Naturally occurring kratom leaf and marketed kratom supplements: crushed or powdered dried leaves, powder, kratom preparations fortified with extracts from other leaves, extracts and resin, gum, tinctures, capsules filled with powdered kratom, tablets, liquid formulation. |
O-Desmethyltramadol | O-Desmethyltramadol | Liquid form; kratom (leaves of Mitragyna speciosa) could also contain o-desmethyltramadol. |
Novel Fentanyl derivatives | Usually added to or substituted for heroin, often without the user’s knowledge; e.g., acetylfentanyl, butyrylfentanyl, furanyl fentanyl, 4methyl fentanyl and other forms; usually not approved for medical use | Powders (usually mixed with heroin or other illicit drugs), tablets (counterfeit prescriptions pills), nasal sprays, liquids. |
New generation of Novel Synthetic Opioids, structurally atypical synthetic opioids | Usually added to or substituted for heroin, often without the user’s knowledge; e.g., U-51754, U-47700, AH-7921, MT-45 and others; usually not approved for medical use. | Powders (usually mixed with heroin or other illicit drugs), tablets (counterfeit prescriptions pills), nasal sprays, liquids. |
Typology | Means of Use | Neurobiology |
---|---|---|
Non-medical fentanyl, illicitly manufactured fentanyl | Transdermal fentanyl patches: smoked (placed in glass containers and heated or fentanyl scratched) or taken intranasally (fentanyl powder snorted); parenterally or orally (gel contents removed from the patches, oral ingestion of lozenges); parenteral (patches simmered in a water and injected intravenously, intramuscularly); frozen patches cut into pieces and then chewed, placed under the tongue, or in the cheek cavity for drug absorption through the oral mucosa or inserted into the rectum. | Binds to mu-receptor but also to kappa and delta-type opioid receptors. |
Kratom (Mitragyna speciosa) | Fresh or dried leaves chewed or brewed into tea, ice-cold cocktails from kratom leaves, dried leaves smoked | -Mitragynine produces opioid-like effects predominantly via mu- and delta-opioid receptor agonism; Mitragynine-pseudoindoxyl (oxidation product of mitragynine) acts as a fairly selective opioid agonist with little affinity for receptors; 7-Hydroxymitragynine is a much more potent opioid agonist, with potent mu and kappa receptor selectivity. |
O-Desmethyltramadol | Same means as for kratom. | Mu-opioid receptor activation |
Novel Fentanyl derivatives | Orally, sublingual application, nasally—by smoking or by nasal insufflation, intrarectally, intravenous injection, intramuscular injection or by combinations of these routes. | Acts primarily on the mu (plus some kappa and some delta) opioid receptors. |
New generation of Novel Synthetic Opioids, structurally atypical synthetic opioids | Orally, sublingual application, nasally—by smoking or by nasal insufflation, intrarectally, intravenous injection, intramuscular injection or by combinations of these routes. | Mu/delta/sigma opioid receptor agonist. |
Typology | Intentionality of Use |
---|---|
Non-medical fentanyl, illicitly manufactured fentanyl | Yes |
Kratom (Mitragyna speciosa) | Yes, but e.g., up to 500% artificially elevated concentrations of 7-hydroxymitragynine exceeded that found in naturally occurring material or o-desmethyltramadol added |
O-Desmethyltramadol | Main active metabolite of tramadol, but not sold as a prescription treatment or over the counter. Kratom (leaves of Mitragyna speciosa; most famous form of krypton) could also contain o-desmethyltramadol. |
Novel Fentanyl derivative | Not for fentanyl analogues—usually added to heroin or other illicit drugs, often without the user’s knowledge. |
New generation of Novel Synthetic Opioids, structurally atypical synthetic opioids | Not for NSOs—usually added to heroin or other illicit drugs, often without the user’s knowledge. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovrecic, B.; Lovrecic, M.; Gabrovec, B.; Carli, M.; Pacini, M.; Maremmani, A.G.I.; Maremmani, I. Non-Medical Use of Novel Synthetic Opioids: A New Challenge to Public Health. Int. J. Environ. Res. Public Health 2019, 16, 177. https://doi.org/10.3390/ijerph16020177
Lovrecic B, Lovrecic M, Gabrovec B, Carli M, Pacini M, Maremmani AGI, Maremmani I. Non-Medical Use of Novel Synthetic Opioids: A New Challenge to Public Health. International Journal of Environmental Research and Public Health. 2019; 16(2):177. https://doi.org/10.3390/ijerph16020177
Chicago/Turabian StyleLovrecic, Barbara, Mercedes Lovrecic, Branko Gabrovec, Marco Carli, Matteo Pacini, Angelo G. I. Maremmani, and Icro Maremmani. 2019. "Non-Medical Use of Novel Synthetic Opioids: A New Challenge to Public Health" International Journal of Environmental Research and Public Health 16, no. 2: 177. https://doi.org/10.3390/ijerph16020177
APA StyleLovrecic, B., Lovrecic, M., Gabrovec, B., Carli, M., Pacini, M., Maremmani, A. G. I., & Maremmani, I. (2019). Non-Medical Use of Novel Synthetic Opioids: A New Challenge to Public Health. International Journal of Environmental Research and Public Health, 16(2), 177. https://doi.org/10.3390/ijerph16020177