Understanding an Urban Park through Big Data
Abstract
:1. Introduction
2. Literature Review
2.1. Social Benefits and Social Interaction in Urban Parks
2.2. Traditional Analytics for Understanding People
2.3. Big Data Analytics as New Techniques for Understanding Park Usage
2.4. Comparison of Traditional Methods with Big Data Analytics
3. Methodology
3.1. Study Site
3.2. Data Collection
3.2.1. Survey
3.2.2. Social Media Data
3.3. Data Analytics
3.3.1. Survey Analytics
3.3.2. Social Media Analytics
4. Results
4.1. Survey Results
4.2. Social Media Results
4.3. Comparing the Survey and Big Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frias-Martinez, V.; Frias-Martinez, E. Spectral clustering for sensing urban land use using Twitter activity. Eng. Appl. Artif. Intell. 2014, 35, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Kelley, M.J. The emergent urban imaginaries of geosocial media. GeoJournal 2013, 78, 181–203. [Google Scholar] [CrossRef]
- Lee, R.; Wakamiya, S.; Sumiya, K. Urban area characterization based on crowd behavioral lifelogs over Twitter. Pers. Ubiquitous Comput. 2013, 17, 605–620. [Google Scholar] [CrossRef]
- Hollander, J.B.; Shen, Y. Using Social Media Data to Infer Urban Attitudes About Bicycling: An Exploratory Case Study of Washington DC. In City Networks; Springer Optimization and Its Applications: Cham, The Netherlands, 2017; pp. 79–97. ISBN 978-3-319-65336-5. [Google Scholar]
- Afzalan, N.; Muller, B. The Role of Social Media in Green Infrastructure Planning: A Case Study of Neighborhood Participation in Park Siting. J. Urban Technol. 2014, 21, 67–83. [Google Scholar] [CrossRef]
- Georgiou, T. Understanding the Real World through the Analysis of User Behavior and Topics in Online Social Media. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2017. [Google Scholar]
- Kankanhalli, A.; Tan, B.C.; Wei, K.-K. Contributing knowledge to electronic knowledge repositories: An empirical investigation. MIS Q. 2005, 29, 113–143. [Google Scholar] [CrossRef]
- Ahmad, I. How Much Data Is Generated Every Minute? [Infographic]. Available online: https://www.socialmediatoday.com/news/how-much-data-is-generated-every-minute-infographic-1/525692/ (accessed on 15 September 2018).
- Poorthuis, A.; Zook, M. Making Big Data Small: Strategies to Expand Urban and Geographical Research Using Social Media. J. Urban Technol. 2017, 24, 115–135. [Google Scholar] [CrossRef]
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Using locative social media and urban cartographies to identify and locate successful urban plazas. Cities 2017, 64, 66–78. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urban Syst. 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Hausmann, A. Creating ‘buzz’: Opportunities and limitations of social media for arts institutions and their viral marketing. Int. J. Nonprofit Volunt. Sect. Mark. 2012, 17, 173–182. [Google Scholar] [CrossRef]
- Gonçalves, P.; Araújo, M.; Benevenuto, F.; Cha, M. Comparing and Combining Sentiment Analysis Methods. In Proceedings of the First ACM Conference on Online Social Networks, Boston, MA, USA, 7–8 October 2013; pp. 27–38. [Google Scholar]
- Riffe, D.; Lacy, S.; Fico, F.; Watson, B.; Lacy, S.; Fico, F.; Watson, B. Analyzing Media Messages: Using Quantitative Content Analysis in Research; Routledge: Abingdon, UK, 2019; ISBN 978-0-429-46428-7. [Google Scholar]
- Cordell, H.K.; Betz, C.; Bowker, J.M.; English, D.B.K.; Mou, S.H.; Bergstrom, J.C.; Teasley, R.J.; Tarrant, M.A.; Loomis, J. Outdoor Recreation in American life: A National Assessment of Demand and Supply Trends. In Champaign, IL: Sagamore Publishing, xii; Sagamore Publishing: Champaign, IL, USA, 1999; p. 449. [Google Scholar]
- French, J.S. Urban Green: City Parks of the Western World; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 1973; Volume 619. [Google Scholar]
- Heckscher, A.; Robinson, P.C. Open Spaces: The Life of American Cities; HarperCollins Publishers: New York, NY, USA, 1977. [Google Scholar]
- Maruani, T.; Amit-Cohen, I. Open space planning models: A review of approaches and methods. Landsc. Urban Plan. 2007, 81, 1–13. [Google Scholar] [CrossRef]
- Turner, T. Landscape planning: A linguistic and historical analysis of the term’s use. Landsc. Plan. 1983, 9, 179–192. [Google Scholar] [CrossRef]
- Turner, T. Open space planning in London: From standards per 1000 to green strategy. Town Plan. Rev. 1992, 63, 365. [Google Scholar] [CrossRef]
- Hoshino, T.; Kuriyama, K. Measuring the Benefits of Neighbourhood Park Amenities: Application and Comparison of Spatial Hedonic Approaches. Environ. Resour. Econ. 2010, 45, 429–444. [Google Scholar] [CrossRef]
- De Ridder, K.; Adamec, V.; Bañuelos, A.; Bruse, M.; Bürger, M.; Damsgaard, O.; Dufek, J.; Hirsch, J.; Lefebre, F.; Pérez-Lacorzana, J.M.; et al. An integrated methodology to assess the benefits of urban green space. Sci. Total Environ. 2004, 334, 489–497. [Google Scholar] [CrossRef] [PubMed]
- McCormack, G.R.; Rock, M.; Toohey, A.M.; Hignell, D. Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. Heal. Place 2010, 16, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.K.; Svendsen, E.S.; Sonti, N.F.; Johnson, M.L. A social assessment of urban parkland: Analyzing park use and meaning to inform management and resilience planning. Environ. Sci. Policy 2016, 62, 34–44. [Google Scholar] [CrossRef]
- Barbosa, O.; Tratalos, J.A.; Armsworth, P.R.; Davies, R.G.; Fuller, R.A.; Johnson, P.; Gaston, K.J. Who benefits from access to green space? A case study from Sheffield, UK. Landsc. Urban Plan. 2007, 83, 187–195. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Ulrich, R.S. Natural Versus Urban Scenes: “Some Psychophysiological Effects”. Environ. Behav. 1981, 13, 523. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Cranshaw, J.; Schwartz, R.; Hong, J.; Sadeh, N. The livehoods project: Utilizing social media to understand the dynamics of a city. In Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media, Dublin, Ireland, 4–7 June 2012. [Google Scholar]
- Hari, R.; Kujala, M.V. Brain basis of human social interaction: From concepts to brain imaging. Physiol. Rev. 2009, 89, 453–479. [Google Scholar] [CrossRef] [PubMed]
- Moulay, A.; Ujang, N. Legibility of Neighborhood Parks and Its Impact on Social Interaction in a Planned Residential Area. Archnet-IJAR: Int. J. Arch. Res. 2016, 10, 184–194. [Google Scholar] [CrossRef]
- Moulay, A.; Ujang, N.; Said, I. Legibility of neighborhood parks as a predicator for enhanced social interaction towards social sustainability. Cities 2017, 61, 58–64. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Vintage Books: New York, NY, USA, 1961. [Google Scholar]
- Jalaladdini, S.; Oktay, D. Urban Public Spaces and Vitality: A Socio-Spatial Analysis in the Streets of Cypriot Towns. Procedia-Soc. Behav. Sci. 2012, 35, 664–674. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.; Elands, B.; Buijs, A. Social interactions in urban parks: Stimulating social cohesion? Urban For. Urban Green. 2010, 9, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Coley, R.L.; Sullivan, W.C.; Kuo, F.E. Where Does Community Grow? The Social Context Created by Nature in Urban Public Housing. Environ. Behav. 1997, 29, 468–494. [Google Scholar] [CrossRef]
- Kuo, F.E.; Bacaicoa, M.; Sullivan, W.C. Transforming Inner-City Landscapes: Trees, Sense of Safety, and Preference. Environ. Behav. 1998, 30, 28–59. [Google Scholar] [CrossRef]
- Fisher, K.J.; Li, F.; Michael, Y.; Cleveland, M. Neighborhood-Level Influences on Physical Activity among Older Adults: A Multilevel Analysis. J. Aging Phys. Act. 2004, 12, 45–63. [Google Scholar] [CrossRef]
- Li, F.; Fisher, K.J.; Brownson, R.C.; Bosworth, M. Multilevel modelling of built environment characteristics related to neighbourhood walking activity in older adults. J. Epidemiol. Community Heal. 2005, 59, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Payne, L.; Orsega-Smith, B.; Godbey, G.; Roy, M. Local parks and the health of older adults. Parks Recreat. (Ashburn) 1998, 33, 64–70. [Google Scholar]
- Portes, A. Immigration Theory for a New Century: Some Problems and Opportunities. Int. Migr. Rev. 1997, 31, 799–825. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.A.; Price, A.E.; Grost, L.; Mantinan, K. Demographic Characteristics and Physical Activity Behaviors in Sixteen Michigan Parks. J. Community Health 2012, 37, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Shneiderman, B.; Smith, M.A. Analyzing Social Media Networks with NodeXL: Insights from a Connected World; Morgan Kaufmann: Burlington, MA, USA, 2010; ISBN 978-0-12-382230-7. [Google Scholar]
- Gibbons, J.; Nara, A.; Appleyard, B. Exploring the imprint of social media networks on neighborhood community through the lens of gentrification. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 470–488. [Google Scholar] [CrossRef]
- Aoki, Y. Evaluation Methods for Landscapes with Greenery. Landsc. Res. 1991, 16, 2–6. [Google Scholar] [CrossRef]
- Eiter, S.; Vik, M.L. Public participation in landscape planning: Effective methods for implementing the European Landscape Convention in Norway. Land Use Policy 2015, 44, 44–53. [Google Scholar] [CrossRef]
- Carr, S.J.; Lassiter, A. Big Data, Small Apps: Premises and Products of the Civic Hackathon. In Seeing Cities Through Big Data: Research, Methods and Applications in Urban Informatics; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-40902-3. [Google Scholar]
- Buchinger, S.; Kriglstein, S.; Brandt, S.; Hlavacs, H. A survey on user studies and technical aspects of mobile multimedia applications. Entertain. Comput. 2011, 2, 175–190. [Google Scholar] [CrossRef]
- Yarrow, C. A Preliminary Survey of the Public’s Concept of Amenity in British Forestry. Forestry 1966, 39, 59–67. [Google Scholar] [CrossRef]
- Whiting, J.W.; Larson, L.R.; Green, G.T.; Kralowec, C. Outdoor recreation motivation and site preferences across diverse racial/ethnic groups: A case study of Georgia state parks. J. Outdoor Recreat. Tour. 2017, 18, 10–21. [Google Scholar] [CrossRef]
- Ewing, R. Using a visual preference survey in transit design. Public Works Manag. Policy 2001, 5, 270–280. [Google Scholar] [CrossRef]
- Birch, E.L. The Observation Man, A Study of William, H. Whyte 1986. Available online: https://repository.upenn.edu/cgi/viewcontent.cgi?article=1021&context=cplan_papers (accessed on 10 October 2019).
- Carmona, M. Public Places, Urban Spaces: The Dimensions of Urban Design; Architectural Press: Boston, MA, USA, 2010. [Google Scholar]
- More, T.A.; Stevens, T.; Allen, P.G. Valuation of urban parks. Landsc. Urban Plan. 1988, 15, 139–152. [Google Scholar] [CrossRef]
- Edelman, R.; Hirshberg, P. Public RelationSHIPS: Communications in the Age of Personal Media. Available online: https://www.scribd.com/document/6576091/Blogger-Survey-FINAL-FromprinterRVSD (accessed on 10 October 2019).
- Bandura, A. Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis. Process. 1991, 50, 248–287. [Google Scholar] [CrossRef]
- Barbosa, L.; Feng, J. Robust sentiment detection on twitter from biased and noisy data. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters, Beijing, China, 23–27 August 2010; pp. 36–44. [Google Scholar]
- Go, A.; Huang, L.; Bhayani, R. Twitter sentiment analysis. Entropy 2009, 17, 252. [Google Scholar]
- Pak, A.; Paroubek, P. Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation, Valletta, Malta, 17–23 May 2010. [Google Scholar]
- Schweitzer, L. Planning and Social Media: A Case Study of Public Transit and Stigma on Twitter. J. Am. Plan. Assoc. 2014, 80, 218–238. [Google Scholar] [CrossRef]
- Maynard, D.; Funk, A. Automatic Detection of Political Opinions in Tweets. In Semantic Web: ESWC 2011 Workshops; García-Castro, R., Fensel, D., Antoniou, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 88–99. [Google Scholar] [Green Version]
- Jenkins, T. On the difficulty of learning to program. In Proceedings of the 3rd Annual Conference of the LTSN Centre for Information and Computer Sciences, Citeseer, Loughborough, UK, 27–29 August 2002; pp. 53–58. Available online: http://www.psy.gla.ac.uk/~steve/localed/jenkins.html (accessed on 10 October 2019).
- Arribas-Bel, D. Accidental, open and everywhere: Emerging data sources for the understanding of cities. Appl. Geogr. 2014, 49, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr. Geogr. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Kay, S.; Zhao, B.; Sui, D. Can Social Media Clear the Air? A Case Study of the Air Pollution Problem in Chinese Cities. Prof. Geogr. 2015, 67, 351–363. [Google Scholar] [CrossRef]
- Widener, M.J.; Li, W. Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Appl. Geogr. 2014, 54, 189–197. [Google Scholar] [CrossRef]
- Kalton, G.; Graham, K. Introduction to Survey Sampling; SAGE: Newcastle upon Tyne, UK, 1983; ISBN 978-0-8039-2126-9. [Google Scholar]
- Larson, R.; Csikszentmihalyi, M. The Experience Sampling Method. In Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly Csikszentmihalyi; Csikszentmihalyi, M., Ed.; Springer The Netherlands: Dordrecht, The Netherlands, 2014; pp. 21–34. ISBN 978-94-017-9088-8. [Google Scholar]
- Choudhury, M.D.; Lin, Y.-R.; Sundaram, H.; Candan, K.S.; Xie, L.; Kelliher, A. How Does the Data Sampling Strategy Impact the Discovery of Information Diffusion in Social Media? In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Agrawal, D.; Budak, C.; El Abbadi, A.; Georgiou, T.; Yan, X. Big Data in Online Social Networks: User Interaction Analysis to Model User Behavior in Social Networks. In Databases in Networked Information Systems; Madaan, A., Kikuchi, S., Bhalla, S., Eds.; Springer International Publishing: New York, NY, USA, 2014; pp. 1–16. [Google Scholar]
- Hargittai, E. Is Bigger Always Better? Potential Biases of Big Data Derived from Social Network Sites. ANNALS Am. Acad. Polit. Soc. Sci. 2015, 659, 63–76. [Google Scholar] [CrossRef]
- Chou, W.-Y.S.; Hunt, Y.M.; Beckjord, E.B.; Moser, R.P.; Hesse, B.W. Social media use in the United States: Implications for health communication. J. Med. Internet Res. 2009, 11, e48. [Google Scholar] [CrossRef]
- Brindley, P.; Cameron, R.W.; Ersoy, E.; Jorgensen, A.; Maheswaran, R. Is more always better? Exploring field survey and social media indicators of quality of urban greenspace, in relation to health. Urban For. Urban Green. 2019, 39, 45–54. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, Y.; Liu, Y.; Li, D.; Zhang, B. Comparing Social Media Data and Survey Data in Assessing the Attractiveness of Beijing Olympic Forest Park. Sustainability 2018, 10, 382. [Google Scholar] [CrossRef]
- Seoul Metropolitan Government Seoul Solution. Available online: https://seoulsolution.kr/ko/node (accessed on 15 September 2018).
- Oh, H.-J.; Lee, M.-H. The difference between residents and visitors on the influencing factors of satisfaction in urban linear park: A case study of the Gyeongui-line forest park’s Yeonnam-dong section. J. Korea Plan. Assoc. 2018, 53, 207. [Google Scholar] [CrossRef]
- Rowe, G.; Frewer, L.J. A Typology of Public Engagement Mechanisms. Sci. Technol. Hum. Values 2005, 30, 251–290. [Google Scholar] [CrossRef]
- Kaźmierczak, A. The contribution of local parks to neighbourhood social ties. Landsc. Urban Plan. 2013, 109, 31–44. [Google Scholar] [CrossRef]
- Gehl, J.; Svarre, B. How to Study Public Life; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Perez, L.G.; Arredondo, E.M.; McKenzie, T.L.; Holguin, M.; Elder, J.P.; Ayala, G.X. Neighborhood social cohesion and depressive symptoms among Latinos: Does use of community resources for physical activity matter? J. Phys. Act. Heal. 2015, 12, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Schumacker, R.E. Learning Statistics Using, R.; SAGE Publications: Thousand Oaks, CA, USA, 2014; ISBN 978-1-4833-2477-7. [Google Scholar]
- He, W.; Zha, S.; Li, L. Social media competitive analysis and text mining: A case study in the pizza industry. Int. J. Inf. Manag. 2013, 33, 464–472. [Google Scholar] [CrossRef]
- Hu, M.; Liu, B. Mining and Summarizing Customer Reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004; ACM: New York, NY, USA, 2004; pp. 168–177. [Google Scholar]
- Liu, B. Sentiment Analysis, Opinion Mining, Emotion Classification; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Godbey, G.; Mowen, A. The Benefits of Physical Activity Provided by Park and Recreation Services: The Scientific Evidence. Australas. Park. Leis. 2011, 14, 26–29. [Google Scholar]
- Ellison, N.; Heino, R.; Gibbs, J. Managing Impressions Online: Self-Presentation Processes in the Online Dating Environment. J. Comput. Mediat Commun. 2006, 11, 415–441. [Google Scholar] [CrossRef]
Methods | Date | Sample Size | Respondents |
---|---|---|---|
Park visitor survey | 08.15–08.18. 2018 10.01–10.08. 2018 | 177 1 | Park visitors (older than 18) |
Social media data | 06.10–09.20. 2018 | 3703 | Keywords: ‘Gyeongui Line’, ‘Gyeongui Line Forest Park’ and ‘Yeontral Park’ |
Demographics | n | Percentage |
---|---|---|
Gender | ||
Male | 81 | 45.8% |
Female | 96 | 54.2 |
Age | ||
18–29 | 64 | 36.2 |
30–39 | 50 | 28.3 |
40–49 | 33 | 18.6 |
50–59 | 21 | 11.9 |
Over 60 | 9 | 5.1 |
Residents 1 | ||
Yes | 54 | 30.5 |
No | 123 | 69.5 |
Numbers of Visit | Percentage |
---|---|
Every day | 10.7% |
More than 2 days a week | 14.1 |
Once a week | 9.6 |
1–3 times a month | 11.9 |
Less than once a month | 29.9 |
This is the first time | 23.7 |
Activity | Stated Desire | Actual Use |
---|---|---|
Physical activities | ||
Biking | 0.0% | 0.0% |
Walking or running | 18.1 | 19.2 |
Mental health | ||
Refresh one’s mind | 53.7 | 27.1 |
Relax and restoration | 36.2 | 31.1 |
Social interaction | ||
Seeing others | 26.6 | 41.7 |
Having time with friends or family | 17.0 | 50.9 |
Other activities | ||
Just passing through the park | 36.7 | 72.3 |
Enjoying hobby (photo, sports, etc.) | 3.4 | 5.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, J.; Miller, P. Understanding an Urban Park through Big Data. Int. J. Environ. Res. Public Health 2019, 16, 3816. https://doi.org/10.3390/ijerph16203816
Sim J, Miller P. Understanding an Urban Park through Big Data. International Journal of Environmental Research and Public Health. 2019; 16(20):3816. https://doi.org/10.3390/ijerph16203816
Chicago/Turabian StyleSim, Jisoo, and Patrick Miller. 2019. "Understanding an Urban Park through Big Data" International Journal of Environmental Research and Public Health 16, no. 20: 3816. https://doi.org/10.3390/ijerph16203816