Influence of Neighborhood Environment on Korean Adult Obesity Using a Bayesian Spatial Multilevel Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Area
2.2. Measures
2.2.1. Obesity
2.2.2. Neighborhood Environment
2.2.3. Individual Factors
2.3. Statistical Analyses
- Model 1:
- Model 2:
- Model 3:
- Model 4:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NCD-RisC. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- Hruby, A.; Manson, J.E.; Qi, L.; Malki, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants and consequences of obesity. Am. J. Public Health 2016, 106, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Korea Centers for Disease Control and Prevention (KCDC). Korea Health Statistics 2012: Korea National Health and Nutritional Examination Survey (KNHANES V-3). Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_03.do?classType=7 (accessed on 17 September 2019).
- Kang, J.H.; Jeong, B.G.; Cho, Y.G.; Song, H.R.; Kim, K.A. Socioeconomic costs of overweight and obesity in Korean adults. J. Korean Med. Sci. 2011, 26, 1533–1540. [Google Scholar] [CrossRef]
- Schule, S.A.; Bolte, G. Interactive and independent associations between the socioeconomic and objective built environment on the neighbourhood level and individual health: A systematic review of multilevel studies. PLoS ONE 2015, 10, e0123456. [Google Scholar] [CrossRef]
- Yoon, N.H.; Kwon, S. The effects of community environmental factors on obesity among Korean adults: A multilevel analysis. Epidemiol. Health 2014, 36, e2014036. [Google Scholar] [CrossRef]
- Mackenbach, J.D.; Rutter, H.; Compernolle, S.; Glonti, K.; Oppert, J.; Charreire, H.; De Bourdeaudhuij, I.; Brug, J.; Nijpels, G.; Lakerveld, J. Obesogenic environments: A systematic review of the association between the physical environment and adult weight status, the SPOTLIGHT project. BMC Public Health 2014, 14, 233. [Google Scholar] [CrossRef]
- Papas, M.A.; Alberg, A.J.; Ewing, R.; Helzlsouer, K.L.; Gary, T.L.; Klassen, A.C. The built environment and obesity. Epidemiol. Rev. 2007, 29, 129–143. [Google Scholar] [CrossRef]
- Sallis, J.F.; Floyd, M.F.; Rodriguez, D.A.; Saelens, B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef]
- Graff, M.; Richardson, A.S.; Young, K.L.; Mazul, A.L.; Highland, H.; North, K.E.; Mohlke, K.L.; Lange, L.A.; Lange, E.M.; Harris, K.M.; et al. The interaction between physical activity and obesity gene variants in association with BMI: Does the obesogenic environment matter? Health Place 2016, 42, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.A.; Remigio-Baker, R.A.; Anderson, C.A.; Adams, M.A.; Norman, G.J.; Kerr, J.; Criqui, M.H.; Allison, M. Walking mediates associations between neighborhood activity supportiveness and BMI in the Women’s Health Initiative San Diego cohort. Health Place 2016, 38, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Meakins, G.; Hamidi, S.; Nelson, A.C. Relationship between urban sprawl and physical activity, obesity, and morbidity—update and refinement. Health Place 2014, 26, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Hoehner, C.M.; Handy, S.L.; Yan, Y.; Blair, S.N.; Berrigan, D. Association between neighborhood walkability, cardiorespiratory fitness and body-mass index. Soc. Sci. Med. 2011, 73, 1707–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, C. Residential greenness and adiposity: Findings from the UK Biobank. Environ. Int. 2017, 106, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Veitch, J.; Abbott, G.; Kaczynski, A.T.; Wilhelm Stanis, S.A.; Besenyi, G.M.; Lamb, K.E. Park availability and physical activity, TV time, and overweight and obesity among women: Findings from Australia and the United States. Health Place 2016, 38, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Flint, E.; Cummins, S.; Sacker, A. Associations between active commuting, body fat, and body mass index: Population based, cross sectional study in the United Kingdom. BMJ. 2014, 349, g4887. [Google Scholar] [CrossRef]
- Frank, L.D.; Andresen, M.A.; Schmid, T.L. Obesity relationships with community design, physical activity, and time spent in cars. Am. J. Prev. Med. 2004, 27, 87–96. [Google Scholar] [CrossRef]
- Paul, D.R.; Deng, Y.; Cook, P.S. Cross-sectional and longitudinal analysis of the active commuting behaviors of U.S. Department of the Interior employees. BMC Public Health 2019, 19, 526. [Google Scholar] [CrossRef]
- Ball, K.; Lamb, K.; Travaglini, N.; Ellaway, A. Street connectivity and obesity in Glasgow, Scotland: Impact of age, sex and socioeconomic position. Health Place 2012, 18, 1307–1313. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, F. Built environment and obesity by urbanicity in the U.S. Health Place 2015, 34, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, P.; Cramb, S.M.; Aitken, J.F.; Turrell, G.; Baade, P.D. Comparing multilevel and Bayesian spatial random effects survival models to assess geographical inequalities in colorectal cancer survival: A case study. Int. J. Health Geogr. 2014, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.W.; Ko, Y.S.; Kim, Y.J.; Sung, K.M.; Kim, H.J.; Choi, H.Y.; Sung, C.; Jeong, E. Korea Community Health Survey Data Profiles. Osong Public Health Res. Perspect. 2015, 6, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Expert Consultation. Approprate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar]
- Frank, L.D.; Pivo, G. Relationship between Land Use and Travel Behavior in the Puget Sound Region; Washington State Department of Transportation: Washington, DC, USA, 1994. Available online: https://www.wsdot.wa.gov/research/reports/fullreports/351.1.pdf (accessed on 17 September 2019).
- International Physical Acitvity Questionnaire (IPAQ). Guidelines for Data Processing and Analysis of the International Physical Acitvity Questionnaire (IPAQ): Short and Long Forms. Available online: https://sites.google.com/site/theipaq/ (accessed on 15 December 2015).
- Lee, H.; Cho, H.; Bae, E.; Kim, Y.C.; Kim, S.; Chin, H.J. Not salt taste perception but self-reported salt eating habit predicts actual salt intake. J. Korean Med. Sci. 2014, 29, S91–S96. [Google Scholar] [CrossRef] [PubMed]
- Besag, J. Spatial Interaction and the Statistical Analysis of Lattice Systems. J. R. Stat. Soc. 1974, 36, 192–236. [Google Scholar] [CrossRef]
- Rue, H.; Martino, S.; Lindgren, F.; Simpson, D.; Riebler, A.; Krainski, E. INLA: Functions Which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models Using Integrated Nested Laplace Approximation. 2014. R Package Version 0.0-1406288160 ed.. Available online: http://www.r-inla.org (accessed on 19 March 2018).
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Astell-Burt, T.; Feng, X.; Kolt, G.S. Greener neighborhoods, slimmer people? Evidence from 246,920 Australians. Int. J. Obes. 2014, 38, 156–159. [Google Scholar] [CrossRef]
- Mason, K.E.; Pearce, N.; Cummins, S. Cummins, Associations between fast food and physical activity environments and adiposity in mid-life: Cross-sectional, observational evidence from UK Biobank. Lancet Public Health 2018, 3, e24–e33. [Google Scholar] [CrossRef]
- Conroy, S.M.; Shariff-Marco, S.; Yang, J.; Hertz, A.; Cockburn, M.; Shvetsov, Y.B.; Clarke, C.A.; Abright, C.L.; Haiman, C.A.; Le Marchand, L.; et al. Characterizing the neighborhood obesogenic environment in the Multiethnic Cohort: A multi-level infrastructure for cancer health disparities research. Cancer Causes Control 2018, 29, 167–183. [Google Scholar] [CrossRef]
- Kim, K.B. Narratives about the Media, Diet, and Body Image: A Cross-Cultural Comparison between Young Female Adults in the Midwestern United States and South Korea. J. Intercult. Commun. Res. 2014, 43, 283–303. [Google Scholar] [CrossRef]
- Jun, H.J.; Namgung, M. Gender Difference and Spatial Heterogeneity in Local Obesity. Int. J. Environ. Res. Public Health 2018, 15, 311. [Google Scholar] [CrossRef]
- Statistics Korea. Women’s Life in Statistics by 2017; Statistics Korea: Daejeon, Korea, 2017. Available online: http://kostat.go.kr/portal/eng/index.action (accessed on 17 September 2018).
- Wen, M.; Kowaleski-Jones, L. The built environment and risk of obesity in the United States: Racial-ethnic disparities. Health Place 2012, 18, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.W.; Jo, M.; Huh, T.; Cheon, J.; Kwon, Y.D. Gender differences and socioeconomic status in relation to overweight among older Korean people. PLoS ONE 2014, 9, e97990. [Google Scholar] [CrossRef] [PubMed]
- Connor Gorber, S.; Tremblay, M.; Moher, D.; Gorber, B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: A systematic review. Obes. Rev. 2007, 8, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Adab, P.; Pallan, M.; Whincup, P.H. Is BMI the best measure of obesity? BMJ 2018, 360, k1274. [Google Scholar] [CrossRef] [Green Version]
Variables | Nonobese (N = 58,232) | Obese (N = 19,782) |
---|---|---|
n (%) | n (%) | |
Sociodemographic characteristics | ||
Gender | ||
Male | 24,536 (42.1) | 11,585 (58.6) |
Female | 33,696 (57.9) | 8197 (41.4) |
Age | ||
19–39 years old | 21,251 (36.5) | 5823 (29.4) |
40–59 years old | 24,285 (41.7) | 9162 (46.4) |
60 years old and older | 12,696 (21.8) | 4797 (24.2) |
Education | ||
≤High school | 30,843 (53.0) | 11,685 (59.1) |
≥College | 27,389 (47.0) | 8097 (40.9) |
Household income | ||
<2793 USD | 23,765 (40.8) | 8460 (43.7) |
≥2793 USD | 34,467 (59.2) | 11,142 (56.3) |
Job | ||
Nonmanual job | 15,749 (27.1) | 5379 (27.2) |
Manual job | 19,466 (33.4) | 7794 (39.4) |
Other | 23,017 (39.5) | 6609 (33.4) |
Marital status | ||
Live with spouse | 45,959 (78.9) | 16,158 (81.7) |
Live without spouse | 12,273 (21.1) | 3624 (18.3) |
Health behaviors | ||
Smoking | ||
Never smokers | 38,108 (65.4) | 10,510 (53.2) |
Former smokers | 8158 (14.1) | 4082 (20.6) |
Current smokers | 11,966 (20.5) | 5190 (26.2) |
Drinking | ||
Never drinkers | 8200 (14.1) | 2710 (13.7) |
Former drinkers | 6828 (11.7) | 2303 (11.6) |
Current drinkers | 43,204 (74.2) | 14,769 (74.7) |
Sleeping duration | ||
<7 h/d | 27,302 (46.9) | 10,292 (52.0) |
≥7 h/d | 30,930 (53.1) | 9490 (48.0) |
Moderate and vigorous physical activity | ||
No | 20,361 (35.0) | 7249 (36.6) |
Yes | 37,871 (65.0) | 12,533 (63.4) |
Diet | ||
High-sodium diet | 14,463 (24.8) | 6094 (30.8) |
Middle-sodium diet | 28,438 (48.8) | 9387 (47.5) |
Low-sodium diet | 15,331 (26.4) | 4301 (21.7) |
Driving a car | ||
Yes | 31,921 (54.8) | 12,248 (61.9) |
No | 26,311 (45.2) | 7534 (38.1) |
Health status | ||
Subjective health status | ||
Poor | 7908 (13.6) | 3534 (17.9) |
Good | 50,324 (86.4) | 16,248 (82.1) |
Stress perception | ||
No | 42,009 (72.1) | 13,443 (68.0) |
Yes | 16,223 (27.9) | 6339 (32.0) |
Depressive symptoms | ||
No | 54,312 (93.3) | 18,408 (93.1) |
Yes | 3920 (6.7) | 1374 (6.9) |
Number of chronic illnesses | ||
0 | 42,308 (72.7) | 10,930 (55.2) |
1 | 9584 (16.5) | 4489 (22.7) |
≥2 | 6340 (10.8) | 4363 (22.1) |
Neighborhood environment (median; min–max) | ||
Distance to public physical activity facilities (m) | ||
T1 (511.9; 205.3–742.2) | 20,451 (35.1) | 6425 (32.5) |
T2 (1020.6; 742.2–1525.6) | 22,396 (38.5) | 7742 (39.1) |
T3 (2406.7; 1525.6–9783.6) | 15,385 (26.4) | 5615 (28.4) |
Distance to public parks (m) | ||
T1 (119.7; 39.9–169.5) | 21,117 (36.3) | 6683 (33.8) |
T2 (247.8; 169.5–469.6) | 20,666 (35.5) | 6957 (35.2) |
T3 (1530.5; 469.6–6183.3) | 16,449 (28.2) | 6142 (31.0) |
Distance to public transit (m) | ||
T1 (126.8; 85.1–158.9) | 19,550 (33.6) | 6220 (31.4) |
T2 (219.9; 158.9–295.3) | 22,519 (38.7) | 7804 (39.5) |
T3 (413.7; 295.3–1751.6) | 16,163 (27.7) | 5758 (29.1) |
Population density (person per km2) | ||
T1 (15; 4.2–76.2) | 15,100 (25.9) | 5725 (28.9) |
T2 (189; 76.2–285.7) | 22,652 (38.9) | 7613 (38.5) |
T3 (395; 285.7–8067.8) | 20,480 (35.2) | 6444 (32.6) |
Intersection density (intersection per km2) | ||
T1 (0.06; 0.00–0.09) | 14,853 (25.5) | 5281 (26.7) |
T2 (0.15; 0.09–0.22) | 21,861 (37.5) | 7549 (38.2) |
T3 (0.35; 0.22–2.89) | 21,518 (37.0) | 6952 (35.1) |
Land use mix | ||
T1 (0.61; 0.02–0.70) | 19,801 (34.0) | 6326 (32.0) |
T2 (0.77; 0.70–0.84) | 19,613 (33.7) | 6675 (33.7) |
T3 (0.90; 0.84–1.00) | 18,818 (32.3) | 6781 (34.3) |
Men | Women | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | 19–39 | 40–59 | ≥60 | 19–39 | 40–59 | ≥60 | ||||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Education (ref. ≤ High school) | ||||||||||||
≥College | 0.95 | (0.86,1.05) | 1.12 | (1.04,1.22) | 0.60 | (0.53,0.68) | 0.69 | (0.62,0.76) | 0.81 | (0.66,1.00) | ||
Household income (ref. < 3 million won) | ||||||||||||
≥3 million won | 1.07 | (0.99,1.16) | 1.09 | (0.97,1.23) | 0.83 | (0.74,0.93) | 0.92 | (0.84,1.00) | 0.97 | (0.87,1.07) | ||
Job (ref. nonmanual labor) | ||||||||||||
Manual labor | 0.97 | (0.88,1.06) | 0.90 | (0.83,0.98) | 0.90 | (0.74,1.09) | 1.22 | (1.04,1.44) | 1.07 | (0.95,1.21) | 1.37 | (0.87,2.21) |
Other | 0.75 | (0.66,0.84) | 0.75 | (0.64,0.88) | 0.73 | (0.61,0.89) | 1.42 | (1.25,1.60) | 1.01 | (0.90,1.14) | 1.29 | (0.83,2.07) |
Marital status (ref. live with spouse) | ||||||||||||
Live without spouse | 0.79 | (0.72,0.86) | 0.90 | (0.75,1.08) | 0.69 | (0.60,0.80) | 0.91 | (0.81,1.02) | ||||
Smoking (ref. never smokers) | ||||||||||||
Former smokers | 1.15 | (1.02,1.30) | 1.14 | (1.03,1.25) | 0.97 | (0.86,1.10) | 1.65 | (1.32,2.04) | ||||
Current smokers | 1.05 | (0.96,1.15) | 0.83 | (0.76,0.91) | 0.68 | (0.58,0.79) | 1.03 | (0.81,1.31) | ||||
Drinking (ref. never drinkers) | ||||||||||||
Former drinkers | 1.26 | (0.96,1.66) | 1.26 | (0.99,1.60) | 1.16 | (1.02,1.33) | 1.08 | (0.95,1.22) | ||||
Current drinkers | 1.03 | (0.85,1.26) | 1.08 | (0.88,1.33) | 0.97 | (0.88,1.08) | 1.25 | (1.13,1.39) | ||||
Sleeping duration (ref. <7 h) | ||||||||||||
≥7 h | 0.86 | (0.80,0.94) | 0.91 | (0.85,0.98) | 0.91 | (0.82,1.01) | 0.89 | (0.82,0.96) | ||||
MVPA (ref. no) | ||||||||||||
Yes | 0.97 | (0.89,1.05) | 0.90 | (0.84,0.96) | 0.86 | (0.77,0.96) | 0.87 | (0.80,0.94) | 0.94 | (0.86,1.04) | ||
Diet (ref. high-sodium diet) | ||||||||||||
Middle-sodium diet | 0.86 | (0.79,0.94) | 0.86 | (0.79,0.93) | 0.86 | (0.76,0.98) | 0.75 | (0.68,0.83) | 0.84 | (0.76,0.94) | ||
Low-sodium diet | 0.70 | (0.63,0.79) | 0.70 | (0.64,0.77) | 0.78 | (0.67,0.90) | 0.62 | (0.55,0.69) | 0.71 | (0.62,0.80) | ||
Driving a car (ref. yes) | ||||||||||||
No | 0.70 | (0.63,0.78) | 0.73 | (0.64,0.83) | 0.74 | (0.66,0.83) | 1.26 | (1.16,1.37) | 0.93 | (0.79,1.10) | ||
Subjective health status (ref. poor) | ||||||||||||
Good | 0.62 | (0.51,0.74) | 1.20 | (1.05,1.36) | 0.65 | (0.53,0.79) | 0.86 | (0.77,0.96) | 0.95 | (0.86,1.05) | ||
Stress perception (ref. no) | ||||||||||||
Yes | 1.19 | (1.09,1.29) | 1.05 | (0.97,1.13) | 1.30 | (1.16,1.45) | 1.17 | (1.07,1.27) | 1.00 | (0.90,1.11) | ||
Depressive symptoms (ref. no) | ||||||||||||
Yes | 1.03 | (0.84,1.26) | 1.19 | (0.99,1.42) | 0.97 | (0.85,1.11) | ||||||
Number of chronic illnesses (ref. 0) | ||||||||||||
1 | 2.49 | (2.18,2.86) | 1.74 | (1.60,1.88) | 1.60 | (1.40,1.83) | 2.04 | (1.62,2.55) | 1.92 | (1.75,2.10) | 1.39 | (1.21,1.60) |
≥2 | 4.97 | (3.57,7.00) | 2.84 | (2.56,3.15) | 2.64 | (2.30,3.02) | 3.95 | (2.19,7.04) | 3.49 | (3.11,3.92) | 2.47 | (2.17,2.81) |
Distance to public physical activity facilities (ref. T1 (nearest)) | ||||||||||||
T2 | 1.10 | (1.00,1.20) | 1.13 | (1.03,1.23) | 1.04 | (0.89,1.21) | 1.00 | (0.90,1.12) | ||||
T3 (farthest) | 1.01 | (0.90,1.13) | 1.12 | (0.99,1.26) | 0.92 | (0.73,1.14) | 1.07 | (0.90,1.26) | ||||
Distance to public parks (ref. T1 (nearest)) | ||||||||||||
T2 | 1.10 | (0.95,1.27) | 1.07 | (0.95,1.19) | ||||||||
T3 (farthest) | 1.33 | (1.05,1.69) | 1.14 | (0.94,1.38) | ||||||||
Distance to public transit (ref. T1 (nearest)) | ||||||||||||
T2 | 1.15 | (1.00,1.31) | 1.07 | (0.91,1.26) | 0.94 | (0.84,1.07) | ||||||
T3 (farthest) | 1.06 | (0.92,1.22) | 0.98 | (0.79,1.21) | 1.01 | (0.85,1.21) | ||||||
Population density (ref. T1 (lowest)) | ||||||||||||
T2 | 0.88 | (0.79,0.98) | 1.18 | (0.95,1.46) | 0.89 | (0.76,1.04) | ||||||
T3 (highest) | 0.97 | (0.86,1.10) | 0.93 | (0.71,1.22) | 0.86 | (0.70,1.05) | ||||||
Intersection density (ref. T1 (lowest)) | ||||||||||||
T2 | 1.10 | (0.97,1.24) | ||||||||||
T3 (highest) | 1.06 | (0.92,1.21) | ||||||||||
Land use mix (ref. T1 (lowest)) | ||||||||||||
T2 | 1.01 | (0.92,1.11) | 1.04 | (0.91,1.20) | 1.03 | (0.93,1.14) | ||||||
T3 (highest) | 1.09 | (0.99,1.21) | 0.97 | (0.83,1.14) | 0.97 | (0.86,1.09) | ||||||
Deviance information criterion | 15,227.78 | 19,605.13 | 8613.18 | 9904.93 | 17,077.72 | 11,290.27 | ||||||
Spatial fraction within community | 0.467 | 0.495 | 0.475 | 0.991 | 0.038 | 0.565 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.Y.; Lee, S.; Choi, B.Y.; Choi, J. Influence of Neighborhood Environment on Korean Adult Obesity Using a Bayesian Spatial Multilevel Model. Int. J. Environ. Res. Public Health 2019, 16, 3991. https://doi.org/10.3390/ijerph16203991
Lee EY, Lee S, Choi BY, Choi J. Influence of Neighborhood Environment on Korean Adult Obesity Using a Bayesian Spatial Multilevel Model. International Journal of Environmental Research and Public Health. 2019; 16(20):3991. https://doi.org/10.3390/ijerph16203991
Chicago/Turabian StyleLee, Eun Young, Sugie Lee, Bo Youl Choi, and Jungsoon Choi. 2019. "Influence of Neighborhood Environment on Korean Adult Obesity Using a Bayesian Spatial Multilevel Model" International Journal of Environmental Research and Public Health 16, no. 20: 3991. https://doi.org/10.3390/ijerph16203991
APA StyleLee, E. Y., Lee, S., Choi, B. Y., & Choi, J. (2019). Influence of Neighborhood Environment on Korean Adult Obesity Using a Bayesian Spatial Multilevel Model. International Journal of Environmental Research and Public Health, 16(20), 3991. https://doi.org/10.3390/ijerph16203991