Oxidative/Antioxidative Status in Patients after Myocardial Infarction and in Those without Cardiovascular Event Depending on Anthropometric Factors Defining Body Weight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Blood Sample
2.3. Anthropometric Measurements
2.4. Determination of Oxidative/Antioxidative Status Markers
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Oxidative/Antioxidative Status
3.3. Correlation between Oxidative/Antioxidative Status and Anthropometric Measures
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S. [Google Scholar] [CrossRef] [Green Version]
- Madamanchi, N.R.; Runge, M.S. Redox signaling in cardiovascular health and disease. Free Radic. Biol. Med. 2013, 61, 473–501. [Google Scholar] [CrossRef] [Green Version]
- Martín-Gallán, P.; Carrascosa, A.; Gussinyé, M.; Domínguez, C. Changes in oxidant-antioxidant status in young diabetic patients from clinical onset onwards. J. Cell. Mol. Med. 2007, 11, 1352–1366. [Google Scholar] [CrossRef] [Green Version]
- Prakash, R.; Singapalli, T. Review of oxidative stress in relevance to uremia. Clin. Queries Nephrol. 2012, 3, 215–221. [Google Scholar] [CrossRef]
- Bryk, D.; Olejarz, W.; Zapalska-Downar, D. The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis. Postęp. Hig. Med. Dosw. 2017, 71, 57–68. [Google Scholar] [CrossRef]
- Li, H.; Horke, S.; Förstermann, U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol. Sci. 2013, 34, 313–319. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef]
- Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: Newinsights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef]
- Klima, Ł.; Kawecka-Jaszcz, K.; Stolarz-Skrzypek, K.; Menne, J.; Fijołek, K.; Olszanecka, A.; Wojciechowska, W.; Bilo, G.; Czarnecka, D. Structure and function of large arteries in hypertension in relation to oxidative stress markers. Kardiol. Pol. 2013, 71, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2015, 16, 378–400. [Google Scholar] [CrossRef]
- Kisakol, G.; Guney, E.; Bayraktar, F.; Yilmaz, C.; Kabalak, T.; Ozmen, D. Effect of surgical weight loss on free radical and antioxidant balance: A preliminary report. Obes. Surg. 2002, 12, 795–800. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1795–1808. [Google Scholar] [CrossRef]
- Fonseca-Alaniz, M.H.; Takada, J.; Alonso-Vale, M.I.; Lima, F.B. Adipose tissue as an endocrine organ: From theory to practice. J. Pediatr. 2007, 83, S192–S203. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Gutiérrez-Salinas, J.; García-Ortíz, L.; Morales González, J.A.; Hernández-Rodríguez, S.; Ramírez-García, S.; Núñez-Ramos, N.R.; Madrigal-Santillán, E. In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes. Scientific. World J. 2013, 24, 834718. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef]
- Roberts, C.K.; Barnard, R.J.; Sindhu, R.K.; Jurczak, M.; Ehdaie, A.; Vaziri, N.D. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 2006, 55, 928–934. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Harmful and beneficial role of ROS. Oxidative Med. Cell. Longev. 2016, 2016, 7909186. [Google Scholar] [CrossRef]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Body mass index, waist circumference, and health risk: Evidence in support of current National Institutes of Health guidelines. Arch. Intern. Med. 2002, 162, 2073–2079. [Google Scholar] [CrossRef]
- Faienza, M.F.; Francavilla, R.; Goffredo, R.; Ventura, A.; Marzano, F.; Panzarino, G.; Marinelli, G.; Cavallo, L.; Di Bitonto, G. Oxidative stress in obesity and metabolic syndrome in children and adolescents. Horm. Res. Paediatr. 2012, 78, 158–164. [Google Scholar] [CrossRef]
- Clapp, B.R.; Hingorani, A.D.; Kharbanda, R.K.; Mohamed-Ali, V.; Stephens, J.W.; Vallance, P.; MacAllister, R.J. Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc. Res. 2004, 64, 172–178. [Google Scholar] [CrossRef]
- Bonnefont-Rousselot, D.; Bastard, J.P.; Jaudon, M.C.; Delattre, J. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab. 2000, 26, 163–176. [Google Scholar]
- Morita, M.; Ishida, N.; Uchiyama, K.; Yamaguchi, K.; Itoh, Y.; Shichiri, M.; Yoshida, Y.; Hagihara, Y.; Naito, Y.; Yoshikawa, T.; et al. Fatty liver induced by free radicals and lipid peroxidation. Free Radic. Res. 2012, 46, 758–765. [Google Scholar] [CrossRef]
- Zdrojewski, T.; Jankowski, P.; Bandosz, P.; Bartuś, S.; Chwojnicki, K.; Drygas, W.; Gaciong, Z.; Hoffman, P.; Kalarus, Z.; Kaźmierczak, J.; et al. A new version of cardiovascular risk assessment system and risk charts calibrated for Polish population. Kardiol. Pol. 2015, 73, 958–961. [Google Scholar] [CrossRef] [Green Version]
- Bacchetti, T.; Turco, I.; Urbano, A.; Morresi, C.; Ferretti, G. Relationship of fruit and vegetable intake to dietary antioxidant capacity and markers of oxidative stress: A sex-related study. Nutrition 2019, 61, 164–172. [Google Scholar] [CrossRef]
- Boekholdt, S.M.; Arsenault, B.J.; Mora, S.; Pedersen, T.R.; LaRosa, J.C.; Nestel, P.J.; Simes, R.J.; Durrington, P.; Hitman, G.A.; Welch, K.M.; et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins. a meta-analysis. JAMA 2012, 307, 1302–1309. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Physical Status: The Use an Interpretation of Anthropometry. Report of a WHO Expert Committee; WHO Technical Report Series 854; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Chisolm, G.M.; Steinberg, D. The oxidative modification hypothesis of atherogenesis: An overview. Free Radic. Biol. Med. 2000, 28, 1815–1826. [Google Scholar] [CrossRef]
- Mallika, V.; Goswami, B.; Rajappa, M. Atherosclerosis pathophysiology and the role of novel risk factors: A clinic biochemical perspective. Angiology 2007, 58, 513–522. [Google Scholar] [CrossRef]
- Morrow, J.D. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 279–286. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Garcia-Gonzalez, M.; Ferrer-Hita, J.; Vargas, M.; Reiter, R.J. Elevated levels of oxidized low-density lipoprotein and impaired nocturnal synthesis of melatonin in patients with myocardial infarction. Atherosclerosis 2005, 180, 101–105. [Google Scholar] [CrossRef]
- Renko, J.; Kalela, A.; Jaakkola, O.; Laine, S.; Höyhtyä, M.; Alho, H.; Nikkari, S.T. Serum matrix metalloproteinase-9 is elevated in men with a history of myocardial infarction. Scand. J. Clin. Lab. Investig. 2004, 64, 255–261. [Google Scholar] [CrossRef]
- Zysnarska, M.; Jarmuż, L.; Kara, I.; Adamek, R.; Gromadecka-Sutkiewicz, M.; Kłos, J.; Kalupa, W.; Maksymiuk, T.; Marcinkowski, J.T. Health behavior-related choices made by patients after myocardial infarction. Probl. Hig. Epidemiol. 2014, 95, 488–490. [Google Scholar]
- Elizabeth, G.B.; Irinea, Y.S.; Panduro, A.; Lopez, E.M. Moderated-fat diet supplemented with green tea reduces oxLDL levels and fat mass in obese women. J. Nutr. Food Sci. 2015, 5, 2. [Google Scholar]
- Cebula, A.; Tyka, A.K.; Pilch, W.; Szyguła, Z.; Pałka, T.; Sztafa-Cabała, K.; Frączek, B.; Tyka, A. Effects of 6-week nordic walking training on body composition and antioxidant status for women > 55 years of age. Int. J. Occup. Med. Environ. Health 2017, 30, 445–454. [Google Scholar] [CrossRef]
- Gaut, J.P.; Heinecke, J.W. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc. Med. 2001, 11, 103–112. [Google Scholar] [CrossRef]
- Bots, M.L.; Evans, G.W.; Tegeler, C.H.; Meijer, R. Carotid intima-media thickness measurements: Relations with atherosclerosis, risk of cardiovascular disease and application in randomized controlled trials. Chin. Med. J. 2016, 129, 215–226. [Google Scholar] [CrossRef]
- Markus, R.A.; Mack, W.J.; Azen, S.P.; Hodis, H.N. Influence of lifestyle modification on atherosclerotic progression determined by ultrasonographic change in the common carotid intima-media thickness. Am. J. Clin. Nutr. 1997, 65, 1000–1004. [Google Scholar] [CrossRef]
- Piťha, J.; Kovář, J.; Škodová, Z.; Cífková, R.; Stávek, P.; Červenka, L.; Šejda, T.; Lánská, V.; Poledne, R. Association of intima-media thickness of carotid arteries with remnant lipoproteins in men and women. Physiol. Res. 2015, 64, 377–384. [Google Scholar]
- Słomka, T.; Drelich-Zbroja, A.; Jarząbek, M.; Szczerbo-Trojanowska, M. Intima-media complex thickness and carotid atherosclerotic plaque formation in Lublin’s population in the context of selected comorbidities. J. Ultrason. 2018, 18, 133–139. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention& Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar]
- Paseban, M.; Mohebbati, R.; Niazmand, S.; Sathyapalan, T.; Sahebkar, A. Comparison of the neuroprotective effects of aspirin, atorvastatin, captopril and metformin in diabetes mellitus. Biomolecules 2019, 9, 118. [Google Scholar] [CrossRef]
- Ou, H.C.; Lee, W.J.; Wu, C.M.; Chen, J.F.; Sheu, W.H. Aspirin prevents resistin-induced endothelial dysfunction by modulating AMPK, ROS, and Akt/eNOS signaling. J. Vasc. Surg. 2012, 55, 1104–1115. [Google Scholar] [CrossRef] [Green Version]
- Parizadeh, S.M.; Azarpazhooh, M.R.; Moohebati, M.; Nematy, M.; Ghayour-Mobarhan, M.; Tavallaie, S.; Rahsepar, A.A.; Amini, M.; Sahebkar, A.; Mohammadi, M.; et al. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids 2011, 46, 333–340. [Google Scholar] [CrossRef]
- Inoguchi, T.; Sonta, T.; Tsubouchi, H.; Etoh, T.; Kakimoto, M.; Sonoda, N.; Sato, N.; Sekiguchi, N.; Kobayashi, K.; Sumimoto, H.; et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. J. Am. Soc. Nephrol. 2003, 14, S227–S232. [Google Scholar] [CrossRef]
- Wassmann, S.; Laufs, U.; Bäumer, A.T.; Müller, K.; Ahlbory, K.; Linz, W.; Itter, G.; Rösen, R.; Böhm, M.; Nickenig, G. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001, 37, 1450–1457. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, A.L.; Hasselbalch, H.C.; Nielsen, C.H.; Poulsen, H.E.; Ellervik, C. Statin treatment, oxidative stress and inflammation in a Danish population. Redox Biol. 2019, 21, 101088. [Google Scholar] [CrossRef]
- Bolterman, R.J.; Manriquez, M.C.; Ortiz Ruiz, M.C.; Juncos, L.A.; Romero, J.C. Effects of captopril on the renin angiotensin system, oxidative stress, and endothelin in normal and hypertensive rats. Hypertension 2005, 46, 943–947. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Niazmand, S.; Hosseini, M.; Hassanzadeh, Z.; Sadeghnia, H.R.; Vafaee, F.; Keshavarzi, Z. Beneficial effects of teucrium polium and metformin on diabetes-induced memory impairments and brain tissue oxidative damage in rats. Int. J. Alzheimer’s Dis. 2015, 2015, 493729. [Google Scholar]
- Barp, J.; Araújo, A.S.; Fernandes, T.R.; Rigatto, K.V.; Llesuy, S.; Belló-Klein, A.; Singal, P. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz. J. Med. Biol. Res. 2002, 35, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Ide, T.; Tsutsui, H.; Ohashi, N.; Hayashidani, S.; Suematsu, N.; Tsuchihashi, M.; Tamai, H.; Takeshita, A. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 438–442. [Google Scholar] [CrossRef]
- Matarrese, P.; Colasanti, T.; Ascione, B.; Margutti, P.; Franconi, F.; Alessandri, C.; Conti, F.; Riccieri, V.; Rosano, G.; Ortona, E.; et al. Gender disparity in susceptibility in oxidative stress and autoantibodies specific to RLIP76 in vascular cells. Antioxid. Redox Signal. 2011, 15, 2825–2836. [Google Scholar] [CrossRef]
- Bhatia, K.; Elmarakby, A.A.; El-Remessey, A.B.; Sullivan, J.C. Oxidative-stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R274–R282. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, L.L.; Liu, T.Y.; Wang, Z.T. Evaluation of gender-related differences in various oxidative stress enzymes in mice. Chin. J. Physiol. 2011, 54, 385–390. [Google Scholar]
- Brandes, R.P.; Mügge, A. Gender differences in the generation of superoxide anions in the rat aorta. Life Sci. 1997, 60, 391–396. [Google Scholar] [CrossRef]
- Gómez-Pérez, Y.; Gianotti, M.; Lladó, I.; Proenza, A.M. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress. Pancreas 2011, 40, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Malnick, S.D.; Knobler, H. The medical complications of obesity. QJM. 2006, 99, 565–579. [Google Scholar] [CrossRef] [Green Version]
- Kopp, H.P.; Kopp, C.W.; Festa, A.; Krzyzanowska, K.; Kriwanek, S.; Minar, E.; Roka, R.; Schernthaner, G. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1042–1047. [Google Scholar] [CrossRef]
- Fujita, K.; Nishizawa, H.; Funahashi, T.; Shimomura, I.; Shimabukuro, M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ. J. 2006, 70, 1437–1442. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Valls-Bellés, V.; Arilla-Codoñer, A.; Alonso-Iglesias, E. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Transl. Res. 2011, 158, 369–384. [Google Scholar] [CrossRef]
- Amirkhizi, F.; Siassi, F.; Minaie, S.; Djalali, M.; Rahimi, A.; Chamari, M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? Arya Atheroscler. J. 2007, 2, 189–192. [Google Scholar]
- Baik, I.; Ascherio, A.; Rimm, E.B.; Giovannucci, E.; Spiegelman, D.; Stampfer, M.J.; Willett, W.C. Adiposity and mortality in men. Am. J. Epidemiol. 2000, 152, 264–271. [Google Scholar] [CrossRef]
- Rexrode, K.M.; Carey, V.J.; Hennekens, C.H.; Walters, E.E.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Manson, J.E. Abdominal adiposity and coronary heart disease in women. JAMA 1998, 280, 1843–1848. [Google Scholar] [CrossRef]
- Trayhurn, P. Bology of obesity. Proc. Nutr. Soc. 2005, 64, 31–38. [Google Scholar] [CrossRef]
- Stanner, S. (Ed.) Cardiovascular Disease: Diet, Nutrition and Emerging Risk Factors; The Report of the British Nutrition Foundation Task Force; Balckwell Publishing Ltd.: Oxford, UK, 2005. [Google Scholar]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Skoumas, I.; Papademetriou, L.; Economou, M.; Stefanadis, C. The implication of obesity on total antioxidant capacity in apparently healthy men and women: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 590–597. [Google Scholar] [CrossRef]
- Araki, S.; Dobashi, K.; Yamamoto, Y.; Asayama, K.; Kusuhara, K. Increased plasma isoprostane is associated with visceral fat, high molecular weight adiponectin, and metabolic complications in obese children. Eur. J. Pediatr. 2010, 169, 965–970. [Google Scholar] [CrossRef]
- Kelishadi, R.; Sharifi, M.; Khosravi, A.; Adeli, K. Relationship between C-reactive protein and atherosclerotic risk factors and oxidative stress markers among young persons 10–18 years old. Clin. Chem. 2007, 53, 456–464. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Boix-Garcia, L.; Simó-Jordá, R.; Del Castillo-Villaescusa, C.; Maset-Maldonado, J.; Valls-Bellés, V. Is obesity associated with oxidative stress in children? Int. J. Pediatr. Obes. 2010, 5, 56–63. [Google Scholar] [CrossRef]
- Pihl, E.; Zilmer, K.; Kullisaar, T.; Kairane, C.; Mägi, A.; Zilmer, M. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Int. J. Obes. 2006, 30, 141–146. [Google Scholar] [CrossRef]
- Amirkhizi, F.; Siassi, F.; Djalali, M.; Foroushani, A.R. Evaluation of oxidativestress and totalantioxidantcapacity in women with general and abdominaladiposity. Obes. Res. Clin. Pract. 2010, 4, e163–e246. [Google Scholar] [CrossRef]
- de Lorenzo, A.; Sorge, S.P.; Iacopino, L.; Andreoli, A.; de Luca, P.P.; Sasso, G.F. Fat-free mass by bioelectrical impedance vs. dual-energy X-ray absorptiometry (DXA). Appl. Radiat. Isot. 1998, 49, 739–741. [Google Scholar] [CrossRef]
Variables | Study Group (n = 80) | Control Group (n = 80) | p |
---|---|---|---|
Demgraphic data: | |||
Age [years] b | 53.34 ± 4.74 | 49.25 ± 6.23 | <0.001 |
Sex (Female vs. Male) a | 22 (27.5) vs. 58 (72.5) | 28 (35.0) vs. 52 (65.0) | 0.32 |
Marital status (free vs. in relationship) a | 16 (20.0) vs. 64 (80.0) | 11 (13.7) vs. 69 (86.3) | 0.398 |
Clinical variables: | |||
Family history of CVD—on the mother’s side a | 46 (57.5) | 42 (52.5) | 0.634 |
Family history of CVD—on the father’s side a | 49 (61.3) | 39 (48.8) | 0.153 |
Diabetes a | 19 (24.0) | 0 (0.0) | <0.001 |
Arterial hypertensions a | 54 (68.0) | 0 (0.0) | <0.001 |
Smoking a | 25 (31.2) | 9 (11.2) | <0.001 |
Anthropometric variables: | |||
BMI [kg/m2] b | 28.89 ± 4.91 | 26.64 ± 4.04 | 0.002 |
WC [cm] b | 103.9 ± 12.48 | 93.36 ± 12.50 | <0.001 |
HC [cm] b | 105.0 ± 10.83 | 102.9 ± 7.72 | 0.15 |
WHR b | 0.99 ± 0.08 | 0.91 ± 0.09 | <0.001 |
WHtRb | 0.60 ± 0.07 | 0.54 ± 0.07 | <0.001 |
FM% b | 31.08 ± 7.71 | 29.65 ± 7.05 | 0.22 |
VAI b | 2.12 ± 1.56 | 1.06 ± 0.7 | <0.001 |
BAI b | 28.63 ± 6.44 | 27.79 ± 4.73 | 0.35 |
Biochemical parameters: | |||
Total cholesterol [mg/dL] b | 147.81 ± 37.00 | 221.98 ± 44.22 | <0.001 |
Triglyceride [mg/dL] c | 134.52 (103.25–174.35) | 102.91 (73.41–141.15) | <0.001 |
HDL-C [mg/dL] b | 46.16 ± 11.50 | 64.05 ± 19.14 | <0.001 |
non-HDL [mg/dL] b | 101.50 ± 34.31 | 157.90 ± 47.22 | <0.001 |
LDL-C [mg/dL] b | 70.24 ± 25.86 | 134.81 ± 42.37 | <0.001 |
Glucose [mg/dL] c | 102.51 (97.01–112.01) | 102 (97.51–109.51) | 0.78 |
Creatinine [mg/dL] b | 0.85 ± 0.15 | 0.86 ± 0.18 | 0.97 |
eGFR [mL/min/1.73 m2] b | 93.52 ± 12.56 | 95.40 ± 13.33 | 0.35 |
Variables | Study Group (n = 80) | Control Group (n = 80) | p |
---|---|---|---|
PerOx (TOS/TOC) [µmol/L] | 699.44 (379.71–1152.36) | 718.01 (298.35–1274.61) | 0.77 |
ImAnOx (TAS/TAC) [µmol/L] | 293.8 (246.52–317.92) | 276.09 (233.76–333.33) | 0.35 |
oxLDL [ng/mL] | 54.25 (36.09–119.34) | 75.91 (49.38–143.32) | 0.02 |
Variables | Model | Log PerOx (TOS/TAC) [µmol/L] | Square ImAnOx (TAS/TAC) [µmol/L] | Log oxLDL [ng/mL] | |||
---|---|---|---|---|---|---|---|
b (SE) | p | b (SE) | p | b (SE) | p | ||
BMI | 0 | 0.02 (0.019) | 0.300 | 64 (666.0) | 0.310 | 0.009 (0.021) | 0.680 |
I | 0.014 (0.017) | 0.407 | 714.9 (669.72) | 0.289 | 0.009 (0.021) | 0.661 | |
II | 0.015 (0.019) | 0.415 | 735.11 (675.86) | 0.280 | 0.003 (0.021) | 0.892 | |
III | 0.018 (0.019) | 0.335 | 711.0 (688.23) | 0.291 | 0.008 (0.021) | 0.719 | |
WC | 0 | 0.001 (0.007) | 0.86 | 85.9 (392.9) | 0.83 | 0.002 (0.008) | 0.78 |
I | 0.007 (0.007) | 0.33 | 210.9 (268.3) | 0.43 | 0.002 (0.008) | 0.83 | |
II | 0.0003 (0.007) | 0.97 | 259.3 (265.5) | 0.33 | 0.0003 (0.008) | 0.97 | |
III | 0.0008 (0.007) | 0.91 | 250.4 (262.9) | 0.34 | 0.002 (0.008) | 0.81 | |
WHR | 0 | −1.43 (1.081) | 0.190 | 60,029.0 (37,916.0) | 0.120 | −0.999 (1.218) | 0.410 |
I | 1.009 (1.174) | 0.393 | 63,250.68 (45,055.06) | 0.164 | −1.736 (1.439) | 0.234 | |
II | −1.207 (1.081) | 0.268 | 58,633.78 (38,483.66) | 0.132 | −0.696 (1.209) | 0.567 | |
III | −1.358 (1.078) | 0.211 | 58,559.73 (38,063.40) | 0.128 | −0.950 (1.222) | 0.439 | |
WHtR | 0 | 1.989 (1.23) | 0.110 | 30,831.0 (43,917.0) | 0.480 | 0.797 (1.396) | 0.570 |
I | 1.523 (1.136) | 0.184 | 34,488.18 (44,262.36) | 0.438 | 0.862 (1.412) | 0.543 | |
II | 1.623 (1.250) | 0.198 | 36,756.69 (45,068.24) | 0.417 | 0.234 (1.404) | 0.863 | |
III | 1.879 (1.228) | 0.130 | 33,562.45 (44,083.30) | 0.449 | 0.719 (1.403) | 0.610 | |
FM% | 0 | 0.043 (0.011) | <0.001 | 148.0 (426.0) | 0.730 | 0.013 (0.013) | 0.350 |
I | 0.022 (0.015) | 0.153 | 720.46 (597.12) | 0.231 | 0.032 (0.019) | 0.092 | |
II | 0.040 (0.011) | <0.001 | 195.5 (436.75) | 0.656 | 0.0008 (0.013) | 0.570 | |
III | 0.041 (0.011) | <0.001 | 195.97 (430.33) | 0.650 | 0.011 (0.014) | 0.407 | |
VAI | 0 | −0.055 (0.05) | 0.280 | 6176.0 (1647.0) | <0.001 | −0.019 (0.057) | 0.740 |
I | −0.066 (0.046) | 0.153 | 6277.41 (1650.05) | <0.001 | −0.018 (0.057) | 0.745 | |
II | −0.056 (0.050) | 0.264 | 6192.41 (1654.50) | <0.001 | −0.021 (0.056) | 0.706 | |
III | −0.034 (0.054) | 0.537 | 6506.22 (1779.96) | <0.001 | −0.002 (0.061) | 0.974 | |
BAI | 0 | 0.043 (0.014) | <0.001 | −255.0 (510.0) | 0.620 | 0.018 (0.016) | 0.260 |
I | 0.018 (0.016) | 0.260 | −67.94 (624.32) | 0.914 | 0.032 (0.019) | 0.102 | |
II | 0.039 (0.014) | 0.008 | −199.5 (538.29) | 0.712 | 0.009 (0.017) | 0.567 | |
III | 0.041 (0.014) | 0.004 | −209.32 (514.55) | 0.685 | 0.017 (0.016) | 0.210 |
Variables | Model | Log PerOx (TOS/TAC) [µmol/L] | Square ImAnOx (TAS/TAC) [µmol/L] | Log oxLDL [ng/mL] | |||
---|---|---|---|---|---|---|---|
b (SE) | p | b (SE) | p | b (SE) | p | ||
BMI | 0 | −0.02 (0.025) | 0.410 | 40.0 (1212.0) | 0.970 | −0.047 (0.025) | 0.060 |
I | 0.010 (0.022) | 0.649 | 735.4 (1226.18) | 0.550 | −0.043 (0.026) | 0.097 | |
II | −0.023 (0.025) | 0.364 | 281.0 (1207.22) | 0.816 | −0.047 (0.025) | 0.066 | |
III | −0.022 (0.025) | 0.382 | −60.9 (1210.39) | 0.960 | −0.047 (0.025) | 0.063 | |
WC | 0 | −0.02 (0.008) | 0.02 | 239.2 (262.2) | 0.36 | −0.01 (0.008) | 0.08 |
I | 0.0004 (0.008) | 0.96 | 624.3 (434.5) | 0.15 | −0.01 (0.009) | 0.16 | |
II | 0.02 (0.008) | 0.01 | 235.5 (397.3) | 0.56 | −0.01 (0.01) | 0.09 | |
III | −0.02 (0.008) | 0.02 | 82.7 (391.5) | 0.83 | −0.01 (0.008) | 0.09 | |
WHR | 0 | −2.627 (1.015) | 0.010 | 25,426.0 (51,798.0) | 0.620 | −2.373 (1.109) | 0.040 |
I | 0.682 (1.153) | 0.556 | 149,410.3 (62,602.48) | 0.019 | −2.548 (1.388) | 0.071 | |
II | −3.203 (1.060) | 0.003 | 58,629.4 (53,765.78) | 0.279 | −2.606 (1.189) | 0.032 | |
III | −2.619 (1.017) | 0.012 | 26,115.1 (51,603.93) | 0.614 | −2.337 (1.227) | 0.041 | |
WHtR | 0 | −1.069 (1.463) | 0.470 | 75,144.0 (71,489.0) | 0.300 | −2.436 (1.508) | 0.110 |
I | 0.340 (1.283) | 0.792 | 109,285.4 (70,845.72) | 0.127 | −2.219 (1.534) | 0.152 | |
II | −1.327 (1.494) | 0.383 | −1510.8 (789.92) | 0.060 | −2.474 (1.552) | 0.115 | |
III | −1.188 (1.470) | 0.422 | 67,786.8 (71,593.44) | 0.347 | −2.454 (1.515) | 0.110 | |
FM% | 0 | 0.042 (0.013) | <0.001 | 1431.0 (679.0) | 0.04 | 0.004 (0.014) | 0.760 |
I | 0.0005 (0.016) | 0.972 | 881.1 (881.35) | 0.321 | −0.004 (0.019) | 0.618 | |
II | 0.045 (0.013) | 0.001 | 1295.21 (681.61) | 0.061 | 0.004 (0.015) | 0.783 | |
III | 0.0418 (0.0138) | 0.003 | 1292.9 (704.02) | 0.070 | 0.003 (0.015) | 0.862 | |
VAI | 0 | −0.184 (0.06) | <0.001 | −189.0 (3144.0) | 0.950 | −0.04 (0.065) | 0.540 |
I | −0.126 (0.54) | 0.022 | 1361.2 (3158.71) | 0.668 | −0.028 (0.066) | 0.680 | |
II | −0.184 (0.060) | 0.003 | −158.7 (3109.71) | 0.959 | −0.040 (0.066) | 0.548 | |
III | −0.183 (0.060) | 0.003 | −154.2 (3132.82) | 0.961 | −0.038 (0.066) | 0.560 | |
BAI | 0 | 0.058 (0.02) | 0.01 | 137.0 (1024.0) | 0.180 | 0.007 (0.022) | 0.750 |
I | 0.0001 (0.022) | 0.996 | 192.0 (1257.17) | 0.879 | −0.010 (0.027) | 0.713 | |
II | 0.060 (0.020) | 0.004 | 1203.0 (1021.22) | 0.242 | 0.006 (0.022) | 0.772 | |
III | 0.056 (0.020) | 0.007 | 1181.7 (1039.78) | 0.259 | 0.005 (0.022) | 0.831 |
Variables | Model | Log PerOx (TOS/TAC) [µmol/L] | Square ImAnOx (TAS/TAC) [µmol/L] | Log oxLDL [ng/mL] | |||
---|---|---|---|---|---|---|---|
b (SE) | p | b (SE) | p | b (SE) | p | ||
BMI | 0 | 0.003 (0.015) | 0.850 | 561.0 (632.0) | 0.380 | −0.019 (0.016) | 0.230 |
I | 0.011 (0.013) | 0.386 | 646.75 (633.42) | 0.309 | −0.018 (0.016) | 0.252 | |
II | −0.001 (0.015) | 0.920 | 752.2 (642.87) | 0.244 | −0.021 (0.016) | 0.199 | |
III | 0.003 (0.014) | 0.852 | 561.20 (634.03) | 0.377 | −0.019 (0.016) | 0.241 | |
WC | 0 | −0.007 (0.005) | 0.13 | 230.7 (215.63) | 0.29 | −0.09 (0.005) | 0.12 |
I | 0.003 (0.005) | 0.47 | 371.1 (228.6) | 0.11 | −0.008 (0.06) | 0.15 | |
II | −0.01 (0.005) | 0.047 | 337.7 (224.0) | 0.13 | −0.01 (0.006) | 0.08 | |
III | −0.007 (0.005) | 0.17 | 231 (2216.8) | 0.29 | −0.008 (0.005) | 0.15 | |
WHR | 0 | −1.769 (0.669) | 0.01 | 47,355.0 (29,309.0) | 0.110 | −1.969 (0.742) | 0.01 |
I | 0.740 (0.724) | 0.308 | 99,864.4 (34,768.77) | 0.005 | −2.426 (0.882) | 0.007 | |
II | −2.174 (0.685) | 0.002 | 61,337.32 (30,174.96) | 0.044 | −2.203 (0.770) | 0.005 | |
III | −1.656 (0.673) | 0.015 | 48,195.28 (296,499.25) | 0.106 | −1.841 (0.753) | 0.016 | |
WHtR | 0 | 0.443 (0.874) | 0.610 | 59,313.0 (37,497.0) | 0.120 | −1.167 (0.954) | 0.220 |
I | 0.845 (0.771) | 0.275 | 63,389.59 (37,496.78) | 0.093 | −0.138 (0.957) | 0.236 | |
II | 0.069 (0.916) | 0.940 | 81,717.4 (39,115.65) | 0.038 | −1.405 (1.005) | 0.164 | |
III | 0.481 (0.870) | 0.581 | 59,362.16 (37,630.96) | 0.117 | −1.103 (0.952) | 0.248 | |
FM% | 0 | 0.042 (0.009) | <0.001 | 762.0 (392.0) | 0.05 | 0.007 (0.01) | 0.460 |
I | 0.011 (0.011) | 0.320 | 764.13 (520.57) | 0.144 | 0.006 (0.013) | 0.664 | |
II | 0.041 (0.008) | <0.001 | 785.61 (391.16) | 0.046 | 0.007 (0.010) | 0.470 | |
III | 0.004 (0.009) | <0.001 | 778.39 (397.22) | 0.052 | 0.005 (0.010) | 0.595 | |
VAI | 0 | −0.103 (0.038) | 0.01 | 3754.0 (1639.0) | 0.02 | −0.045 (0.041) | 0.280 |
I | −0.084 (0.033) | 0.013 | 3993.86 (1639.74) | 0.016 | −0.043 (0.041) | 0.039 | |
II | −0.110 (0.037) | 0.003 | 3999.9 (1640.06) | 0.016 | −0.047 (0.042) | 0.262 | |
III | −0.094 (0.039) | 0.018 | 4081.83 (1710.957) | 0.018 | −0.030 (0.043) | 0.489 | |
BAI | 0 | 0.048 (0.011) | <0.001 | 356.0 (517.0) | 0.490 | 0.013 (0.013) | 0.320 |
I | 0.011 (0.013) | 0.389 | −12.94 (624.18) | 0.983 | 0.012 (0.016) | 0.433 | |
II | 0.046 (0.011) | <0.001 | 437.4 (519.48) | 0.401 | 0.013 (0.013) | 0.337 | |
III | 0.046 (0.011) | <0.001 | 359.78 (522.24) | 0.492 | 0.011 (0.013) | 0.403 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicki, G.J.; Ślusarska, B.; Prystupa, A.; Polak, M.; Czubaj-Kowal, M.; Rudnicka-Drożak, E. Oxidative/Antioxidative Status in Patients after Myocardial Infarction and in Those without Cardiovascular Event Depending on Anthropometric Factors Defining Body Weight. Int. J. Environ. Res. Public Health 2019, 16, 4077. https://doi.org/10.3390/ijerph16214077
Nowicki GJ, Ślusarska B, Prystupa A, Polak M, Czubaj-Kowal M, Rudnicka-Drożak E. Oxidative/Antioxidative Status in Patients after Myocardial Infarction and in Those without Cardiovascular Event Depending on Anthropometric Factors Defining Body Weight. International Journal of Environmental Research and Public Health. 2019; 16(21):4077. https://doi.org/10.3390/ijerph16214077
Chicago/Turabian StyleNowicki, Grzegorz Józef, Barbara Ślusarska, Andrzej Prystupa, Maciej Polak, Maria Czubaj-Kowal, and Ewa Rudnicka-Drożak. 2019. "Oxidative/Antioxidative Status in Patients after Myocardial Infarction and in Those without Cardiovascular Event Depending on Anthropometric Factors Defining Body Weight" International Journal of Environmental Research and Public Health 16, no. 21: 4077. https://doi.org/10.3390/ijerph16214077
APA StyleNowicki, G. J., Ślusarska, B., Prystupa, A., Polak, M., Czubaj-Kowal, M., & Rudnicka-Drożak, E. (2019). Oxidative/Antioxidative Status in Patients after Myocardial Infarction and in Those without Cardiovascular Event Depending on Anthropometric Factors Defining Body Weight. International Journal of Environmental Research and Public Health, 16(21), 4077. https://doi.org/10.3390/ijerph16214077