Romantic Love and Reproductive Hormones in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Blood Collection, Preparation, Storage, and Testing
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marazziti, D.; Canale, D. Hormonal changes when falling in love. Psychoneuroendocrinology 2004, 29, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Gangestad, S.W.; Grebe, N.M. Hormonal systems, human social bonding, and affiliation. Horm. Behav. 2016, 91, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Laurent, H.; Powers, S. Emotion regulation in emerging adult couples: Temperament, attachment, and HPA response to conflict. Boil. Psychol. 2007, 76, 61–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisman, O.; Schneiderman, I.; Zagoory-Sharon, O.; Feldman, R. Early stage romantic love is associated with reduced daily cortisol production. Adapt. Hum. Behav. Physiol. 2015, 1, 41–53. [Google Scholar] [CrossRef]
- De Boer, A.; Van Buel, E.M.; Ter Horst, G.J. Love is more than just a kiss: A neurobiological perspective on love and affection. Neuroscience 2012, 201, 114–124. [Google Scholar] [CrossRef]
- Schneiderman, I.; Kanat-Maymon, Y.; Zagoory-Sharon, O.; Feldman, R. Mutual influences between partners’ hormones shape conflict dialog and relationship duration at the initiation of romantic love. Soc. Neurosci. 2014, 9, 337–351. [Google Scholar] [CrossRef]
- Sue Carter, C. Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 1998, 29, 779–818. [Google Scholar] [CrossRef]
- Ulmer-Yaniv, A.; Avitsur, R.; Kanat-Maymon, Y.; Schneiderman, I.; Zagoory-Sharon, O.; Feldman, R. Affiliation, reward, and immune biomarkers coalesce to support social synchrony during periods of bond formation in humans. Brain Behav. Immun. 2016, 56, 130–139. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Uvnäs-Moberg, K. Physiological and Endocrine Effects of Social Contact. Ann. N. Y. Acad. Sci. 1997, 807, 146–163. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 1998, 23, 819–835. [Google Scholar] [CrossRef]
- Crespi, B.J. Oxytocin, testosterone, and human social cognition. Boil. Rev. 2015, 91, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.; Monakhov, M.; Pratt, M.; Ebstein, R.P.; Information, P.E.K.F.C. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology. Boil. Psychiatry 2016, 79, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Blaicher, W.; Gruber, D.; Bieglmayer, C.; Blaicher, A.M.; Knogler, W.; Huber, J.C. The role of oxytocin in relation to female sexual arousal. Gynecol. Obstet. Investig. 1999, 47, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Bordt, E.A.; Smith, C.J.; Demarest, T.G.; Bilbo, S.D.; Kingsbury, M.A. Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox. Res. 2018, 36, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Klockars, A.; Levine, A.S.; Olszewski, P.K. Central Oxytocin and Food Intake: Focus on Macronutrient-Driven Reward. Front. Endocrinol. 2015, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.J. Oxytocin and the control of LH. J. Endocrinol. 1996, 151, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Holt-Lunstad, J.; Birmingham, W.A.; Light, K.C. Influence of a “Warm Touch” Support Enhancement Intervention among Married Couples on Ambulatory Blood Pressure, Oxytocin, Alpha Amylase, and Cortisol. Psychosom. Med. 2008, 70, 976–985. [Google Scholar] [CrossRef]
- Freeman, M.E.; Kanyicska, B.; Lerant, A.; Nagy, G. Prolactin: Structure, function, and regulation of secretion. Physiol. Rev. 2000, 80, 1523–1631. [Google Scholar] [CrossRef]
- Grattan, D.R. 60 years of neuroendocrinology: The hypothalamo-prolactin axis. J. Endocrinol. 2015, 226, T101–T122. [Google Scholar] [CrossRef]
- Van Anders, S.M.; Goldey, K.L. Testosterone and partnering are linked via relationship status for women and ‘relationship orientation’ for men. Horm. Behav. 2010, 58, 820–826. [Google Scholar] [CrossRef]
- Lipson, S.; Ellison, P. EndocrinologyComparison of salivary steroid profiles in naturally occurring conception and non-conception cycles. Hum. Reprod. 1996, 11, 2090–2096. [Google Scholar] [CrossRef] [PubMed]
- Navot, D.; Rosenwaks, Z.; Margalioth, E. Prognostic assessment of female fecundity. Lancet 1987, 330, 645–647. [Google Scholar] [CrossRef]
- Tritos, N.A.; Libanski, A. Prolactin and its role in human reproduction. Yen Jaffes Reprod. Endocrinol. 2019, 58–74. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Torpy, D.J.; Gold, P.W. Interactions between the Hypothalamic-Pituitary-Adrenal Axis and the Female Reproductive System: Clinical Implications. Ann. Intern. Med. 1998, 129, 229. [Google Scholar] [CrossRef] [PubMed]
- Roney, J.R.; Simmons, Z.L. Elevated psychological stress predicts reduced estradiol concentrations in young women. Adapt. Hum. Behav. Physiol. 2015, 1, 30–40. [Google Scholar] [CrossRef]
- Wojciszke, B. Psychologia Miłości; Gdanskie Wydawnictwo Psych: Gdansk, Poland, 2009. [Google Scholar]
- Sternberg, R.J. A triangular theory of love. Psychol. Rev. 1986, 93, 119–135. [Google Scholar] [CrossRef]
- Wojciszke, B. From the first sight to the last drop: A six stage model of the dynamics of love. Pol. Psychol. Bull. 2002, 33, 15–26. [Google Scholar]
- Hopcroft, R.L. Sex, status, and reproductive success in the contemporary United States. Evol. Hum. Behav. 2006, 27, 104–120. [Google Scholar] [CrossRef]
- Leridon, H. La frequence des rapports sexuels: Donnees et analyses de coherence. Population 1993, 48, 1381. [Google Scholar] [CrossRef]
- Sorokowski, P.; Groyecka, A.; Karwowski, M.; Manral, U.; Kumar, A.; Niemczyk, A.; Marczak, M.; Misiak, M.; Sorokowska, A.; Huanca, T.; et al. Free mate choice does not influence reproductive success in humans. Sci. Rep. 2017, 7, 10127. [Google Scholar] [CrossRef] [Green Version]
- De Vries, A.C.; DeVries, M.B.; Taymans, S.; Carter, C.S. Modulation of pair bonding in female prairie voles (Microtus ochrogaster) by corticosterone. Proc. Natl. Acad. Sci. USA 1995, 92, 7744–7748. [Google Scholar] [CrossRef] [PubMed]
- Dorrington, J.H.; Fritz, I.; Armstrong, D. Site at which FSH regulates estradiol-17β biosynthesis in Sertoli cell preparations in culture. Mol. Cell. Endocrinol. 1976, 6, 117–122. [Google Scholar] [CrossRef]
- Baird, D.D.; Weinberg, C.R.; Zhou, H.; Kamel, F.; McConnaughey, D.; Kesner, J.S.; Wilcox, A.J. Preimplantation urinary hormone profiles and the probability of conception in healthy women. Fertil. Steril. 1999, 71, 40–49. [Google Scholar] [CrossRef]
- Jasienska, G.; Ellison, P.T. Energetic factors and seasonal changes in ovarian function in women from rural Poland. Am. J. Hum. Boil. 2004, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Young, L.J.; Insel, T.R. Hormones and parental behavior. In Behavioral Endocrinology; Becker, J.B., Breedlove, S.M., Crews, D., Eds.; MIT Press: Cambridge, MA, USA, 2002; pp. 331–371. [Google Scholar]
- Brown, S.L.; Fredrickson, B.L.; Wirth, M.M.; Poulin, M.J.; Meier, E.A.; Heaphy, E.D.; Cohen, M.D.; Schultheiss, O.C. Social closeness increases salivary progesterone in humans. Horm. Behav. 2009, 56, 108–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercado, E.; Hibel, L.C. I love you from the bottom of my hypothalamus: The role of stress physiology in romantic pair bond formation and maintenance. Soc. Pers. Psychol. Compass 2017, 11, e12298. [Google Scholar] [CrossRef]
- Demyttenaere, K.; Nijs, P.; Evers-Kiebooms, G.; Koninckx, P.R. The effect of a specific emotional stressor on prolactin, cortisol, and testosterone concentrations in women varies with their trait anxiety. Fertil. Steril. 1989, 52, 942–948. [Google Scholar] [CrossRef]
- Lenton, E.A.; Sulaiman, R.; Sobowale, O.; Cooke, I.D. The human menstrual cycle: Plasma concentrations of prolactin, LH, FSH, oestradiol and progesterone in conceiving and non-conceiving women. Reproduction 1982, 65, 131–139. [Google Scholar] [CrossRef]
- Barrett, E.S.; Tran, V.; Thurston, S.; Jasienska, G.; Furberg, A.S.; Ellison, P.T.; Thune, I. Marriage and motherhood are associated with lower testosterone concentrations in women. Horm. Behav. 2013, 63, 72–79. [Google Scholar] [CrossRef]
- Steinberger, E.; Smith, K.D.; Tcholakian, R.K.; Rodriguez-Rigau, L.J. Testosterone levels in female partners of infertile couples. Relationship between androgen levels in the woman, the male factor, and the incidence of pregnancy. Am. J. Obstet. Gynecol. 1979, 133, 133–138. [Google Scholar] [CrossRef]
- Levine, S.; Lyons, D.M.; Schatzberg, A.F. Psychobiological Consequences of Social Relationshipsa. Ann. N. Y. Acad. Sci. 1997, 807, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, S.P.; Mason, W.A. Attachment Relationships in New World Primatesa. Ann. N. Y. Acad. Sci. 1997, 807, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Loving, T.J.; Crockett, E.E.; Paxson, A.A. Passionate love and relationship thinkers: Experimental evidence for acute cortisol elevations in women. Psychoneuroendocrinology 2009, 34, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Maestripieri, D.; Klimczuk, A.C.E.; Seneczko, M.; Traficonte, D.M.; Wilson, M.C. Relationship Status and Relationship Instability, but Not Dominance, Predict Individual Differences in Baseline Cortisol Levels. PLoS ONE 2013, 8, e84003. [Google Scholar] [CrossRef] [PubMed]
- Sorokowski, P.; Sorokowska, A.; Butovskaya, M.; Karwowski, M.; Groyecka, A.; Wojciszke, B.; Pawłowski, B. Love Influences Reproductive Success in Humans. Front. Psychol. 2017, 8, 1922. [Google Scholar] [CrossRef]
- Karandashev, V. Romantic Love in Cultural Contexts; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Gottschall, J. Romantic Love: A Literary Universal? Lit. Sci. New Humanit. 2008, 30, 157–170. [Google Scholar]
- Jankowiak, W.R.; Fischer, E.F. A Cross-Cultural Perspective on Romantic Love. Ethnology 1992, 31, 149. [Google Scholar] [CrossRef]
Single Women (N = 69) | Women in Love (N = 47) | t (114) | P | |||||
---|---|---|---|---|---|---|---|---|
M | SD | Range | M | SD | Range | |||
E2 [pg/mL] | 37.88 | 36.26 | 8.6–167.4 | 39.55 | 36.12 | 8.4–151.0 | −0.41 | 0.68 |
fT [pg/mL] | 1.21 | 0.73 | 0.3–3.5 | 0.92 | 0.59 | 0.3–3.1 | 2.52 | 0.01 |
E2/T | 43.33 | 53.24 | 3.7–305.9 | 64.58 | 92.93 | 7.8–510.9 | −1.90 | 0.06 |
PRL [ng/mL] | 11.29 | 5.41 | 3.5–34.4 | 11.24 | 5.20 | 2.2–27.8 | 0.24 | 0.25 |
FSH [mi/mL] | 6.71 | 2.44 | 1.2–15.4 | 7.55 | 2.35 | 3.7–13.7 | −2.05 | 0.007 |
LH [mu/mL] | 6.00 | 2.91 | 0.1–12.9 | 7.18 | 2.64 | 2.2–13.8 | −2.39 | <0.001 |
CT [ng/mL] | 293.21 | 78.98 | 145.5–473.9 | 269.19 | 67.34 | 141.7–401.1 | 1.54 | 0.13 |
Age [years] | 27.24 | 3.18 | 24–33 | 27.56 | 2.68 | 23–35 | 1.41 | 0.22 |
BMI [kg/m2] | 22.68 | 3.18 | 15.8–32.0 | 21.95 | 2.68 | 18.1–28.7 | 1.29 | 0.20 |
Dependent Variable | Predictors | Β | t (112) | P |
---|---|---|---|---|
Model 1: R2 = 0.006, F (3,112) = 0.22, p = 0.88 | ||||
E2 | Love status 1 | 0.04 | 0.43 | 0.66 |
Age | 0.03 | 0.36 | 0.72 | |
BMI | −0.05 | −0.53 | 0.60 | |
Model 2: R2 = 0.06, F (3,112) = 2.23, p = 0.09 | ||||
FSH | Love status 1 | 0.17 | 1.81 | 0.07 |
Age | 0.05 | 0.58 | 0.56 | |
BMI | −0.14 | −1.51 | 0.13 | |
Model 3: R2 = 0.07, F (3,112) = 2.72, p = 0.048 | ||||
LH | Love status 1 | 0.20 | 2.15 | 0.03 |
Age | 0.08 | 0.85 | 0.40 | |
BMI | −0.13 | −1.37 | 0.17 | |
Model 4: R2 = 0.02, F (3,112) = 0.88, p = 0.45 | ||||
PRL | Love status1 | −0.04 | −0.45 | 0.65 |
Age | 0.03 | 0.35 | 0.72 | |
BMI | −0.15 | −1.60 | 0.11 | |
Model 5: R2 = 0.08, F (3,112) = 0.33, p = 0.02 | ||||
E2/T | Love status 1 | 0.18 | 1.90 | 0.06 |
Age | 0.06 | 0.64 | 0.52 | |
BMI | 0.06 | 0.62 | 0.54 | |
Model 6: R2 = 0.02, F (3,112) = 0.88, p = 0.45 | ||||
fT | Love status 1 | −0.24 | −2.68 | 0.008 |
Age | −0.05 | −0.53 | 0.60 | |
BMI | −0.16 | −1.75 | 0.08 | |
Model 7: R2 = 0.02, F (3,112) = 0.88, p = 0.45 | ||||
CT | Love status 1 | −0.15 | −1.63 | 0.10 |
Age | −0.10 | −1.11 | 0.27 | |
BMI | −0.14 | −1.49 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokowski, P.; Żelaźniewicz, A.; Nowak, J.; Groyecka, A.; Kaleta, M.; Lech, W.; Samorek, S.; Stachowska, K.; Bocian, K.; Pulcer, A.; et al. Romantic Love and Reproductive Hormones in Women. Int. J. Environ. Res. Public Health 2019, 16, 4224. https://doi.org/10.3390/ijerph16214224
Sorokowski P, Żelaźniewicz A, Nowak J, Groyecka A, Kaleta M, Lech W, Samorek S, Stachowska K, Bocian K, Pulcer A, et al. Romantic Love and Reproductive Hormones in Women. International Journal of Environmental Research and Public Health. 2019; 16(21):4224. https://doi.org/10.3390/ijerph16214224
Chicago/Turabian StyleSorokowski, Piotr, Agnieszka Żelaźniewicz, Judyta Nowak, Agata Groyecka, Magdalena Kaleta, Weronika Lech, Sylwia Samorek, Katarzyna Stachowska, Klaudia Bocian, Aleksandra Pulcer, and et al. 2019. "Romantic Love and Reproductive Hormones in Women" International Journal of Environmental Research and Public Health 16, no. 21: 4224. https://doi.org/10.3390/ijerph16214224
APA StyleSorokowski, P., Żelaźniewicz, A., Nowak, J., Groyecka, A., Kaleta, M., Lech, W., Samorek, S., Stachowska, K., Bocian, K., Pulcer, A., Sorokowska, A., Kowal, M., & Pisanski, K. (2019). Romantic Love and Reproductive Hormones in Women. International Journal of Environmental Research and Public Health, 16(21), 4224. https://doi.org/10.3390/ijerph16214224