Energy and Health Efficiencies in China with the Inclusion of Technological Innovation
Abstract
:1. Introduction
2. Literature Review
3. Research Method
4. Empirical Study
4.1. Data Sources and Description
4.1.1. First Stage: Production
Input Variables
Output Variables
4.1.2. Second Stage: Health Treatment
Input Variables
Output Variables
4.1.3. Variables Linking Production Stage and Health Treatment Stage
4.1.4. Carryover
4.2. Input and Output Variables’ Statistical Analysis
4.3. Overall Efficiencies and Ranking with and without Technological Innovation
4.4. Annual Overall Efficiencies
4.5. Two-Stage Dynamic Efficiencies
4.6. Input Variables’ Efficiencies
4.7. Technological Innovation Efficiencies for Energy Conservation and Respiratory Medical Treatment
4.8. Output Variables’ Efficiencies
5. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
References
- National Bureau of Statistics of China. China Statistical Yearbook. 2018. Available online: http://www.stats.gov.cn/ (accessed on 1 August 2019).
- Lu, C.C.; Chiu, Y.H.; Shyu, M.K.; Lee, J.H. Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model. Econ. Model. 2013, 32, 130–135. [Google Scholar] [CrossRef]
- Wang, Q.; Chiu, Y.H.; Chiu, C.R. Non-radial meta frontier approach to identify carbon emission performance and intensity. Renew. Sustain. Energy Rev. 2017, 69, 664–672. [Google Scholar] [CrossRef]
- Guo, X.; Lu, C.C.; Lee, J.H.; Chiu, Y.H. Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China. Energy 2017, 134, 392–399. [Google Scholar] [CrossRef]
- Song, M.L.; Zhang, L.L.; Liu, W.; Fisher, R. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Appl. Energy 2013, 112, 1049–1055. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.M.; Zhang, X. Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis. Appl. Energy 2013, 104, 105–116. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, H.; Zhang, A.; Li, A. Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis. Energy Policy 2015, 84, 142–154. [Google Scholar] [CrossRef]
- Meng, F.; Su, B.; Thomson, E.; Zhou, D.; Zhou, P. Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey. Appl. Energy 2016, 183, 1–21. [Google Scholar] [CrossRef]
- Wang, Q.W.; Zhou, P.; Shen, N.; Wang, S.S. Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach. Renew. Sustain. Energy Rev 2013, 21, 324–330. [Google Scholar] [CrossRef]
- Qin, Q.; Li, X.; Li, L.; Zhen, W.; Wei, Y.M. Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas. Appl. Energy 2017, 185, 604–614. [Google Scholar] [CrossRef]
- Wang, Q.; Chiu, Y.; Chiu, C. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis. Energy Econ. 2015, 51, 252–260. [Google Scholar] [CrossRef]
- Du, K.; Xie, C.; Ouyang, X. A comparison of carbon dioxide (CO2) emission trends among provinces in China. Renew. Sustain. Energy Rev. 2017, 73, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Du, K. Energy and CO2 emissions performance in China’s regional economies: Do market-oriented reforms matter? Energy Policy 2015, 78, 113–124. [Google Scholar] [CrossRef]
- Halkos, G.; Kleoniki, N.P. Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy. Energies 2019, 12, 3718. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, H.; Huang, J.B. The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis. Renew. Sustain. Energy Rev. 2017, 71, 859–872. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Newell, R.G.; Stavins, R.N. Technological innovation and the environment. Handb. Environ. Econ. 2013, 1, 461–516. [Google Scholar]
- Wang, Q.; Zhang, C.; Cai, W. Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis. Energy Policy 2017, 109, 181–190. [Google Scholar] [CrossRef]
- Newell, R.G.; Jaffe, A.B.; Stavins, R.N. The Induced Innovation Hypothesis and Energy-Saving Technological innovation. Q. J. Econ. 1999, 114, 941–975. [Google Scholar] [CrossRef]
- Crabb, J.M.; Johnson, D.K.N. Fueling Innovation: The Impact of Oil Prices and CAFE Standards on Energy-Efficient Automotive Technology. Energy J. 2010, 31, 199–216. [Google Scholar] [CrossRef]
- Hascic, I.; De Vries, F.; Johnstone, N.; Medhi, N. Effects of Environmental Policy on the Type of Innovation: The Case of Automotive Emissions Control Technologies. OECD J. Econ. Stud. 2009, 1, 49–66. [Google Scholar] [CrossRef]
- Knibbs, L.D.; Cortés de Waterman, A.M.; Toelle, B.G.; Guo, Y.; Denison, L.; Jalaludin, B.; Marks, G.B.; Williams, G.M. The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function. Environ. Int. 2018, 120, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Dauchet, L.; Hulo, S.; Cherot-Kornobis, N.; Matran, R.; Amouyel, P.; Edmé, J.L.; Giovannelli, J. Short-term exposure to air pollution: Associations with lung function and inflammatory markers in non-smoking, healthy adults. Environ. Int. 2018, 121, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Santibanez-Andrade, M.; Quezada-Maldonado, E.M.; Osornio-Vargas, A.; Sanchez-Perez, Y.; García-Cuellar, C.M. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 2017, 229, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P.L.S.; Li, W.; Rice, M.B.; Wilker, E.H.; Schwartz, J.; Gold, D.R.; Koutrakis, P.; Benjamin, E.J.; Vasan, R.S.; Mitchell, G.F.; et al. Long- and short-term air pollution exposure and measures of arterial stiffness in the Framingham Heart Study. Environ. Int. 2018, 121, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Kasdagli, M.I.; Katsouyanni, K.; Dimakopoulou, K.; Samoli, E. Air pollution and Parkinson’s disease: A systematic review and meta-analysis up to 2018. Int. J. Hyg. Environ. Health 2018, 222, 402–409. [Google Scholar] [CrossRef]
- Khreis, H.; Hoogh, K.D.; Nieuwenhuijsen, M.J. Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environ. Int. 2018, 114, 365–375. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.H. Interactions of CDH13 gene polymorphisms and ambient PM10 air pollution exposure with blood pressure and hypertension in Korean men. Chemosphere 2019, 218, 292–298. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Fisher, S.; Suk, W.A.; Sly, P.; Chiles, T.C. Bose-O’Reilly, Stephan. Pollution and children’s health. Sci. Total Environ. 2019, 650, 2389–2394. [Google Scholar] [CrossRef]
- Ngo, N.S.; Bao, X.; Zhong, N. pollutants go global: The impacts of intercontinental air pollution from China on air quality and morbidity in California. Environ. Res. 2018, 165, 473–483. [Google Scholar] [CrossRef]
- Maji, K.J.; Dikshit, A.K.; Arora, M.; Deshpande, A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total Environ. 2018, 612, 683–693. [Google Scholar] [CrossRef]
- Chen, Z.; Cui, L.; Cui, X.; Li, X.; Yu, K.; Yue, K.; Dai, Z.; Zhou, J.; Jia, G.; Zhang, J. The association between high ambient air pollution exposure and respiratory health of young children: A cross sectional study in Jinan, China. Sci. Total Environ. 2019, 656, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, C.C.; Li, Y.; Liua, J.; Meng, C.; Han, J.; Zhang, Y.; Xua, D. Short-term effects of ambient air pollution exposure on lung function: A longitudinal study among healthy primary school children in China. Sci. Total Environ. 2018, 645, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Qian, Z.M.; Vaughn, M.G.; Nelson, E.J.; Dharmage, S.C.; Heinrich, J.; Lin, S.; Lawrence, W.R.; Ma, H.; Chen, D.H.; et al. Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 Communities Chinese Health Study. Environ. Pollut. 2017, 229, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. The analysis of the impacts of energy consumption on the environment and public health in China. Energy 2010, 35, 4473–4479. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Li, Y.; Chiu, Y.H.; Lin, T.Y. A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency. Int. J. Environ. Res. Public Health 2019, 16, 1535. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S.; Whittaker, G. Network DEA. In Modeling Data Irregularities and Structural Complexities in DEA; Zhu, J., Cook, W.D., Eds.; Springer: New York, NY, USA, 2007; pp. 209–240. [Google Scholar]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Tsutsui, M. Dynamic DEA with network structure: A slacks-based measure approach. Omega 2013, 42, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Romer, P. Increasing returns and long-run growth. J. Political Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef]
- Chen, K.; Wemy, E. Investment-specific technological changes: The source of long-run TFP fluctuations. Eur. Econ. Rev. 2015, 80, 230–252. [Google Scholar] [CrossRef]
- Popp, D. Induced innovation and energy prices. Am. Econ. Rev. 2002, 92, 160–180. [Google Scholar] [CrossRef]
- Popp, D. Pollution control innovations and the Clean Air Act of 1990. J. Policy Anal. Manag. 2003, 22, 641–660. [Google Scholar] [CrossRef]
- Popp, D. They don’t invent them like they used to: An examination of energy patent citations over time. Econ. Innov. New Technol. 2006, 15, 753–776. [Google Scholar] [CrossRef]
- Aghion, P.; Dechezlepretre, A.; Hemous, D.; Martin, R.V.; Reenen, J. Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry. J. Political Econ. 2016, 124, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Griliches, Z. R&D and Productivity: Econometric Results and Measurement Issues. Science 1987, 237, 31–35. [Google Scholar]
Input Variables | Output Variables | Link | Carry-Over | |
---|---|---|---|---|
Stage 1 | Labor | GDP | CO2 | Fixed assets |
Energy consumption | PM2.5 | |||
Stock of energy conservation knowledge | PM10 | |||
Stage 2 | Medical institution assets | Mortality rate | ||
Stock of respiratory medical treatment knowledge | Respiratory disease rate |
Region | DMU | Score (w) | Rank (w) | Score (w/o) | Rank (w/o) | Rank Improvement |
---|---|---|---|---|---|---|
non-east | Anhui | 0.6867 | 25 | 0.6391 | 18 | −7 |
east | Beijing | 1 | 1 | 1 | 1 | 0 |
east | Fujian | 1 | 1 | 1 | 1 | 0 |
non-east | Gansu | 0.7328 | 24 | 0.5433 | 25 | 1 |
east | Guangdong | 1 | 1 | 1 | 1 | 0 |
east | Guangxi | 0.7804 | 22 | 0.5561 | 23 | 1 |
non-east | Guizhou | 0.8152 | 21 | 0.4625 | 29 | 8 |
east | Hainan | 1 | 1 | 1 | 1 | 0 |
east | Hebei | 1 | 1 | 0.5440 | 24 | 23 |
non-east | Henan | 0.9419 | 16 | 0.4506 | 30 | 14 |
non-east | Heilongjiang | 0.5504 | 29 | 0.4928 | 28 | −1 |
non-east | Hubei | 0.8291 | 20 | 0.5278 | 27 | 7 |
non-east | Hunan | 0.6419 | 27 | 0.6170 | 19 | -8 |
non-east | Jilin | 0.9451 | 15 | 0.8077 | 13 | −2 |
east | Jiangsu | 0.8941 | 18 | 0.9051 | 11 | −7 |
non-east | Jiangxi | 0.8503 | 19 | 0.6461 | 17 | −2 |
east | Liaoning | 0.5080 | 30 | 0.5574 | 21 | −9 |
non-east | Inner Mongolia | 1 | 1 | 1 | 1 | 0 |
non-east | Ningxia | 1 | 1 | 1 | 1 | 0 |
non-east | Qinghai | 1 | 1 | 1 | 1 | 0 |
east | Shandong | 1 | 1 | 1 | 1 | 0 |
non-east | Shanxi | 1 | 1 | 0.5566 | 22 | 21 |
non-east | Shaanxi | 0.5740 | 28 | 0.6162 | 20 | −8 |
east | Shanghai | 1 | 1 | 1 | 1 | 0 |
non-east | Sichuan | 0.7762 | 23 | 0.5358 | 26 | 3 |
east | Tianjin | 1 | 1 | 1 | 1 | 0 |
non-east | Xinjiang | 1 | 1 | 0.8260 | 12 | 11 |
non-east | Yunnan | 1 | 1 | 0.7229 | 15 | 14 |
east | Zhejiang | 0.6783 | 26 | 0.6585 | 16 | −10 |
non-east | Chongqing | 0.9149 | 17 | 0.7749 | 14 | −3 |
Average of the east | 0.9051 | 8.6667 | 0.8517 | 8.5 | −0.1667 | |
Average of the non-east | 0.8476 | 15 | 0.6788 | 16.6667 | 2.6667 | |
MEAN | 0.8706 | 0.7480 |
Region | DMU | 2013 | 2014 | 2015 | 2016 | MEAN |
---|---|---|---|---|---|---|
non-east | Anhui | 0.6996 | 0.6942 | 0.6937 | 0.6764 | 0.6910 |
east | Beijing | 1 | 1 | 1 | 1 | 1 |
east | Fujian | 1 | 1 | 1 | 1 | 1 |
non-east | Gansu | 0.6253 | 0.6822 | 0.9370 | 0.7004 | 0.7362 |
east | Guangdong | 1 | 1 | 1 | 1 | 1 |
east | Guangxi | 0.6299 | 0.6934 | 0.8313 | 1 | 0.7886 |
non-east | Guizhou | 0.5833 | 1 | 1 | 0.7586 | 0.8355 |
east | Hainan | 1 | 1 | 1 | 1 | 1 |
east | Hebei | 1 | 1 | 1 | 1 | 1 |
non-east | Henan | 1 | 0.7903 | 1 | 1 | 0.9354 |
non-east | Heilongjiang | 0.5236 | 0.5803 | 0.5959 | 0.5281 | 0.5570 |
non-east | Hubei | 0.7722 | 0.8142 | 1 | 0.7489 | 0.8338 |
non-east | Hunan | 0.6060 | 0.6561 | 0.7054 | 0.6709 | 0.6596 |
non-east | Jilin | 1 | 0.7965 | 1 | 1 | 0.9491 |
east | Jiangsu | 1 | 1 | 0.6075 | 1 | 0.9019 |
non-east | Jiangxi | 0.7071 | 0.7501 | 0.9688 | 1 | 0.8565 |
east | Liaoning | 0.5460 | 0.5404 | 0.5575 | 0.4521 | 0.5240 |
non-east | Inner Mongolia | 1 | 1 | 1 | 1 | 1 |
non-east | Ningxia | 1 | 1 | 1 | 1 | 1 |
non-east | Qinghai | 1 | 1 | 1 | 1 | 1 |
east | Shandong | 1 | 1 | 1 | 1 | 1 |
non-east | Shanxi | 1 | 1 | 1 | 1 | 1 |
non-east | Shaanxi | 0.5876 | 0.6255 | 0.5741 | 0.5329 | 0.5800 |
east | Shanghai | 1 | 1 | 1 | 1 | 1 |
non-east | Sichuan | 1 | 1 | 0.6030 | 0.6187 | 0.8054 |
east | Tianjin | 1 | 1 | 1 | 1 | 1 |
non-east | Xinjiang | 1 | 1 | 1 | 1 | 1 |
non-east | Yunnan | 1 | 1 | 1 | 1 | 1 |
east | Zhejiang | 0.6469 | 0.6077 | 0.6230 | 0.8497 | 0.6818 |
non-east | Chongqing | 0.6797 | 1 | 1 | 1 | 0.9199 |
Average of the east | 0.9019 | 0.9035 | 0.8850 | 0.9418 | 0.9080 | |
Average of the non-east | 0.8214 | 0.8550 | 0.8932 | 0.8464 | 0.8540 | |
MEAN | 0.8536 | 0.8744 | 0.8899 | 0.8846 | 0.8756 |
DMU | 2013 Stage1 | 2013 stage2 | 2014 Stage1 | 2014 stage2 | 2015 Stage1 | 2015 stage2 | 2016 Stage1 | 2016 stage2 |
---|---|---|---|---|---|---|---|---|
Anhui | 0.9048 | 0.4945 | 0.8814 | 0.5070 | 0.8295 | 0.5579 | 0.8204 | 0.5324 |
Beijing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Fujian | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Gansu | 0.7265 | 0.5242 | 0.7093 | 0.6550 | 0.8740 | 1 | 0.7119 | 0.6889 |
Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Guangxi | 1 | 0.2598 | 1 | 0.3869 | 1 | 0.6626 | 1 | 1 |
Guizhou | 0.7222 | 0.4445 | 1 | 1 | 1 | 1 | 1 | 0.5171 |
Hainan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Hebei | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Henan | 1 | 1 | 1 | 0.5806 | 1 | 1 | 1 | 1 |
Heilongjiang | 0.7510 | 0.2962 | 0.7492 | 0.4113 | 0.8109 | 0.3809 | 0.7105 | 0.3456 |
Hubei | 1 | 0.5444 | 1 | 0. 6284 | 1 | 1 | 1 | 0.4979 |
Hunan | 1 | 0.2120 | 1 | 0.3123 | 1 | 0.4109 | 1 | 0.3419 |
Jilin | 1 | 1 | 1 | 0.5930 | 1 | 1 | 1 | 1 |
Jiangsu | 1 | 1 | 1 | 1 | 1 | 0.2150 | 1 | 1 |
Jiangxi | 1 | 0.4142 | 1 | 0.5002 | 1 | 0.9376 | 1 | 1 |
Liaoning | 0.7780 | 0.3140 | 0.7971 | 0.2837 | 0.8390 | 0.2762 | 0.6181 | 0.2861 |
Inner Mongolia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Ningxia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Qinghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Shandong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Shanxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Shaanxi | 0.7921 | 0.3832 | 0.7626 | 0.4884 | 0.7787 | 0.3694 | 0.7650 | 0.3008 |
Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Sichuan | 1 | 1 | 1 | 1 | 1 | 0.2061 | 1 | 0.2373 |
Tianjin | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Xinjiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Yunnan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Zhejiang | 1 | 0.2939 | 1 | 0.2154 | 1 | 0.2460 | 1 | 0.6994 |
Chongqing | 0.9700 | 0.3894 | 1 | 1 | 1 | 1 | 1 | 1 |
MEAN | 0.9548 | 0.7523 | 0.9633 | 0.7854 | 0.9711 | 0.8088 | 0.9542 | 0.8149 |
EAST | 0.9815 | 0.8223 | 0.9831 | 0.8238 | 0.9866 | 0.7833 | 0.9682 | 0.9155 |
NONEAST | 0.9370 | 0.7057 | 0.9501 | 0.7598 | 0.9607 | 0.8257 | 0.9449 | 0.7479 |
NO | DMU | 2013L | 2014L | 2015L | 2016L | 2013EC | 2014EC | 2015EC | 2016EC | 2013MIA | 2014MIA | 2015MIA | 2016MIA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Anhui | 0.9706 | 0.9089 | 0.8722 | 1 | 0.9481 | 1 | 1 | 1 | 0.4754 | 0.3981 | 0.4357 | 0.4296 |
2 | Beijing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | Fujian | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | Gansu | 0.7358 | 0.6651 | 0.7218 | 0.6697 | 0.8204 | 0.7875 | 1 | 0.8293 | 0.4767 | 0.6249 | 1 | 0.5718 |
5 | Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
6 | Guangxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2378 | 0.3231 | 0.5654 | 1 |
7 | Guizhou | 0.7551 | 1 | 1 | 1 | 0.5197 | 1 | 1 | 1 | 0.3958 | 1 | 1 | 0.6652 |
8 | Hainan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
9 | Hebei | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
10 | Henan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.5454 | 1 | 1 |
11 | Heilongjiang | 0.7890 | 0.7413 | 0.7595 | 0.8073 | 0.7491 | 0.8025 | 0.8067 | 0.6795 | 0.3078 | 0.3858 | 0.4085 | 0.3913 |
12 | Hubei | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.3678 | 0.3823 | 1 | 0.4822 |
13 | Hunan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2797 | 0.3021 | 0.3914 | 0.4594 |
14 | Jilin | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.6866 | 1 | 1 |
15 | Jiangsu | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.3236 | 1 |
16 | Jiangxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.5220 | 0.5598 | 0.8752 | 1 |
17 | Liaoning | 0.9693 | 0.9474 | 0.9304 | 0.7322 | 0.7743 | 0.8331 | 0.8349 | 0.7605 | 0.4911 | 0.4742 | 0.4976 | 0.5233 |
18 | Inner Mongolia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
19 | Ningxia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
20 | Qinghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
21 | Shandong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
22 | Shanxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
23 | Shaanxi | 0.8259 | 0.9069 | 0.7561 | 0.8638 | 0.9614 | 0.8516 | 1 | 0.9385 | 0.5298 | 0.6358 | 0.5023 | 0.3976 |
24 | Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
25 | Sichuan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2907 | 0.2633 |
26 | Tianjin | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
27 | Xinjiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
28 | Yunnan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
29 | Zhejiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2943 | 0.2912 | 0.3383 | 0.6350 |
30 | Chongqing | 0.9780 | 1 | 1 | 1 | 0.94757 | 1 | 1 | 1 | 0.5187 | 1 | 1 | 1 |
MEAN | 0.9675 | 0.9723 | 0.9680 | 0.9691 | 0.9573 | 0.9758 | 0.9881 | 0.9736 | 0.7633 | 0.7870 | 0.8210 | 0.8266 | |
EAST | 0.9974 | 0.9956 | 0.9942 | 0.9777 | 0.9812 | 0.9861 | 0.9862 | 0.9800 | 0.8589 | 0.8604 | 0.8362 | 0.9282 | |
NONEAST | 0.9475 | 0.9568 | 0.9505 | 0.9634 | 0.9414 | 0.9690 | 0.9893 | 0.9693 | 0.6995 | 0.7380 | 0.8108 | 0.7589 |
NO. | DMU | 2013 EC | 2014 EC | 2015 EC | 2016 EC | 2013 RM | 2014 RM | 2015 RM | 2016 RM |
---|---|---|---|---|---|---|---|---|---|
1 | Anhui | 0.7956 | 0.7353 | 0.6164 | 0.4612 | 0.5398 | 0.6578 | 0.8208 | 0.6714 |
2 | Beijing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | Fujian | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | Gansu | 0.7725 | 0.6753 | 0.9003 | 0.6366 | 0.6644 | 0.7990 | 1 | 0.8637 |
5 | Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
6 | Guangxi | 1 | 1 | 1 | 1 | 0.3253 | 0.47968 | 0.8476 | 1 |
7 | Guizhou | 0.8917 | 1 | 1 | 1 | 0.6753 | 1 | 1 | 0.6667 |
8 | Hainan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
9 | Hebei | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
10 | Henan | 1 | 1 | 1 | 1 | 1 | 0.7627 | 1 | 1 |
11 | Heilongjiang | 0.7149 | 0.7039 | 0.8664 | 0.6447 | 0.2990 | 0.5111 | 0.4109 | 0.3693 |
12 | Hubei | 1 | 1 | 1 | 1 | 0.7253 | 0.9460 | 1 | 0.5897 |
13 | Hunan | 1 | 1 | 1 | 1 | 0.1745 | 0.4201 | 0.5616 | 0.2757 |
14 | Jilin | 1 | 1 | 1 | 1 | 1 | 0.6063 | 1 | 1 |
15 | Jiangsu | 1 | 1 | 1 | 1 | 1 | 1 | 0.1457 | 1 |
16 | Jiangxi | 1 | 1 | 1 | 1 | 0.3631 | 0.4973 | 1 | 1 |
17 | Liaoning | 0.5905 | 0.6109 | 0.7516 | 0.3617 | 0.1739 | 0.2181 | 0.1716 | 0.1163 |
18 | Inner Mongolia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
19 | Ningxia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
20 | Qinghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
21 | Shandong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
22 | Shanxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
23 | Shaanxi | 0.5891 | 0.5293 | 0.5800 | 0.4925 | 0.2948 | 0.4057 | 0.2833 | 0.2380 |
24 | Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
25 | Sichuan | 1 | 1 | 1 | 1 | 1 | 1 | 0.2272 | 0.2881 |
26 | Tianjin | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
27 | Xinjiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
28 | Yunnan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
29 | Zhejiang | 1 | 1 | 1 | 1 | 0.2935 | 0.1436 | 0.1806 | 0.7643 |
30 | Chongqing | 0.9864 | 1 | 1 | 1 | 0.3199 | 1 | 1 | 1 |
Mean | 0.9447 | 0.9418 | 0.9572 | 0.9199 | 0.7616 | 0.8149 | 0.8216 | 0.8281 | |
EAST | 0.9659 | 0.9676 | 0.9793 | 0.9468 | 0.8192 | 0.8216 | 0.7915 | 0.9067 | |
NONEAST | 0.9306 | 0.9247 | 0.9424 | 0.9019 | 0.7232 | 0.8105 | 0.8417 | 0.7757 |
2013 GDP | 2014 GDP | 2015 GDP | 2016 GDP | 2013 RP | 2014 RP | 2015 RP | 2016 RP | 2013 MR | 2014 MR | 2015 MR | 2016 MR | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Anhui | 1 | 1 | 1 | 1 | 0.9469 | 0.9173 | 0.9034 | 0.9320 | 1 | 1 | 0.8442 | 1 |
2 | Beijing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | Fujian | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | Gansu | 0.9359 | 1 | 1 | 1 | 0.8231 | 0.8261 | 1 | 0.9163 | 1 | 1 | 1 | 1 |
5 | Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
6 | Guangxi | 1 | 1 | 1 | 1 | 0.8799 | 0.9905 | 1 | 1 | 0.9530 | 0.934838 | 0.8676 | 1 |
7 | Guizhou | 1 | 1 | 1 | 1 | 0.8185 | 1 | 1 | 0.8677 | 0.7717 | 1 | 1 | 0.5565 |
8 | Hainan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
9 | Hebei | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
10 | Henan | 1 | 1 | 1 | 1 | 1 | 0.8826 | 1 | 1 | 1 | 0.864367 | 1 | 1 |
11 | Heilongjiang | 1 | 1 | 1 | 1 | 0.9489 | 0.9326 | 0.8932 | 0.8958 | 1 | 0.88695 | 0.9555 | 0.9034 |
12 | Hubei | 1 | 1 | 1 | 1 | 0.9920 | 0.8863 | 1 | 0.9531 | 1 | 1 | 1 | 0.8938 |
13 | Hunan | 1 | 1 | 1 | 1 | 0.8578 | 0.8219 | 0.8615 | 0.9299 | 1 | 0.865312 | 0.8192 | 0.9198 |
14 | Jilin | 1 | 1 | 1 | 1 | 1 | 0.9188 | 1 | 1 | 1 | 0.90114 | 1 | 1 |
15 | Jiangsu | 1 | 1 | 1 | 1 | 1 | 1 | 0.8176 | 1 | 1 | 1 | 1 | 1 |
16 | Jiangxi | 1 | 1 | 1 | 1 | 0.8633 | 0.8867 | 1 | 1 | 1 | 1 | 1 | 1 |
17 | Liaoning | 1 | 1 | 1 | 1 | 0.8819 | 0.8713 | 0.8011 | 0.8344 | 1 | 0.688193 | 0.7758 | 1 |
18 | Inner Mongolia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
19 | Ningxia | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
20 | Qinghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
21 | Shandong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
22 | Shanxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
23 | Shaanxi | 1 | 1 | 1 | 1 | 0.8480 | 0.8676 | 0.8734 | 0.8868 | 1 | 1 | 1 | 1 |
24 | Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
25 | Sichuan | 1 | 1 | 1 | 1 | 1 | 1 | 0.7847 | 0.8209 | 1 | 1 | 0.7019 | 0.8553 |
26 | Tianjin | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
27 | Xinjiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
28 | Yunnan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
29 | Zhejiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.9993 | 1 | 0.981276 | 0.8909 | 1 |
30 | Chongqing | 1 | 1 | 1 | 1 | 0.8467 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Mean | 0.9979 | 1 | 1 | 1 | 0.9569 | 0.9601 | 0.9645 | 0.9679 | 0.9908 | 0.9707 | 0.9618 | 0.9710 | |
EAST | 1 | 1 | 1 | 1 | 0.9788 | 0.9798 | 0.9682 | 0.9861 | 1 | 0.9725 | 0.9722 | 1 | |
NON EAST | 0.9964 | 1 | 1 | 1 | 0.9423 | 0.9469 | 0.9620 | 0.9557 | 0.9847 | 0.9696 | 0.9549 | 0.9516 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, D.; Chang, T.-H. Energy and Health Efficiencies in China with the Inclusion of Technological Innovation. Int. J. Environ. Res. Public Health 2019, 16, 4225. https://doi.org/10.3390/ijerph16214225
Wang Q, Li D, Chang T-H. Energy and Health Efficiencies in China with the Inclusion of Technological Innovation. International Journal of Environmental Research and Public Health. 2019; 16(21):4225. https://doi.org/10.3390/ijerph16214225
Chicago/Turabian StyleWang, Qian, Duo Li, and Tzu-Han Chang. 2019. "Energy and Health Efficiencies in China with the Inclusion of Technological Innovation" International Journal of Environmental Research and Public Health 16, no. 21: 4225. https://doi.org/10.3390/ijerph16214225
APA StyleWang, Q., Li, D., & Chang, T. -H. (2019). Energy and Health Efficiencies in China with the Inclusion of Technological Innovation. International Journal of Environmental Research and Public Health, 16(21), 4225. https://doi.org/10.3390/ijerph16214225