Chinese Consumers’ Preferences for Attributes of Fresh Milk: A Best–Worst Approach
Abstract
:1. Introduction
2. Methodology
2.1. Survey Design and Data
2.1.1. Best–Worst Scaling Approach
2.1.2. Survey Design
2.1.3. Data Collection
2.2. Theoretical Model
2.2.1. Share of Preference
2.2.2. Latent Class Model
2.2.3. Counting Scores
3. Results and Discussion
3.1. Relative Importance of Attributes
3.2. Consumer Heterogeneities for Preference of Fresh Milk
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Capital City (N = 646) | Non- Capital City (N = 602) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Attributes | Best | Worst | B−W Score | Sqrt (B/W) | Relative Importance | Best | Worst | B−W Score | Sqrt (B/W) | Relative Importance |
Shelflife | 182 | 6 | 176 | 5.5076 | 79.08% | 207 | 3 | 204 | 8.3066 | 88.80% |
Safety | 194 | 4 | 190 | 6.9642 | 100.00% | 175 | 2 | 173 | 9.3541 | 100.00% |
Nutrition | 93 | 5 | 88 | 4.3128 | 61.93% | 55 | 6 | 49 | 3.0277 | 32.37% |
Taste | 61 | 29 | 32 | 1.4503 | 20.83% | 74 | 37 | 37 | 1.4142 | 15.12% |
Brand | 55 | 33 | 22 | 1.2910 | 18.54% | 32 | 45 | −13 | 0.8433 | 9.01% |
Organic | 5 | 16 | −11 | 0.5590 | 8.03% | 13 | 2 | 11 | 2.5495 | 27.26% |
Butterfat | 3 | 20 | −17 | 0.3873 | 5.56% | 3 | 13 | −10 | 0.4804 | 5.14% |
Sterilization technique | 11 | 26 | −15 | 0.6504 | 9.34% | 10 | 25 | −15 | 0.6325 | 6.76% |
Traceability | 15 | 40 | −25 | 0.6124 | 8.79% | 6 | 33 | −27 | 0.4264 | 4.56% |
Price | 9 | 53 | −44 | 0.4121 | 5.92% | 12 | 68 | −56 | 0.4201 | 4.49% |
Origin | 13 | 90 | −77 | 0.3801 | 5.46% | 10 | 103 | −93 | 0.3116 | 3.33% |
Purchasinglocation | 4 | 96 | −92 | 0.2041 | 2.93% | 4 | 85 | −81 | 0.2169 | 2.32% |
Package | 1 | 228 | −227 | 0.0662 | 0.95% | 1 | 180 | −179 | 0.0745 | 0.80% |
References
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef]
- Dong, F.X. The outlook for Asian dairy markets: The role of demographics, income, and prices. Food Policy 2006, 31, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.P.; Bai, J.F.; Lohmar, B.T.; Huang, J.K. How do consumers determine the safety of milk in Beijing, China? China Econ. Rev. 2010, 21, 46–54. [Google Scholar] [CrossRef]
- Huang, J.K.; Wu, Y.H.; Yang, Z.J.; Fabiosa, J.; Dong, F.X. Marketing China’s milk: A case study of the sales activity of dairy farmers in greater Beijing. China Econ. Rev. 2012, 23, 675–689. [Google Scholar] [CrossRef]
- Wang, Q.B.; Robert, P.; Zhang, G.X. China’s dairy markets: Trends, disparities, and implications for trade. China Agric. Econ. Rev. 2010, 2, 356–371. [Google Scholar] [CrossRef]
- Fuller, F.; Beghin, J.; Rozelle, S. Consumption of dairy products in urban China: Results from Beijing, Shanghai and Guangzhou. Aust. J. Agric. Resour. Econ. 2007, 51, 459–474. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Tian, W.M.; Zhou, J.L. The Emerging Dairy Economy in China: Production, Consumption and Trade Prospects. Aust. J. Agric. Resour. Econ. 2002, 2, 1–17. [Google Scholar]
- Dong, X.X.; Zhen, M.L. Food safety issues in China: A case study of the dairy sector. J. Sci. Food Agric. 2016, 96, 346–352. [Google Scholar] [CrossRef]
- Cheng, L.L.; Yin, C.B.; Chien, H.P. Demand for milk quantity and safety in urban China: Evidence from Beijing and Harbin. Aust. J. Agric. Resour. Econ. 2014, 59, 275–287. [Google Scholar] [CrossRef]
- Noll, J. Comparing quality signals as tools of consumer protection: Are warranties always better than advertisement to promote higher product quality. Int. Rev. Law Econ. 2004, 24, 227–239. [Google Scholar] [CrossRef]
- Jin, Y.H.; Lin, L.; Yao, L. Do Consumers Trust the National Inspection Exemption Brands? Evidence from Infant Formula in China. In Proceedings of the 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, PA, USA, 24–26 July 2011. [Google Scholar]
- Jia, X.P.; Huang, J.K.; Luan, H.; Scott, R.; Johan, S. China’s Milk Scandal, government policy and production decisions of dairy farmers: The case of Greater Beijing. Food Policy 2012, 37, 390–400. [Google Scholar] [CrossRef]
- Pei, X.F.; Annuradha, T.; Anton, A.; Liana, G.; Huang, W.; Yang, R.J. The China melamine milk scandal and its implications for food safety regulation. Food Policy 2011, 36, 412–420. [Google Scholar] [CrossRef]
- Qian, G.X.; Guo, X.C.; Guo, J.J.; Wu, J.G. China’s dairy crisis: Impacts, causes and policy implications for a sustainable dairy industry. Int. J. Sustain. Dev. World Ecol. 2011, 18, 434–441. [Google Scholar] [CrossRef]
- Ortega, D.L.; Wang, H.H.; Wu, L.P.; Olynk, N.J. Modeling heterogeneity in consumer preferences for select food safety attributes in China. Food Policy 2011, 36, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.G.; Mao, Y.N.; Fred, G. Chinese consumer demand for food safety attributes in milk products. Food Policy 2008, 33, 28–36. [Google Scholar] [CrossRef]
- Flynn, T.N.; Marley, A.A.J. Best-worst scaling: Theory and methods. In Handbook of Choice Modelling; Hess, S., Daly, A., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2014; pp. 15–28. [Google Scholar]
- Finn, A.; Louviere, J.J. Determining the appropriate response to evidence of public concern: The case of food safety. J. Public Policy Mark. 1992, 11, 12–25. [Google Scholar] [CrossRef]
- Crask, M.R.; Fox, R.J. An exploration of the interval properties of three commonly used marketing research studies: A magnitude estimation approach. J. Mark. Res. 1987, 29, 317–339. [Google Scholar]
- Cohen, S.H. Maximum difference scaling: Improved measures of importance and preference for segmentation. In Proceedings of the Sawtooth Software Conference Proceedings, Sequim, WA, USA, 15–17 April 2003. [Google Scholar]
- Thurstone, L.L. A law of comparative judgment. Psychol. Rev. 1994, 34, 278–286. [Google Scholar] [CrossRef]
- Louviere, J.J.; Woodworth, G. Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data. J. Mark. Res. 1983, 20, 350–367. [Google Scholar] [CrossRef]
- Marley, A.; Louviere, J. Some probabilistic models of best, worst, and best-worst choices. J. Math. Psychol. 2005, 49, 464–480. [Google Scholar] [CrossRef]
- Seda, E.; Dan, R.; Wossink, A. Using best-worst scaling to explore perceptions of relative responsibility for ensuring food safety. Food Policy 2012, 37, 661–670. [Google Scholar]
- Flynn, T.N.; Louviere, J.J.; Peters, T.J.; Coast, J. Best–worst scaling: What it can do for health care research and how to do it. J. Health Econ. 2007, 26, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Auger, P.; Devinney, T.; Louviere, J. Using best-worst scaling methodology to investigate consumer ethical beliefs across countries. J. Bus. Ethics 2007, 70, 299–326. [Google Scholar] [CrossRef]
- Lusk, J.L.; Briggeman, B.C. Food values. Am. J. Agric. Econ. 2009, 91, 184–196. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Jorgensen, A.S.; Aaslyng, M.D.; Bredie, W.L.P. Best-worst scaling: An introduction and initial comparison with monadic rating for preference elicitation with food products. Food. Qual. Prefer. 2008, 19, 579–588. [Google Scholar] [CrossRef]
- Cohen. Applying best-worst scaling to wine marketing. Int. J. Wine Bus. Res. 2009, 21, 8–23. [Google Scholar] [CrossRef]
- Louviere, J.J.; Flynn, T.N.; Marley, A.A.J. Best-Worst Scaling: Theory, Methods and Applications; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Lusk, J.L.; Rosen, J.; Fox, J. Demand for Beef from Cattle Administered Growth Hormones or Fed Genetically Modified Corn: A Comparison of Consumers in France, Germany, the United Kingdom, and the United States. Am. J. Agric. Econ. 2003, 85, 16–29. [Google Scholar] [CrossRef] [Green Version]
- McFadden, D.; Train, K. Mixed MNL models for discrete response. J. Appl. Econ. 2000, 15, 447–470. [Google Scholar] [CrossRef]
- Ortega, D.L.; Wang, H.H.; Olynk, N.J.; Wu, L.P.; Bai, J.F. Chinese consumers’ demand for food safety attributes: A push for government and industry regulation. Am. J. Agric. Econ. 2011, 94, 489–495. [Google Scholar] [CrossRef]
- Umberger, W.; Stringer, R.; Mueller, S.C. Using best–worst scaling to determine market channel choice by smallholders in Indonesia. In Proceedings of the 2010 AAEA, CAES, & WAEA Joint Annual Meeting, Denver, CO, USA, 25–27 July 2010. [Google Scholar]
- Simone, M.L.; Lockshin, L. Testing the robustness of best worst scaling for cross-national segmentation with different numbers of choice sets. Food. Qual. Prefer. 2013, 27, 230–242. [Google Scholar]
- Mueller, S.; Rungie, C. Is there more information in best-worst choice data? Using the attitude heterogeneity structure to identify consumer segments. Int. J. Wine Bus. Res. 2009, 21, 24–40. [Google Scholar] [CrossRef]
- Louviere, J.J. What you don’t know might hurt you: Some unresolved issues in the design and analysis of discrete choice experiments. Environ. Resour. Econ. 2006, 34, 173–188. [Google Scholar] [CrossRef]
- Greene, W.; Hensher, D.A. latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Roeder, K.; Lynch, K.G.; Nagin, D.S. Modeling uncertainty in latent class membership: A case study in criminology. J. Am. Stat. Assoc. 1999, 94, 766–776. [Google Scholar] [CrossRef]
- Loureiro, M.L.; Arcos, F.D. Applying best–worst scaling in a stated preference analysis of forest management programs. J. For. Econ. 2012, 18, 381–394. [Google Scholar] [CrossRef]
- Lister, G.; Tonsor, G.T.; Brix, M.; Schroeder, T.C.; Chen, Y. Food Values Applied to Livestock Products. J. Food Prod. Mark. 2017, 23, 326–341. [Google Scholar] [CrossRef]
- Qiao, G.H.; Guo, T.; Klein, K.K. Melamine in Chinese milk products and consumer confidence. Appetite 2010, 55, 190–195. [Google Scholar] [CrossRef]
- Jay, M.; Jeroen, K.V. Analyzing MaxDiff Data with Scale Factors: Applications of Latent GOLD® Basic + Choice 5; Statistical Innovations Inc.: Belmont, MA, USA, 2014; pp. 1–26. [Google Scholar]
- Fuller, F.; Huang, J.K.; Ma, H.; Rozelle, S. Got Milk? The Rapid Rise of China’s Dairy Sector and its Future Prospects. Food Policy 2006, 31, 201–215. [Google Scholar] [CrossRef]
No. | Attributes | Definition |
---|---|---|
1 | Taste | The extent to which the consumption of milk is appealing to senses. |
2 | Origin | Where the dairy fresh milk is produced (e.g., foreign countries and domestic). |
3 | Safety certification | Safety certification refers to dairy companies’ quality management system certificate, such as HACCP and ISO9001. |
4 | Price | The price that is paid for the fresh milk. |
5 | Nutrition | Amount and type of protein, vitamins, etc. |
6 | Butterfat | The amount of fat in milk. |
7 | Brand | The brand name. |
8 | Package | The design style of the fresh milk (e.g., Tetra Pak film bag, sterile pillow, sterile brick, or glass bottle, color or pattern of packaging). |
9 | Purchasing location | The location where consumers purchase fresh milk (e.g., supermarket, convenience store, vending machine, etc.). |
10 | Organic | The fresh milk is certificated as organic food. |
11 | Traceability | Whether people can trace the supply chain and production process. |
12 | Shelf life | Shelf life in the study refers to the time from consumer purchase to milk spoilage. |
13 | Sterilization technique | The pasteurization technique. Two major types of pasteurized technique are the Low Temperature Long Time and High Temperature Short Time techniques. |
Variables | Description and Measurement | Total Sample (N = 1248) | Capital City (N = 646) | Non-Capital City (N = 602) | Capital vs. Non-Capital t-test | |||
---|---|---|---|---|---|---|---|---|
Mean | S.D | Mean | S.D | Mean | S.D | p-Value | ||
Gender | 1 if Male, 0 otherwise. | 0.458 | 0.498 | 0.500 | 0.500 | 0.420 | 0.493 | 0.005 |
Age | Age of respondent as of 2016. | 34.712 | 12.386 | 34.710 | 12.847 | 34.710 | 11.881 | 0.999 |
Marriage | 1 if marriage, 0 if single. | 0.630 | 0.482 | 0.600 | 0.491 | 0.670 | 0.470 | 0.006 |
Education | 1 if Primary school or below, 2 if Junior high school, 3 if Senior high school, 4 if Junior college or above. | 2.460 | 0.839 | 2.680 | 0.794 | 2.220 | 0.822 | 0.457 |
Income | Annual income of the respondent (Ten thousand Chinese Yuan). | 6.089 | 7.872 | 7.369 | 9.252 | 4.715 | 5.750 | 0.000 |
Children | 1 if there is/are family member(s) under 12 years old. | 0.466 | 0.499 | 0.040 | 0.204 | 0.510 | 0.500 | 0.003 |
Elder | 1 if there is/are family member(s) over 60 years old. | 0.435 | 0.496 | 0.430 | 0.495 | 0.450 | 0.497 | 0.488 |
Pregnancy | 1 if there is a/are family member(s) who is/are pregnant. | 0.050 | 0.209 | 0.040 | 0.204 | 0.050 | 0.214 | 0.683 |
Health condition | 1 if respondent has a good health condition, 0 otherwise. | 0.690 | 0.462 | 0.670 | 0.472 | 0.720 | 0.451 | 0.047 |
Attributes | (1) Total Best | (2) Total Worst | (3) (B−W) Scores | (4) Average (B−W) | (5) Ranking for (4) | (6) | (7) Relative Importance | (8) Ranking for (7) |
---|---|---|---|---|---|---|---|---|
Shelf life | 389 | 9 | 380 | 0.304 | 1 | 6.570 | 83.83% | 2 |
Safety certification | 369 | 6 | 363 | 0.291 | 2 | 7.840 | 100.0% | 1 |
Nutrition | 148 | 11 | 137 | 0.110 | 3 | 3.670 | 46.77% | 3 |
Taste | 135 | 66 | 69 | 0.055 | 4 | 1.430 | 18.24% | 4 |
Brand | 87 | 78 | 9 | 0.007 | 5 | 1.060 | 13.47% | 5 |
Organic | 18 | 18 | 0 | 0.000 | 6 | 1.000 | 12.75% | 6 |
Butterfat | 6 | 33 | −27 | −0.022 | 7 | 0.430 | 5.44% | 9 |
Sterilization technique | 21 | 51 | −30 | −0.024 | 8 | 0.640 | 8.18% | 7 |
Traceability | 21 | 73 | −52 | −0.042 | 9 | 0.540 | 6.84% | 8 |
Price | 21 | 121 | −100 | −0.080 | 10 | 0.420 | 5.31% | 10 |
Origin | 23 | 193 | −170 | −0.136 | 11 | 0.350 | 4.40% | 11 |
Purchasing location | 8 | 181 | −173 | −0.139 | 12 | 0.210 | 2.68% | 12 |
Package | 2 | 408 | −406 | −0.325 | 13 | 0.070 | 0.89% | 13 |
MNL | RPL | ||||
---|---|---|---|---|---|
Attributes | Coef. | Share of Preference | Coef. | SD | Share of Preference |
Shelf life | 2.372 *** (0.096) | 0.366 | 1.345 *** (0.137) | 1.065 *** (0.281) | 0.313 |
Safety Certification | 2.309 *** (0.070) | 0.344 | 1.309 *** (0.136) | −1.029 *** (0.274) | 0.302 |
Nutrition | 1.207 *** (0.087) | 0.114 | 0.436 *** (0.154) | −0.630 ** (0.274) | 0.126 |
Taste | - | 0.063 | - | - | 0.082 |
Brand | 0.094 (0.102) | 0.038 | −0.762 *** (0.142) | 1.476 *** (0.108) | 0.038 |
Organic | 0.000 (0.102) | 0.034 | −0.829 *** (0.157) | −0.013 (0.157) | 0.036 |
Butterfat | −0.279 *** (0.101) | 0.026 | −1.184 *** (0.160) | −0.004 (0.156) | 0.025 |
Sterilization technique | −0.310 *** (0.101) | 0.025 | −1.217 *** (0.159) | −0.168 (0.273) | 0.024 |
Traceability | −0.525 *** (0.098) | 0.020 | −1.459 *** (0.160) | 0.301 (0.373) | 0.019 |
Price | −0.939 *** (0.092) | 0.013 | −1.733 *** (0.155) | 0.875 *** (0.175) | 0.014 |
Origin | −1.415 *** (0.083) | 0.008 | −2.015 *** (0.150) | 1.266 *** (0.141) | 0.011 |
Purchasing location | −1.433 *** (0.082) | 0.008 | −2.343 *** (0.162) | −0.495 (0.321) | 0.008 |
Package | −2.467 *** (0.069) | 0.003 | −3.203 *** (0.146) | −0.443 (0.334) | 0.003 |
Log likelihood | 7191.163 | 6910.122 | |||
Prob. > chi2 | 0.000 | 0.000 | |||
Pseudo R2 | 0.183 | - | |||
Number of respondents 1248 |
Cluster | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | |
---|---|---|---|---|---|---|
Capital city | BIC | 919.326 | 885.339 | 981.078 | 1068.049 | 1152.751 |
Non-capital | BIC | 862.804 | 848.481 | 930.429 | 1007.657 | 1116.117 |
Attributes | Safety First | Taste Sensitive | Wald | p-Value |
---|---|---|---|---|
Class size | 78.70% | 21.30% | ||
Taste | −0.465 | 3.619 | 1059.940 | 0.000 |
Origin | −1.127 | −1.912 | 1059.940 | 0.000 |
Safety certification | 2.033 | 3.963 | 1059.940 | 0.000 |
Price | −0.795 | −1.053 | 1059.940 | 0.000 |
Nutrition | 1.696 | 1.493 | 1059.940 | 0.000 |
Butterfat | −0.317 | −0.100 | 1059.940 | 0.000 |
Brand | 1.144 | −1.732 | 1059.940 | 0.000 |
Package | −2.395 | −1.878 | 1059.940 | 0.000 |
Purchasing location | −1.374 | −1.790 | 1059.940 | 0.000 |
Organic | −0.198 | 0.214 | 1059.940 | 0.000 |
Traceability | −0.297 | −1.187 | 1059.940 | 0.000 |
Shelf life | 2.440 | −0.068 | 1059.940 | 0.000 |
Sterilization technique | −0.346 | 0.432 | 1059.940 | 0.000 |
Covariates | ||||
Gender | −0.209 | 0.209 | 5.637 | 0.018 |
Age | 0.040 | −0.040 | 12.147 | 0.000 |
Marriage | −0.081 | 0.081 | 0.464 | 0.500 |
Education | 0.197 | −0.197 | 2.712 | 0.100 |
Income | 0.001 | −0.001 | 0.012 | 0.910 |
Elder | −0.128 | 0.128 | 2.592 | 0.110 |
Children | 0.040 | −0.040 | 0.176 | 0.670 |
Pregnancy | 0.091 | −0.091 | 0.167 | 0.680 |
Health condition | 0.208 | −0.208 | 1.709 | 0.190 |
Number of respondents | 646 |
Attributes | Quality Sensitive | Brand Sensitive | Wald | p-Value |
---|---|---|---|---|
Class size | 53.45% | 46.55% | ||
Taste | 5.409 | −1.033 | 652.335 | 0.000 |
Origin | −4.555 | −0.697 | 652.335 | 0.000 |
Safety certification | 5.886 | 1.870 | 652.335 | 0.000 |
Price | 3.380 | −1.715 | 652.335 | 0.000 |
Nutrition | 4.656 | 0.785 | 652.335 | 0.000 |
Butterfat | −2.142 | −0.076 | 652.335 | 0.000 |
Brand | −3.949 | 1.103 | 652.335 | 0.000 |
Package | −4.978 | −1.709 | 652.335 | 0.000 |
Purchasing location | −4.228 | −0.955 | 652.335 | 0.000 |
Organic | 0.616 | 0.531 | 652.335 | 0.000 |
Traceability | −3.058 | −0.381 | 652.335 | 0.000 |
Shelf life | 5.896 | 2.230 | 652.335 | 0.000 |
Sterilization technique | −2.933 | 0.048 | 652.335 | 0.000 |
Covariates | ||||
Gender | 0.015 | −0.015 | 0.047 | 0.830 |
Age | 0.001 | −0.001 | 0.013 | 0.910 |
Marriage | −0.176 | 0.176 | 2.559 | 0.110 |
Education | −0.166 | 0.166 | 3.236 | 0.072 |
Income | −0.025 | 0.025 | 1.758 | 0.180 |
Elder | −0.081 | 0.081 | 1.656 | 0.200 |
Children | 0.025 | −0.025 | 0.120 | 0.730 |
Pregnancy | 0.325 | −0.325 | 3.580 | 0.058 |
Health condition | −0.287 | 0.287 | 4.227 | 0.040 |
Number of respondents | 602 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Yuan, R.; Zhang, Y.; Jin, X. Chinese Consumers’ Preferences for Attributes of Fresh Milk: A Best–Worst Approach. Int. J. Environ. Res. Public Health 2019, 16, 4286. https://doi.org/10.3390/ijerph16214286
Jin S, Yuan R, Zhang Y, Jin X. Chinese Consumers’ Preferences for Attributes of Fresh Milk: A Best–Worst Approach. International Journal of Environmental Research and Public Health. 2019; 16(21):4286. https://doi.org/10.3390/ijerph16214286
Chicago/Turabian StyleJin, Shaosheng, Rao Yuan, Yan Zhang, and Xin Jin. 2019. "Chinese Consumers’ Preferences for Attributes of Fresh Milk: A Best–Worst Approach" International Journal of Environmental Research and Public Health 16, no. 21: 4286. https://doi.org/10.3390/ijerph16214286
APA StyleJin, S., Yuan, R., Zhang, Y., & Jin, X. (2019). Chinese Consumers’ Preferences for Attributes of Fresh Milk: A Best–Worst Approach. International Journal of Environmental Research and Public Health, 16(21), 4286. https://doi.org/10.3390/ijerph16214286