Linkages between Trade, CO2 Emissions and Healthcare Spending in China
Abstract
:1. Introduction
2. Trade Reforms, CO2 and Healthcare Spending in China
3. Theoretical Framework
3.1. Assumptions
3.1.1. Preferences
3.1.2. Technology
3.1.3. Technological Spillover and Scale Effect
3.1.4. Environment
3.1.5. Health Expenditures
3.2. Competitive Equilibrium
Market Clearing
4. Materials and Methods
4.1. Materials
4.2. Methods
5. Results and Discussion
5.1. Baseline Estimation
5.2. Robustness Test
5.3. OLS Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Aklin, M. Re-exploring the trade and environment nexus through the diffusion of pollution. Environ. Resour. Econ. 2016, 64, 663–682. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is Free Trade Good for the Environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Porter, G. Trade Competition and Pollution Standards: “Race to the Bottom” or “Stuck at the Bottom”. J. Environ. Dev. 1999, 8, 133–151. [Google Scholar] [CrossRef]
- Shapiro, J.S. Trade, CO2, and the Environment. Am. Econ. J. Econ. Pol. 2016, 8, 220–254. [Google Scholar] [CrossRef]
- Apergis, N.; Gupta, R.; Lau, C.K.M.; Mukherjee, Z.U.S. state-level carbon dioxide emissions: Does it affect health care expenditure? Renew. Sustain. Energy Rev. 2018, 91, 521–530. [Google Scholar] [CrossRef]
- Murthy, N.R.V.; Ukpolo, V. Aggregate health care expenditure in the United States: New results. Appl. Econ. Lett. 1995, 2, 419–421. [Google Scholar] [CrossRef]
- Di Matteo, L.; Di Matteo, R. Evidence on the determinants of Canadian provincial government health expenditures: 1965–1991. J. Health Econ. 1998, 17, 211–228. [Google Scholar] [CrossRef]
- Briggs, D. Environmental pollution and the global burden of disease. Br. Med. Bull. 2003, 68, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Jerrett, M.; Eyles, J.; Dufournaud, C.; Birch, S. Environmental influences on healthcare expenditures: An exploratory analysis from Ontario. Canada. J. Epidemiol. Community Health 2003, 57, 334–338. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; NBER Working Paper, 1991, No. 3914. Available online: https://www.nber.org/papers/w3914 (accessed on 15 August 2019).
- Copeland, B.R.; Taylor, M.S. Trade, growth, and the environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J. Determining the trade–environment composition effect: The role of capital, labor and environmental regulations. J. Environ. Econ. Manag. 2003, 46, 363–383. [Google Scholar] [CrossRef]
- Yazdi, S.K.; Khanalizadeh, B. Air pollution, economic growth and health care expenditure. Econ. Res.-Ekon. Istraživanja 2017, 30, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Ostro, B.D.; Rothschild, S. Air pollution and acute respiratory morbidity: An observational study of multiple pollutants. Environ. Res. 1989, 50, 238–247. [Google Scholar] [CrossRef]
- Schwartz, J.; Dockery, D.W. Increased Mortality in Philadelphia Associated with Daily Air Pollution Concentrations. Am. Rev. Respir. Dis. 1992, 145, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.C.; Selte, H.K. Air pollution and sick-leaves. Environ. Resour. Econ. 2000, 16, 31–50. [Google Scholar] [CrossRef]
- Chaabouni, S.; Saidi, K. The dynamic links between carbon dioxide (CO2) emissions, health spending and GDP growth: A case study for 51 countries. Environ. Res. 2017, 158, 137–144. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Mead, R.W.; Brajer, V. Protecting China’s children: Valuing the health impacts of reduced air pollution in Chinese cities. Environ. Dev. Econ. 2005, 10, 745–768. [Google Scholar] [CrossRef]
- Narayan, P.K.; Narayan, S. Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy 2010, 38, 661–666. [Google Scholar] [CrossRef]
- Janke, K.M.; Propper, C.; Henderson, J. Do current levels of air pollution kill? The impact of air pollution on population mortality in England. Health Econ. 2009, 18, 1031–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remoundou, K.; Koundouri, P. Environmental Effects on Public Health: An Economic Perspective. Int. J. Environ. Res. Public Health 2009, 6, 2160–2178. [Google Scholar] [CrossRef] [PubMed]
- Beatty, T.K.; Shimshack, J.P. Air pollution and children’s respiratory health: A cohort analysis. J. Environ. Econ. Manag. 2014, 67, 39–57. [Google Scholar] [CrossRef]
- Young, A. The razor’s edge: Distortions and incremental reform in the People’s Republic of China. Q. J. Econ. 2000, 115, 1091–1135. [Google Scholar] [CrossRef]
- Imbruno, M. China and WTO liberalization: Imports, tariffs and non-tariff barriers. China Econ. Rev. 2016, 38, 222–237. [Google Scholar] [CrossRef]
- Vennemo, H.; Aunan, K.; He, J.; Hu, T.; Li, S.; Rypd3al, K. Environmental impacts of China’s WTO-accession. Ecol. Econ. 2008, 64, 893–911. [Google Scholar] [CrossRef]
- Demurger, S.D.; SACHS, J.; Woo, W.T.; Shuming, B.; Chang, G. The relative contributions of location and preferential policies in China’s regional development: Being in the right place and having the right incentives. China Econ. Rev. 2002, 13, 444–465. [Google Scholar] [CrossRef]
- The World Bank. World Development Indicators. 2017. Available online: https://datacatalog.worldbank.org/dataset/world-development-indicators (accessed on 22 December 2017).
- National Bureau of Statistics. China Energy Statistical Yearbook, 1st ed.; China Statistical Press: Beijing, China, 2015.
- Shuai, C.; Chen, X.; Wu, Y.; Zhang, Y.; Tan, Y. A three-step strategy for decoupling economic growth from carbon emission: Empirical evidences from 133 countries. Sci. Total Environ. 2019, 646, 524–543. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.W.; Shuai, C.; Shen, L.; Zhang, Y.; Liao, S. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Y.; Lou, Y.; Zeng, D.; Shuai, C.; Song, X. What drives the carbon emission in the Chinese cities?—A case of pilot low carbon city of Beijing. J. Clean. Prod. 2018, 174, 343–354. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, X.; Wu, Y.; Tan, Y.; Zhang, Y.; Shen, L. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. CO2 and Other Greenhouse Gas Emissions (2017). Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 15 August 2019).
- Zeng, J.; He, Q. Does industrial air pollution drive health care expenditures? Spatial evidence from China. J. Clean. Prod. 2019, 218, 400–408. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Y.; Ye, X. Haze, air pollution, and health in China. Lancet 2013, 382, 2067. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Jiang, K.; Meng, J.; Guan, D.; Xu, Y.; Tao, S. Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China’s iron and steel industry. J. Clean. Prod. 2018, 185, 331–341. [Google Scholar] [CrossRef]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- He, G.; Fan, M.; Zhou, M. The effect of air pollution on mortality in China: Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016, 79, 18–39. [Google Scholar] [CrossRef]
- Deng, Q.; Lu, C.; Li, Y.; Chen, L.; He, Y.; Sundell, J.; Norbäck, D. Association between prenatal exposure to industrial air pollution and onset of early childhood ear infection in China. Atmos. Environ. 2017, 157, 18–26. [Google Scholar] [CrossRef]
- Jiang, W.; Lu, C.; Miao, Y.; Xiang, Y.; Chen, L.; Deng, Q. Outdoor particulate air pollution and indoor renovation associated with childhood pneumonia in China. Atmos. Environ. 2018, 174, 76–81. [Google Scholar] [CrossRef]
- Armington, P.S. A theory of demand for products distinguished by place of production. Staff Pap. 1969, 16, 159–178. [Google Scholar] [CrossRef]
- Eaton, J.; Kortum, S. Technology, geography, and trade. Econometrica 2002, 70, 1741–1779. [Google Scholar] [CrossRef]
- Bernard, A.B.; Eaton, J.; Jensen, J.B.; Kortum, S. Plants and Productivity in International Trade. Am. Econ. Rev. 2003, 93, 1268–1290. [Google Scholar] [CrossRef]
- Nordhaus, W.D. A Question of Balance: Weighing the Options on Global Warming Policies; Yale University Press: New Haven, CT, USA, 2014. [Google Scholar]
- Kao, T.-W.D.; Lin, W.T. The relationship between perceived e-service quality and brand equity: A simultaneous equations system approach. Comput. Hum. Behav. 2016, 57, 208–218. [Google Scholar] [CrossRef]
- Bowden, R.J.; Turkington, D.A. Instrumental Variables; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Brundy, J.M.; Jorgenson, D.W. Efficient estimation of simultaneous equations by instrumental variables. Rev. Econ. Stat. 1971, 53, 207–224. [Google Scholar] [CrossRef]
- Staiger, D.O.; Stock, J.H. Instrumental Variables Regression with Weak Instruments; National Bureau of Economic Research Cambridge: Cambridge, MA, USA, 1994. [Google Scholar]
- Zellner, A.; Theil, H. Three-Stage Least Squares: Simultaneous Estimation of Simultaneous Equations. Adv. Stud. Theor. Appl. Econom. 1992, 23, 147–178. [Google Scholar]
- Lin, W.T.; Shao, B.B. The relationship between user participation and system success: A simultaneous contingency approach. Inf. Manag. 2000, 37, 283–295. [Google Scholar] [CrossRef]
Variable | Coefficient | Standard Error | T-Ratio [Prob] |
---|---|---|---|
CO2 | 0.331 | 0.166 | 1.996 [0.046] * |
TL | 0.048 | 0.036 | 1.334 [0.193] |
PG | 0.3543 | 9.5314 | 6.677 [0.000] *** |
IP | 0.0018 | 0.0038 | 0.475 [0.642] |
R-Squared | 0.97638 | R-Bar-Squared | 0.97323 |
F-Stat. [Prob. F Stat] | 310.05 [0.000] | ||
DW-statistic | 1.88365 | System Log-likelihood | 38.3117 |
Variable Coefficient | Standard Error | T-Ratio [Prob] | |
---|---|---|---|
TL | 0.047 | 0.0231 | 2.043 [0.043] * |
HE | 0.142 | 0.219 | 0.645 [0.482] |
PG | 0.786 | 0.258 | 3.047 [0.009] ** |
IP | 0.841 | 0.126 | 6.674 [0.000] *** |
R-Squared | 0.973 | R-Bar-Squared | 0.96743 |
S.E. of Regression | 0.072 | F-Stat. F (3,14) | 169.3 [0.000] |
DW-statistic | 1.676 | System Log-likelihood | 38.311 |
Variable | Coefficient | Standard Error | T-Ratio [Prob] |
---|---|---|---|
CO2 | 0.298 | 0.163 | 1.978 [0.048] * |
TL | 0.018 | 0.038 | 0.474 [0.632] |
PG | 0.3648 | 0.0524 | 6.961 [0.000] *** |
IP | 0.0028 | 0.0046 | 0.608 [0.482] |
R-Squared | 0.97608 | R-Bar-Squared | 0.97282 |
F-Stat. [Prob. F Stat] | 305.235 [0.000] | ||
DW-statistic | 1.872 | System Log-likelihood | 39.275 |
Variable | Coefficient | Standard Error | T-Ratio [Prob] |
---|---|---|---|
TL | 0.054 | 0.025 | 2.195 [0.041] * |
HE | 0.250 | 0.207 | 1.208 [0.281] |
PG | 0.758 | 0.245 | 3.097 [0.008] ** |
IP | 0.793 | 0.136 | 5.831 [0.000] *** |
R-Squared | 0.9728 | R-Bar-Squared | 0.96707 |
F-Stat. F (3,14) | 167.3 [0.000] | ||
DW-statistic | 1.796 | System Log-likelihood | 37.275 |
Null Hypothesis: | F-Statistic | Prob. |
---|---|---|
CO2 does not Granger Cause TL | 2.34514 | 0.1418 |
TL does not Granger Cause CO2 | 5.29775 | 0.0213 * |
HE does not Granger Cause TL | 2.85156 | 0.1180 |
TL does not Granger Cause HE | 1.00979 | 0.3933 |
IP does not Granger Cause TL | 4.47741 | 0.0353 * |
TL does not Granger Cause IP | 2.53736 | 0.1205 |
HE does not Granger Cause PG | 1.80703 | 0.2096 |
PG does not Granger Cause HE | 9.07768 | 0.0047 ** |
CO2 does not Granger Cause PG | 2.64209 | 0.1120 |
PG does not Granger Cause CO2 | 5.07730 | 0.0253 * |
HE does not Granger Cause CO2 | 0.30366 | 0.7441 |
CO2 does not Granger Cause HE | 4.17093 | 0.0449 * |
CO2 does not Granger Cause IP | 1.09409 | 0.3550 |
IP does not Granger Cause CO2 | 10.2660 | 0.0009 *** |
HE does not Granger Cause IP | 1.99829 | 0.1782 |
IP does not Granger Cause HE | 0.40864 | 0.6735 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, I.; Ali, S.; Shah, M.H.; Yasim, F.; Rehman, A.; Al-Ghazali, B.M. Linkages between Trade, CO2 Emissions and Healthcare Spending in China. Int. J. Environ. Res. Public Health 2019, 16, 4298. https://doi.org/10.3390/ijerph16214298
Ullah I, Ali S, Shah MH, Yasim F, Rehman A, Al-Ghazali BM. Linkages between Trade, CO2 Emissions and Healthcare Spending in China. International Journal of Environmental Research and Public Health. 2019; 16(21):4298. https://doi.org/10.3390/ijerph16214298
Chicago/Turabian StyleUllah, Irfan, Sher Ali, Muhammad Haroon Shah, Farrah Yasim, Alam Rehman, and Basheer M. Al-Ghazali. 2019. "Linkages between Trade, CO2 Emissions and Healthcare Spending in China" International Journal of Environmental Research and Public Health 16, no. 21: 4298. https://doi.org/10.3390/ijerph16214298
APA StyleUllah, I., Ali, S., Shah, M. H., Yasim, F., Rehman, A., & Al-Ghazali, B. M. (2019). Linkages between Trade, CO2 Emissions and Healthcare Spending in China. International Journal of Environmental Research and Public Health, 16(21), 4298. https://doi.org/10.3390/ijerph16214298