Prevalence and Associated Risk Factors of Chronic Kidney Disease in an Elderly Population from Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Screening Protocol and Evaluation Criteria
2.3. Albuminuria
2.4. Estimated Glomerular Filtration Rate (eGFR)
2.5. Hypertension Status
2.6. Diabetes Status
2.7. Other Measurements
2.8. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Participants
3.2. Albuminuria
3.3. Estimated GFR < 60 mL/min per 1.73 m2
3.4. Prevalence of CKD
3.5. Multivariate Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Versino, E.; Piccoli, G.B. Chronic Kidney Disease: The Complex History of the Organization of Long-Term Care and Bioethics. Why Now, More Than Ever, Action is Needed. Int. J. Environ. Res. Public Health 2019, 16, 785. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.H.; Lv, J.; Garg, A.X.; Knight, J.; et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef]
- Wang, F.; Yang, C.; Long, J.; Zhao, X.; Tang, W.; Zhang, D.; Bai, K.; Su, Z.; Gao, B.; Chu, H.; et al. Executive summary for the 2015 Annual Data Report of the China Kidney Disease Network (CK-NET). Kidney Int. 2019, 95, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm (accessed on 5 October 2019).
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of chronic kidney disease in the United States. JAMA 2007, 298, 2038–2047. [Google Scholar] [CrossRef]
- Duan, J.; Wang, C. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in Chinese rural residents: A cross-sectional survey. Sci. Rep. 2019, 9, 10408. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef]
- Arora, P.; Vasa, P.; Brenner, D.; Iglar, K.; McFarlane, P.; Morrison, H.; Badawi, A. Prevalence estimates of chronic kidney disease in Canada: Results of a nationally representative survey. CMAJ 2013, 185, E417–E423. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, Y.C.; Oh, S.W.; Koo, H.S.; Na, K.Y.; Chae, D.W.; Kim, S.; Chin, H.J. Trends in the prevalence of chronic kidney disease, other chronic diseases and health-related behaviors in an adult Korean population: Data from the Korean National Health and Nutrition Examination Survey (KNHANES). Nephrol. Dial. Transplant. 2011, 26, 3975–3980. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [Google Scholar] [CrossRef]
- Eknoyan, G.; Levin, N.W. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Ma, Y.C.; Zuo, L.; Chen, J.H.; Luo, Q.; Yu, X.Q.; Li, Y.; Xu, J.S.; Huang, S.M.; Wang, L.N.; Huang, W.; et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 2937–2944. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, C.; Zhang, Q.; Li, Y.; Zhang, J.; Ma, X.; Peng, H.; Lou, T. Prevalence of Homocysteine-Related Hypertension in Patients With Chronic Kidney Disease. J. Clin. Hypertens. 2017, 19, 151–160. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Kwong, J.S.; Chen, H.; Sun, X.; Tian, H.; Li, S. Diagnosis and treatment for hyperuricaemia and gout: A protocol for a systematic review of clinical practice guidelines and consensus statements. BMJ Open 2017, 7, e014928. [Google Scholar] [CrossRef]
- Chen, N.; Wang, W.; Huang, Y.; Shen, P.; Pei, D.; Yu, H.; Shi, H.; Zhang, Q.; Xu, J.; Lv, Y.; et al. Community-based study on CKD subjects and the associated risk factors. Nephrol. Dial. Transplant. 2009, 24, 2117–2123. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liu, Q.; Wang, H.; Chen, W.; Johnson, R.J.; Dong, X.; Li, H.; Ba, S.; Tan, J.; Luo, N.; et al. Prevalence and risk factors of chronic kidney disease: A population study in the Tibetan population. Nephrol. Dial. Transplant. 2011, 26, 1592–1599. [Google Scholar] [CrossRef]
- Chang, Y.; Li, Y.; Guo, X.; Chen, Y.; Dai, D.; Sun, Y. The Prevalence of Hypertension Accompanied by High Homocysteine and its Risk Factors in a Rural Population: A Cross-Sectional Study from Northeast China. Int. J. Environ. Res. Public Health 2017, 14, 376. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.; et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, P.; Wang, F.; Zuo, L.; Zhou, Y.; Shi, Y.; Li, G.; Jiao, S.; Liu, Z.; Liang, W.; et al. Prevalence and factors associated with CKD: A population study from Beijing. Am. J. Kidney Dis. 2008, 51, 373–384. [Google Scholar] [CrossRef]
- Chen, W.; Chen, W.; Wang, H.; Dong, X.; Liu, Q.; Mao, H.; Tan, J.; Lin, J.; Zhou, F.; Luo, N.; et al. Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol. Dial. Transplant. 2009, 24, 1205–1212. [Google Scholar] [CrossRef]
- Zhang, L.; Zuo, L.; Xu, G.; Wang, F.; Wang, M.; Wang, S.; Lv, J.; Liu, L.; Wang, H. Community-based screening for chronic kidney disease among populations older than 40 years in Beijing. Nephrol. Dial. Transplant. 2007, 22, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Amanullah, F.; Baig-Ansari, N.; Lotia-Farrukh, I.; Khan, F.S. Prevalence and risk factors of kidney disease in urban Karachi: Baseline findings from a community cohort study. BMC Res. Notes 2014, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- Huda, M.N.; Alam, K.S.; Harun Ur, R. Prevalence of chronic kidney disease and its association with risk factors in disadvantageous population. Int. J. Nephrol. 2012, 2012, 267329. [Google Scholar] [CrossRef] [PubMed]
- Varma, P.P.; Raman, D.K.; Ramakrishnan, T.S.; Singh, P.; Varma, A. Prevalence of early stages of chronic kidney disease in apparently healthy central government employees in India. Nephrol. Dial. Transplant. 2010, 25, 3011–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparini, A.; Evans, M.; Coresh, J.; Grams, M.E.; Norin, O.; Qureshi, A.R.; Runesson, B.; Barany, P.; Arnlov, J.; Jernberg, T.; et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol. Dial. Transplant. 2016, 31, 2086–2094. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; He, K.; Wang, J.; Zhao, M.H.; Li, Y.; Zhang, L.; Saran, R.; Bragg-Gresham, J.L. Prevalence and Risk Factors for CKD: A Comparison Between the Adult Populations in China and the United States. Kidney Int. Rep. 2018, 3, 1135–1143. [Google Scholar] [CrossRef]
- Chadban, S.J.; Briganti, E.M.; Kerr, P.G.; Dunstan, D.W.; Welborn, T.A.; Zimmet, P.Z.; Atkins, R.C. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J. Am. Soc. Nephrol. 2003, 14, S131–S138. [Google Scholar] [CrossRef]
- Zdrojewski, L.; Zdrojewski, T.; Rutkowski, M.; Bandosz, P.; Krol, E.; Wyrzykowski, B.; Rutkowski, B. Prevalence of chronic kidney disease in a representative sample of the Polish population: Results of the NATPOL 2011 survey. Nephrol. Dial. Transplant. 2016, 31, 433–439. [Google Scholar] [CrossRef]
- Imai, E.; Horio, M.; Watanabe, T.; Iseki, K.; Yamagata, K.; Hara, S.; Ura, N.; Kiyohara, Y.; Moriyama, T.; Ando, Y.; et al. Prevalence of chronic kidney disease in the Japanese general population. Clin. Exp. Nephrol. 2009, 13, 621–630. [Google Scholar] [CrossRef]
- Du, P.; Yang, H. Comparative Study on Population Ageing Between China and Asian Countries. Popul. Dev. 2009, 15, 75–80. [Google Scholar]
- Oh, T.R.; Choi, H.S.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Sung, S.A.; Kim, Y.S.; Oh, K.H. Hyperuricemia has increased the risk of progression of chronic kidney disease: Propensity score matching analysis from the KNOW-CKD study. Sci. Rep. 2019, 9, 6681. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Kaze, A.D.; McMullan, C.J.; Isakova, T.; Waikar, S.S. Uric Acid and the Risks of Kidney Failure and Death in Individuals With CKD. Am. J. Kidney Dis. 2018, 71, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fung, T.T.; Hu, F.B.; Curhan, G.C. Association of dietary patterns with albuminuria and kidney function decline in older white women: A subgroup analysis from the Nurses’ Health Study. Am. J. Kidney Dis. 2011, 57, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.T.; Kottgen, A.; Law, A.; Grams, M.; Baer, A.N.; Coresh, J.; McAdams-DeMarco, M.A. Gout in Older Adults: The Atherosclerosis Risk in Communities Study. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2016, 71, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Major, T.J.; Topless, R.K.; Dalbeth, N.; Merriman, T.R. Evaluation of the diet wide contribution to serum urate levels: Meta-analysis of population based cohorts. BMJ 2018, 363, k3951. [Google Scholar] [CrossRef]
- Xu, X.; Qin, X.; Li, Y.; Sun, D.; Wang, J.; Liang, M.; Wang, B.; Huo, Y.; Hou, F.F. Efficacy of Folic Acid Therapy on the Progression of Chronic Kidney Disease: The Renal Substudy of the China Stroke Primary Prevention Trial. JAMA Intern. Med. 2016, 176, 1443–1450. [Google Scholar] [CrossRef]
- Xie, D.; Yuan, Y.; Guo, J.; Yang, S.; Xu, X.; Wang, Q.; Li, Y.; Qin, X.; Tang, G.; Huo, Y.; et al. Hyperhomocysteinemia predicts renal function decline: A prospective study in hypertensive adults. Sci. Rep. 2015, 5, 16268. [Google Scholar] [CrossRef]
- Li, S.; Qiu, B.; Lu, H.; Lai, Y.; Liu, J.; Luo, J.; Zhu, F.; Hu, Z.; Zhou, M.; Tian, J.; et al. Hyperhomocysteinemia Accelerates Acute Kidney Injury to Chronic Kidney Disease Progression by Downregulating Heme Oxygenase-1 Expression. Antioxid. Redox Signal. 2019, 30, 1635–1650. [Google Scholar] [CrossRef]
- Botto, L.D.; Yang, Q. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review. Am. J. Epidemiol. 2000, 151, 862–877. [Google Scholar] [CrossRef]
- Chukwuonye, I.I.; Ohagwu, K.A.; Adelowo, O.O.; Chuku, A.; Obi, E.C.; Onwuchekwa, U.; Anyabolu, E.N.; Oviasu, E. Prevalence and Predictors of Chronic Kidney Disease in a Semiurban Community in Lagos. Int. J. Nephrol. 2019, 2019, 1625837. [Google Scholar] [CrossRef] [PubMed]
- Lokpo, S.Y.; Osei-Yeboah, J.; Owiredu, W.K.B.A.; Ussher, F.A.; Orish, V.N.; Gadzeto, F.; Ntiamoah, P.; Botchway, F.; Muanah, I.; Asumbasiya Aduko, R. Renal Dysfunction among Ghanaians Living with Clinically Diagnosed Hypertension in the Asutifi-South District: A Cross-Sectional Descriptive Study at the St. Elizabeth Hospital, Hwidiem. Int. J. Hypertens. 2018, 2018, 8428063. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Guo, X.; Yang, H.; Zheng, L.; Sun, Y. Cardiometabolic comorbidities and epidemiological features among rural Chinese elderly people. Aging Clin. Exp. Res. 2019, 31, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Hong, D.; He, Q.; Wen, Y.; Li, G. Epidemiology investigation and analysis of patients with hemodialysis in Sichuan province of China. Ren. Fail. 2019, 41, 644–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannor, E.K.; Sarfo, F.S. Prevalence and predictors of chronic kidney disease among Ghanaian patients with hypertension and diabetes mellitus: A multicenter cross-sectional study. J. Clin. Hypertens. 2019, 21, 1542–1550. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.C.; Zhang, Z.; Lin, B.C.; Lin, C.; Deng, H.B.; Chuang, Y.C.; Chan, J.W.M.; Jiang, W.K.; Tam, T.; Chang, L.Y.; et al. Long-Term Exposure to Ambient Fine Particulate Matter and Chronic Kidney Disease: A Cohort Study. Environ. Health Perspect. 2018, 126, 107002. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chu, D.C.; Lee, J.H.; Yang, Y.R.; Chan, C.C. Traffic-related air pollution associated with chronic kidney disease among elderly residents in Taipei City. Environ. Pollut. 2018, 234, 838–845. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Li, T.; Yan, Y.; Xian, H.; Al-Aly, Z. Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to ESRD. J. Am. Soc. Nephrol. 2018, 29, 218–230. [Google Scholar] [CrossRef]
- Aztatzi-Aguilar, O.G.; Uribe-Ramirez, M.; Narvaez-Morales, J.; De Vizcaya-Ruiz, A.; Barbier, O. Early kidney damage induced by subchronic exposure to PM2.5 in rats. Part. Fibre Toxicol. 2016, 13, 68. [Google Scholar] [CrossRef]
Participants with no Indicators of CKD (n = 30,643) | Participants with eGFR < 60 mL/min per 1.73 m2 (n = 1377) | Participants with Albuminuria (n = 2929) | Participants with any Indicators of CKD (n = 3945) | Total (n = 34,588) | |
---|---|---|---|---|---|
Age (years) | 70.76 ± 6.61 | 74.70 ± 7.69 | 72.17 ± 6.91 | 72.87 ± 7.24 | 71.00 ± 6.72 |
Age group (years) | |||||
60–69 | 15,710 (51.3%) | 431 (31.3%) | 1266 (43.2%) | 1578 (40.0%) | 17,288 (50.0%) |
70–79 | 11,371 (37.1%) | 534 (38.8%) | 1167 (39.8%) | 1557 (39.5%) | 12,928 (37.4%) |
≥80 | 3562 (11.6%) | 412 (29.9%) | 496 (16.9%) | 810 (20.5%) | 4372 (12.6%) |
Sex (%) | |||||
Male | 13,385 (43.7%) | 490 (35.6%) | 1260 (43.0%) | 1592 (40.4%) | 14,977 (43.3%) |
Female | 17,258 (56.3%) | 887 (64.4%) | 1669 (57.0%) | 2353 (59.6%) | 19,611 (56.7%) |
Body mass index (kg/m2) | 25.80 ± 3.76 | 26.26 ± 4.18 | 26.46 ± 3.97 | 26.38 ± 4.02 | 25.86 ± 3.80 |
Body mass index group (kg/m2) | |||||
<18.5 | 404 (1.3%) | 14 (1.0%) | 30 (1.0%) | 43 (1.1%) | 447 (1.3%) |
18.5–23.9 | 9447 (30.8%) | 399 (29.0%) | 753 (25.7%) | 1049 (26.6%) | 10,496 (30.3%) |
24.0–27.9 | 13,137 (42.9%) | 568 (41.2%) | 1200 (41.0%) | 1629 (41.3%) | 14,766 (42.7%) |
≥28 | 7655 (25.0%) | 396 (28.8%) | 946 (32.3%) | 1224 (31.0%) | 8879 (25.7%) |
Central obesity (%) | 17,088 (55.8%) | 823 (59.8%) | 1763 (60.2%) | 2378 (60.3%) | 19,466 (56.3%) |
Diabetes (%) | 7540 (24.6%) | 378 (27.5%) | 745 (25.4%) | 1026 (26.0%) | 8566 (24.8%) |
Hypertension (%) | 21,218 (69.2%) | 1126 (81.8%) | 2406 (82.1%) | 3209 (81.3%) | 24,427 (70.6%) |
Anemia (%) | 5439 (17.7%) | 527 (38.3%) | 630 (21.5%) | 989 (25.1%) | 6428 (18.6%) |
Hyperuricemia (%) | 6586 (21.5%) | 817 (59.3%) | 902 (30.8%) | 1499 (38.0%) | 8085 (23.4%) |
Hyperhomocysteinemia (%) | 4124 (13.5%) | 712 (51.7%) | 721 (24.6%) | 1207 (30.6%) | 5331 (15.4%) |
Exercise (%) | 10,086 (32.9%) | 345 (25.1%) | 902 (30.8%) | 1163 (29.5%) | 11,249 (32.5%) |
Uric acid (μmol/L) | 328.22 ± 87.65 | 415.10 ± 105.96 | 349.11 ± 100.47 | 365.35 ± 105.47 | 332.46 ± 90.63 |
Homocysteine (μmol/L) | 11.85 ± 4.90 | 17.01 ± 7.47 | 13.46 ± 6.19 | 14.27 ± 6.67 | 12.13 ± 5.19 |
Total cholesterol (mmol/L) | 5.77 ± 1.12 | 5.90 ± 1.27 | 5.86 ± 1.24 | 5.87 ± 1.24 | 5.78 ± 1.13 |
Triglyceride (mmol/L) | 1.50 ± 0.96 | 1.84 ± 1.20 | 1.82 ± 1.35 | 1.81 ± 1.30 | 1.54 ± 1.01 |
LDL cholesterol (mmol/L) | 3.39 ± 0.84 | 3.55 ± 0.94 | 3.50 ± 0.95 | 3.51 ± 0.94 | 3.41 ± 0.85 |
HDL cholesterol (mmol/L) | 1.49 ± 0.30 | 1.43 ± 0.28 | 1.46 ± 0.30 | 1.46 ± 0.3 | 1.48 ± 0.30 |
Hemoglobin (g/L) | 141.89 ± 13.99 | 134.10 ± 17.81 | 141.46 ± 15.94 | 139.86 ± 16.50 | 141.66 ± 14.31 |
Blood urea nitrogen (mmol/L) | 5.75 ± 1.48 | 8.43 ± 3.59 | 6.62 ± 2.67 | 6.92 ± 2.75 | 5.88 ± 1.72 |
Systolic blood pressure (mmHg) | 145.07 ± 22.46 | 150.76 ± 24.66 | 153.45 ± 25.08 | 152.23 ± 24.81 | 145.89 ± 22.86 |
Diastolic blood pressure (mmHg) | 79.35 ± 12.12 | 78.85 ± 13.14 | 81.53 ± 13.29 | 80.77 ± 13.30 | 79.51 ± 12.26 |
Serum creatinine (mg/dl) | 0.78 ± 0.18 | 1.42 ± 0.72 | 0.91 ± 0.54 | 1.02 ± 0.54 | 0.81 ± 0.26 |
eGFR (mL/min per 1.73m2) | 103.93 ± 27.43 | 50.19 ± 10.60 | 94.07 ± 32.46 | 83.22 ± 33.78 | 101.57 ± 28.98 |
eGFR (mL/min per 1.73m2) | Kidney Function | Albuminuria | CKD | ||||
---|---|---|---|---|---|---|---|
n | Prevalence (95% CI) | n | Prevalence (95% CI) | Stage | n | Prevalence (95% CI) | |
≥90 | 20,643 | 59.68 (59.17–60.20) | 1485 | 7.19 (6.84–7.55) | 1 | 1485 | 4.29 (4.08–4.51) |
60–89 | 12,568 | 36.34 (35.83–36.84) | 1083 | 8.62 (8.13–9.11) | 2 | 1083 | 3.13 (2.95–3.31) |
30–59 | 1294 | 3.74 (3.54–3.94) | 310 | 23.96 (21.63–26.29) | 3 | 1294 | 3.74 (3.54–3.94) |
15–29 | 56 | 0.16 (0.12–0.20) | 32 | 57.14 (43.77–70.52) | 4 | 56 | 0.16 (0.1–0.20) |
<15 | 27 | 0.08 (0.05–0.11) | 19 | 70.37 (51.96–88.78) | 5 | 27 | 0.08 (0.05–0.11) |
Total | 34,588 | 100 | 2929 | 8.47 (8.17–8.76) | Total | 3945 | 11.41 (11.07–11.74) |
Reduced eGFR | Albuminuria | CKD | |
---|---|---|---|
Age | |||
60–69 | 2.49% (2.26–2.73) | 7.32% (6.93–7.71) | 9.13% (8.70–9.56) |
70–79 | 4.13% (3.79–4.47) | 9.03% (8.53–9.52) | 12.04% (11.48–12.60) |
≥80 | 9.42% (8.56–10.29) | 11.34% (10.40–12.29) | 18.53% (17.37–19.68) |
Sex | |||
Male | 3.27% (2.99–3.56) | 8.41% (7.97–8.86) | 10.63% (10.14–11.12) |
Female | 4.52% (4.23–4.81) | 8.51% (8.12–8.90) | 12.00% (11.54–12.45) |
Comorbidity | |||
Hypertension | 4.61% (4.35–4.87) | 9.85% (9.48–10.22) | 13.14% (12.71–13.56) |
Diabetes | 4.41% (3.98–4.85) | 8.70% (8.10–9.29) | 11.98% (11.29–12.67) |
Anemia | 8.20% (7.53–8.87) | 9.80% (9.07–10.53) | 15.39% (14.50–16.27) |
Obesity | 4.46% (4.03–4.89) | 10.65% (10.01–11.30) | 13.79% (13.07–14.50) |
Hyperuricemia | 10.11% (9.45–10.76) | 11.16% (10.47–11.84) | 18.54% (17.69–19.39) |
Hyperhomocysteinemia | 13.36% (12.44–14.27) | 13.52% (12.61–14.44) | 22.64% (21.52–23.76) |
Hypercholesteremia | 4.60% (4.21–4.99) | 9.60% (9.05–10.15) | 12.91% (12.29–13.53) |
Hypertriglyceridemia | 6.80% (6.08–7.52) | 13.05% (12.09–14.01) | 17.55% (16.47–18.64) |
LDL-C ≥ 4.1 mmol/L | 5.27% (4.73–5.81) | 10.62% (9.87–11.36) | 14.32% (13.48–15.17) |
Variables | Decreased eGFR | Albuminuria | CKD | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age change by 10 years | 1.267 (1.105–1.453) | 0.001 | 1.142 (1.048–1.244) | 0.002 | 1.192 (1.104–1.288) | <0.001 |
Female (vs. male) | 1.626 (1.406–1.879) | <0.001 | 0.845 (0.770–0.927) | <0.001 | 1.052 (0.968–1.144) | 0.233 |
Central obesity | 0.964 (0.842–1.102) | 0.590 | 1.046 (0.956–1.145) | 0.327 | 1.030 (0.951–1.117) | 0.468 |
Obesity | 0.925 (0.782–1.093) | 0.360 | 1.251 (1.117–1.400) | <0.001 | 1.153 (1.043–1.275) | 0.006 |
Hypertension | ||||||
No indication of disease | Ref | - | Ref | - | Ref | - |
Indication of disease and under control | 1.818 (1.459–2.265) | <0.001 | 1.563 (1.327–1.841) | <0.001 | 1.640 (1.424–1.888) | <0.001 |
Disease not in control | 1.262 (1.084–1.469) | 0.003 | 1.609 (1.452–1.782) | <0.001 | 1.473 (1.348–1.611) | <0.001 |
Diabetes | ||||||
No indication of disease | Ref | - | Ref | - | Ref | - |
Indication of disease and under control | 1.671 (1.254–2.225) | <0.001 | 1.551 (1.248–1.928) | <0.001 | 1.590 (1.317–1.920) | <0.001 |
Disease not in control | 1.558 (1.364–1.778) | <0.001 | 2.711 (2.496–2.945) | <0.001 | 2.366 (2.193–2.552) | <0.001 |
Anemia | 2.292 (2.017–2.606) | <0.001 | 1.235 (1.118–1.364) | <0.001 | 1.442 (1.324–1.571) | <0.001 |
Hyperuricemia | 3.992 (3.541–4.499) | <0.001 | 1.237 (1.133–1.350) | <0.001 | 1.816 (1.685–1.957) | <0.001 |
Hyperhomocysteinemia | 5.645 (4.971–6.409) | <0.001 | 1.782 (1.614–1.967) | <0.001 | 2.582 (2.373–2.810) | <0.001 |
Hypercholesteremia | 0.900 (0.765–1.059) | 0.206 | 0.922 (0.827–1.026) | 0.137 | 0.924 (0.840–1.017) | 0.108 |
Hypertriglyceridemia | 1.287 (1.108–1.495) | 0.001 | 1.299 (1.172–1.441) | <0.001 | 1.279 (1.165–1.404) | <0.001 |
LDL-C ≥ 4.1 mmol/L | 1.155 (0.960–1.391) | 0.127 | 1.149 (1.014–1.301) | 0.029 | 1.155 (1.034–1.291) | 0.011 |
Exercise | 0.784 (0.687–0.895) | <0.001 | 0.918 (0.843–0.998) | 0.045 | 0.888 (0.823–0.958) | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, A.; Pan, C.; Wang, H.; Jin, Z.; Lee, J.H.; Wu, Q.; Jiang, Q.; Cui, L. Prevalence and Associated Risk Factors of Chronic Kidney Disease in an Elderly Population from Eastern China. Int. J. Environ. Res. Public Health 2019, 16, 4383. https://doi.org/10.3390/ijerph16224383
Ji A, Pan C, Wang H, Jin Z, Lee JH, Wu Q, Jiang Q, Cui L. Prevalence and Associated Risk Factors of Chronic Kidney Disease in an Elderly Population from Eastern China. International Journal of Environmental Research and Public Health. 2019; 16(22):4383. https://doi.org/10.3390/ijerph16224383
Chicago/Turabian StyleJi, Andong, Chunlei Pan, Hongxia Wang, Zhezhen Jin, Joseph H. Lee, Qincheng Wu, Qixiao Jiang, and Lianhua Cui. 2019. "Prevalence and Associated Risk Factors of Chronic Kidney Disease in an Elderly Population from Eastern China" International Journal of Environmental Research and Public Health 16, no. 22: 4383. https://doi.org/10.3390/ijerph16224383
APA StyleJi, A., Pan, C., Wang, H., Jin, Z., Lee, J. H., Wu, Q., Jiang, Q., & Cui, L. (2019). Prevalence and Associated Risk Factors of Chronic Kidney Disease in an Elderly Population from Eastern China. International Journal of Environmental Research and Public Health, 16(22), 4383. https://doi.org/10.3390/ijerph16224383