The Dynamics of Changes and Spatial Differences in the Synthetic Indicator for Evaluating Environmental Performance in Poland: Current State
Abstract
:1. Introduction
- Water and wastewater management and water conservation.
- Waste management and protection of the Earth’s surface.
- Air pollution and climate control.
- Nature conservation and promotion of pro-environmental behaviors.
2. Materials and Methods
2.1. Study Area
2.2. Methods
- 2003 (base year—before Poland joined the European Union)
- 2004–2006 (first financial framework)
- 2007–2013 (second financial framework)
- 2014–2017 (third financial framework—present situation).
- The values of the analysed parameters (indicators) were standardised by zeroed unitarization, i.e., by converting destimulants into stimulants. This approach was adopted to ensure the comparability of the analyzed indicators. The following formulas were used [26]:zik—standardized value of the kth parameter (indicator) for the ith object (county),xik—real value of the kth parameter (indicator) for the ith object (county).
- The coordinates of the positive ideal solution (A+) and the negative ideal solution (A−) were determined with the use of the following formulas:The ideal solutions take on the following form in zeroed unitarization:K—number of parameters (indicators).
- The Euclidean distance between the evaluated objects (counties), PIS z+ and NIS z− was calculated with the use of the below formulas:N—number of objects (counties).
- The synthetic indicator (Si) for indirect criteria and the main criterion was calculated as follows [25]:
- The evaluated objects (counties) were arranged in a linear sequence, and the main criterion was divided into four typological classes based on the arithmetic mean and standard deviation of the synthetic indicator [23,26]:
- –class I–high value of the analysed parameter,
- –class II–moderately high value of the analysed parameter,
- –class III–moderately low value of the analysed parameter,
- –class IV–low value of the analysed parameter.
where:Si—value of the synthetic indicator calculated for the main criterion with the TOPSIS method,—arithmetic mean of the synthetic indicator Si,—standard deviation of the synthetic indicator Si.
3. Results
3.1. Indirect Criterion—Water and Wastewater Management, and Water Conservation
3.2. Indirect Criterion—Waste Management and Protection of The Earth’s Surface
3.3. Indirect Criterion—Air Polution and Climate Control
3.4. Indirect Criterion—Nature Conservation and Promotion of Pro-Environmental Behaviours
3.5. Main criterion—Synthetic Indicator for Evaluating Environmental Performance (SIEEP)
4. Discussion
4.1. Water and Wastewater Management and Water Conservation
4.2. Waste Management and The Protection of The Earth’s Surface
4.3. Air Pollution and Climate Control
4.4. Nature Conservation and Promotion of Pro-Environmental Behaviours
4.5. Synthetic Indicator for Evaluating Environmental Performance (SIEEP)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jalalian, A.; Arshadi, M.; Heidarzadeh, E. Responsibility of International Organisations in Protection of Human Right to Environment. Int. J. Adv. Biotechnol. Res. 2017, 8, 170–181. [Google Scholar]
- Proso, M. Civil Protection of the Human Right to a Safe and Healthy Environment. In Proceedings of the 16th International Scientific Conference on Economic and Social Development—The Legal Challenges of Modern World, Split, Croatia, 1–2 September 2016; pp. 282–288. [Google Scholar]
- Culbertson, A.M.; Martin, J.F.; Aloysius, N.; Ludsin, S.A. Anticipated impacts of climate change on 21st century Maumee River discharge and nutrient loads. J. Great Lakes Res. 2016, 42, 1332–1342. [Google Scholar] [CrossRef]
- Wang, Y.D.; Liang, J.P.; Yang, J.; Ma, X.; Li, X.; Wu, J.; Yang, G.; Ren, G.; Feng, Y. Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. J. Environ. Manag. 2019, 237, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef]
- Roberts, N. Public deliberation in an age of direct citizen participation. Am. Rev. Public. Adm. 2004, 34, 315–353. [Google Scholar] [CrossRef]
- Tu, Z.; Hu, T.; Shen, R. Evaluating public participation impact on environmental protection and ecological efficiency in China: Evidence from PITI disclosure. China Econ. Rev. 2019, 55, 111–123. [Google Scholar] [CrossRef]
- Moldan, B.; Hak, T. Central European Environmental History and the EU Accession. Environ. Sci. Technol. 2011, 45, 3823–3828. [Google Scholar] [CrossRef]
- Kostrowicki, A.S. The Condition of the Natural Environment in Poland and its Associated Problems. Geographica Slovenica 1990, 21, 19–34. [Google Scholar]
- Szejnwald-Brown, H.; Angel, D.; Angel, D.P.; Derr, P.G. Effective Environmental Regulation: Learning from Poland’s Experience; Greenwood Publishing Group: Westport, CT, USA, 2000; 248p. [Google Scholar]
- Opršal, Z.; Harmáček, J. Is Foreign Aid Responsive to Environmental Needs and Performance of Developing Countries? Case Study of the Czech Republic. Sustainability 2019, 11, 401. [Google Scholar] [CrossRef]
- Bokwa, A. Climatic issues in Polish foreign policy. In Europe and Global Climate Change: Politics, Foreign Policy and Regional Cooperation; Harris, P.G., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2007; pp. 113–138. [Google Scholar]
- Gawroński, K. Natural Environment Protection Instruments as Stimulators of Positive Changes in the Natural Environment and Landscape in Poland. Rom. Rev. Reg. Stud. 2007, III, 37–44. [Google Scholar]
- Chief Inspectorate of Environmental Protection. Stan środowiska w Polsce. Raport 2018 (State of the Environment in Poland. Report 2018); Chief Inspectorate of Environmental Protection: Warszawa, Poland, 2018; 251p.
- Ministry of the Environment. Fundusze Unii Europejskiej na Ochronę środowiska (European Union Funds for Environmental Protection); Ministry of the Environment: Warszawa, Poland, 2005; 27p.
- Ministry of Regional Development. Program Operacyjny Infrastruktura i Środowisko. Narodowe Strategiczne Ramy Odniesienia 2007–2013 (Infrastructure and Environment Operational Programme. National Strategic Framework 2007–2013); Ministry of Regional Development: Warszawa, Poland, 2007; 248p.
- Ministry of Infrastructure and Development. Program Operacyjny Infrastruktura i Środowisko 2014–2020 (Infrastructure and Environment Operational Programme 2014–2020); Ministry of Infrastructure and Development: Warszawa, Poland, 2014; 203p.
- BDL. Bank Danych Lokalnych (Local Data Bank). Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 7 June 2019).
- Milenkovic, N.; Vukmirovic, J.; Bulajic, M.; Radojicic, Z. A multivariate approach in measuring socio-economic development of MENA countries. Econ. Model. 2014, 38, 604–608. [Google Scholar] [CrossRef]
- Holgado Molina, M.d.M.; Salinas Fernandez, J.A.; Rodriguez Martin, J.A. A synthetic indicator to measure the economic and social cohesion of the regions of Spain and Portugal. Revista De Economia Mundial 2015, 39, 223–239. [Google Scholar]
- Pérez, A.G.; Hernández-López, M.; Echeverria, F.R. Sustainable Development Synthetic Indicators based on Distance for Venezuela. In Proceedings of the 7th International Conference on Urban Rehabilitation and Sustainability: Mechanics, Energy, Environment, Rome, Italy, 7–9 November 2015; pp. 194–200. [Google Scholar]
- Ding, L.; Shao, Z.; Zhang, H.; Xu, C.; Wu, D. A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method. Sustainability 2016, 8, 764. [Google Scholar] [CrossRef]
- Fura, B.; Wang, Q. The level of socioeconomic development of EU countries and the state of ISO 14001 certification. Quality & Quantity 2017, 51, 103–119. [Google Scholar]
- Nowak, E. Metody Taksonomiczne w Klasyfikacji Obiektów Społeczno-Gospodarczych (Taxonomic Methods in the Classification of Socio-Economic Objects); PWE: Warsaw, Poland, 1990; 201p. [Google Scholar]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making—Methods and Applications a State-of-the-Art Survey; Springer: Berlin, Germany, 1981; 259p. [Google Scholar]
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich (Taxonomic Methods for the Economic Classification of Agriculture and Rural Areas); Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2010; 399p. [Google Scholar]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef] [PubMed]
- Assari, A.; Maheshand, T.M.; Assari, E. Role of public participation in sustainability of historical city: Usage of TOPSIS method. Indian J. Sci. Technol. 2012, 5, 2289–2294. [Google Scholar]
- Wang, M.; Fang, H.; Bishwajit, G.; Xiang, Y.; Fu, H.; Feng, Z. Evaluation of rural primary health care in western China: A cross-sectional study. Int. J. Environ. Res. Public Health 2015, 12, 13843–13860. [Google Scholar] [CrossRef]
- Sarul, L.S.; Eren, Ö. The comparison of MCDM Methods including AHP, TOPSIS and MAUT with an Application on Gender Inequality Index. Eur. J. Interdiscip. Stud. 2016, 2, 183–196. [Google Scholar] [CrossRef]
- Faraji Sabokbar, H.; Hosseini, A.; Banaitis, A.; Banaitiene, N. A novel sorting method TOPSIS-SORT: An applicaiton for Tehran environmental quality evaluation. E+M Ekonomie a Management 2016, 19, 87–104. [Google Scholar] [CrossRef]
- Carbonaro, I. Measuring Italian Well-Being by Modified TOPSIS (Tecnique for Order Preference by Similarity to Ideal Solution). In Proceedings of the ISI 58th World Statistics Congress 2011, Dublin, Ireland, 21–26 August 2011; pp. 4079–4084. [Google Scholar]
- Hammond, A.; Adriaanse, A.; Rodenburg, E.; Bryant, D.; Woodward, R. Environmental Indicators: A Systematic Approach to Measuring and Reporting on Environmental Policy Performance in the Context of Sustainable Development; World Resources Institute: Washington, DC, USA, 1995; 58p. [Google Scholar]
- Affek, A. Propozycje Wskaźników Środowiskowych Do Oceny Zagospodarowania Przestrzennego I Ładu Przestrzennego w Gminach (Proposition of Environmental Indicators for Assessing of Spatial Organization and Spatial Order in Communes). In Wskaźniki Zagospodarowania I Ładu Przestrzennego w Gminach (Indicators of Management and Spatial Order in Municipalities); Śleszyński, P., Ed.; PAN, Komitet Przestrzennego Zagospodarowania Kraju: Warszawa, Poland, 2013; pp. 51–86. [Google Scholar]
- Perło, D. Rozwój zrównoważony w wymiarze gospodarczym, społecznym i środowiskowym—Analiza przestrzenna (Sustainable Development in the Economic, Social and Environmental Dimensions—Spatial Analysis). Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu 2013, 21, 331–341. [Google Scholar]
- Bąk, I.; Szczecińska, B. Przestrzenne zróżnicowanie województw Polski pod względem jakości środowiska naturalnego (Spatial diversity of voivodeships in Poland in terms of quality of natural environment). Folia Pomeranae Universitatis Technologiae Stetinensis. Oeconomica 2014, 76, 5–14. [Google Scholar]
- Balicka, A. Wskaźniki środowiskowe w zewnętrznej sprawozdawczości środowiskowej (Environmental Indicators of External Environmental Reporting). Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu 2015, 212–220. [Google Scholar]
- Štreimikienė, D. Environmental indicators for the assessment of quality of life. Intellectual Economics 2015, 9, 67–79. [Google Scholar] [CrossRef]
- Jakubowski, T. Gospodarka wodno-ściekowa w wybranej gminie (Commune water-sewage management). Infrastruktura i ekologia terenów wiejskich 2005, 4, 47–58. [Google Scholar]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters; Springer Science & Business Media: Dordrecht, The Netherlands, 2007; 436p. [Google Scholar]
- Zasoby Wodne (Water Resources). Available online: http://hydro.geo.uni.lodz.pl/index.php?page=zasoby-wodne (accessed on 14 June 2019).
- Bajkiewicz-Grabowska, E.; Mikulski, Z. Hydrologia Ogólna (General Hydrology); PWN: Warszawa, Poland, 2008; 335p. [Google Scholar]
- Official Journal of the European Communities. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 14 June 2019).
- Kłos, L. Stan infrastruktury wodno-kanalizacyjnej na obszarach wiejskich w Polsce a wymogi ramowej dyrektywy wodnej (Condition of water and sewage infrastructure in rural areas in Poland and the requirements of the water framework directive). Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania 2011, 24, 75–87. [Google Scholar]
- Wojdalski, J.; Dróżdż, B.; Brocki, H. Effectiveness of electrical energy and water consumption in a small-size dairy processing plant. TEKA Kom. Mot. Energ. Roln. -OL PAN 2008, 8, 303–309. [Google Scholar]
- Pawełek, J.; Bergel, T. Objętość ścieków bytowych a zużycie wody w gospodarstwach wiejskich (Volume of domestic sewage and water consumption in rural households). Inżynieria Rolnicza 2003, 7, 81–89. [Google Scholar]
- Obarska-Pempkowiak, H.; Kołecka, K.; Gajewska, M.; Wojciechowska, E.; Ostojski, A. Zrównoważone gospodarowanie ściekami na przykładzie obszarów wiejskich (Sustainable Sewage Management in Rural Areas). Rocznik Ochrona Środowiska (Annual Set The Environment Protection) 2015, 17, 585–602. [Google Scholar]
- Wałęga, A.; Chmielowski, K.; Satora, S. Stan gospodarki wodno-ściekowej w Polsce w aspekcie wdrażania ramowej dyrektywy wodnej (Water and Wastewater Managemant Condition in Poland Regarding Water Framework Directive Implementation). Infrastruktura i Ekologia terenów wiejskich 2009, 4, 57–72. [Google Scholar]
- Internet System of Legal Acts. Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 22 lutego 2019 r. w Sprawie Ogłoszenia Jednolitego Tekstu Ustawy o Samorządzie Gminnym (Notice from the Speaker of the Parliament of the Republic of Poland of 22 Feburary 2019 on the Promulgation of the Consolidated Text of the Act on Municipal Governments). Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190000506 (accessed on 14 June 2019).
- Mrozik, K.; Pyszny, K. Problems of the Integrated Urban Water Management: The case of Poznań Metropolitan Area (Poland). Rocznik Ochrona Środowiska (Annual Set The Environment Protection) 2015, 17, 230–245. [Google Scholar]
- Zębek, E. Zasady Gospodarki Odpadami W Ujęciu Prawnym I Środowiskowym (Legal and Environmental Aspects of Waste Management); Wydawnictwo Wydziału Prawa i Administracji UWM: Olsztyn, Poland, 2018; 371p. [Google Scholar]
- Jaros, B. Pomiar zrównoważonej konsumpcji (Sustainable Consumption: Measurement Problems). Optimum. Studia Ekonomiczne 2014, 69, 169–183. [Google Scholar] [CrossRef]
- Zarządzanie Środowiskiem (Environmental Management); Poskrobko, B. (Ed.) Polskie Wydawnictwo Ekonomiczne: Warszawa, Poland, 2007; 328p. [Google Scholar]
- Curran, T.; Williams, I.D. A Zero Waste Vision for Industrial Networks in Europe. J. Hazard. Mater. 2012, 207, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Lipińska, D. Gospodarka Odpadowa I Wodno-Ściekowa (Waste, Water and Wastewater Management); Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2016; 204p. [Google Scholar]
- European Commission. Towards a Circular Economy: A Zero Waste Programme for Europe; European Commission: Brussels, Belgium, 2014; 14p. [Google Scholar]
- Supreme Audit Office. Realizacja Zadań Gminy w Zakresie Zagospodarowania Odpadów Komunalnych (The Responsibilities of Municipal Governments Relating to the Management of Municipal Waste); Supreme Audit Office: Warszawa, Poland, 2018; 116p.
- Deluga, W. Gospodarka odpadami w świadomości społeczeństwa (Waste Management in Public Awareness). Rocznik Ochrona Środowiska (Annual Set the Environment Protection) 2018, 20, 1530–1545. [Google Scholar]
- Malec, A.; Borowski, G. The Hazards of Dusting and Monitoring of Atmospheric Air. Inżynieria Ekologiczna 2016, 50, 161–170. [Google Scholar] [CrossRef]
- Myllyvirta, L.; Howar, E. Five Things We Learned from the World’s Biggest Air Pollution Database. Available online: https://unearthed.greenpeace.org/2018/05/02/air-pollution-cities-worst-global-data-world-health-organisation/ (accessed on 18 June 2019).
- Pankowska, M.; Gorczyca, M. Ochrona powietrza przed zanieczyszczeniami—Dlaczego w Polsce nie można odetchnąć pełną piersią? (Protection of Air against Pollution—Why Cannot We Get a Breath of Fresh Air in Poland?). Kontrola Państwowa 2015, 60, 60–78. [Google Scholar]
- Brodowska, M.S.; Kaczor, A. Źródła zanieczyszczeń gazowych i pyłowych oraz ocena ich redukcji w Polsce w ostatnim dziesięcioleciu (The sources of gas and dust pollutions and the assessment of their reduction in Poland in the last 10 years). Autobusy: Technika, Eksploatacja, Systemy Transportowe 2011, 12, 84–91. [Google Scholar]
- Ministry of the Environment. Krajowy Program Ochrony Powietrza do Roku 2020 (z Perspektywą do 2030) (National Air Pollution Control Program until 2020 (with a Long-Term Horizon until 2030)), 2nd ed.; Ministry of the Environment: Warszawa, Poland, 2015; 89p.
- Statistics Poland. Ochrona środowiska 2018 (Environmental Protection 2018); Statistics Poland: Warszawa, Poland, 2018; 217p.
- State Forests National Forest Holding. Raport o Stanie Lasów w Polsce 2016 (Report on Polish Forests 2016); State Forests National Forest Holding: Warszawa, Poland, 2017; 97p.
- Kasztelan, A. A comparative analysis of Lubelskie and Kujawsko-Pomorskie voivodships in the context of environmental competitiveness of regions. Bull. Geogr. Socio. Econ. Ser. 2014, 23, 87–97. [Google Scholar] [CrossRef]
- Gadenne, D.L.; Kennedy, J.; McKeiver, C. An Empirical Study of Environmental Awareness and Practices in SMEs. J. Bus. Ethics 2009, 84, 45–63. [Google Scholar] [CrossRef]
- Zuzek, D.K. Świadomość ekologiczna przedsiębiorców jako element zrównoważonego rozwoju (Environmental Awareness as an Element of Sustainable Development). Studia Ekonomiczne 2017, 326, 162–171. [Google Scholar]
- Statistics Poland. Zużycie Energii w Gospodarstwach Domowych w 2015 (Household Energy Consumption in 2015); Statistics Poland: Warszawa, Poland, 2017; 166p.
- Dopke, J. Zużycie gazu ziemnego w gospodarstwach domowych—Praktyczne oszacowanie wskaźników efektywności (Natural gas consumption in households—Practical estimation of efficiency indicators). Rynek Instalacyjny 2008, 7, 72–77. [Google Scholar]
- Klepacka-Dunajko, I.; Kałuża, H.; Dunajko, D. Zróżnicowanie przestrzenne wybranych elementów infrastruktury technicznej na obszarach wiejskich województwa mazowieckiego (The Spatial Diversity of Selected Elements of Technical Infrastructure in Rural Areas of the Masovia Province). Studia i Prace WNEiZ US. Problemy Współczesnej Ekonomii 2017, 47, 127–135. [Google Scholar] [CrossRef]
- Kienzl, K.; Riss, A.; Vogel, W.; Hackl, J.; Gotz, B. Bioindicators and Biomonitors for Policy, Legislation and Administration. In Bioindicators & Biomonitors: Principles, Concepts and Applications; Markert, B.A., Breure, A.M., Zechmeister, H.G., Eds.; Pergamon: Oxford, UK, 2003; pp. 85–122. [Google Scholar]
- Niemeijer, D.; de Groot, R.S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 2008, 8, 14–25. [Google Scholar] [CrossRef]
- Bockstaller, C.; Girardin, P. How to validate environmental indicators. Agricultural Systems 2003, 76, 639–653. [Google Scholar] [CrossRef]
- Niemeijer, D. Developing indicators for environmental policy: Data-driven and theory-driven approaches examined by example. Environ. Sci. Policy 2002, 5, 91–103. [Google Scholar] [CrossRef]
- Jackson, L.E.; Kurtz, J.; Fisher, W.S. Evaluation Guidelines for Ecological Indicators; Development, O.o.R.a., Ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2000; 109p.
- Brambila, A.; Flombaum, P. Comparison of environmental indicator sets using a unified indicator classification framework. Ecol. Indic. 2017, 83, 96–102. [Google Scholar] [CrossRef]
- Walesiak, M. Problemy decyzyjne w procesie klasyfikacji zbioru obiektów (Decision Problems a Cluster Analysis Procedure). Prace Naukowe Akademii Ekonomicznej we Wrocławiu. Ekonometria 2004, 13, 53–71. [Google Scholar]
- Walesiak, M. Rekomendacje w zakresie strategii postępowania w procesie klasyfikacji zbioru obiektów (Recommendations for strategic proceedings in the classification of object sets). In Przestrzenno-Czasowe Modelowanie i Prognozowanie Zjawisk Gospodarczych (Spatio-Temporal Modeling and Forecasting of Economic Phenomena); Zelias, B., Ed.; Wydawnictwo Akademii Ekonomicznej w Krakowie: Krakow, Poland, 2005; pp. 185–203. [Google Scholar]
No. | Indicator | Average Values for Poland | |||
---|---|---|---|---|---|
Base Year | 1st Financial Framework | 2nd Financial Framework | 3rd Financial Framework | ||
2003 | 2004–2006 | 2007–2013 | 2014–2017 | ||
1 | Density of water supply networks, km∙km−2—S | 119.47 | 127.28 | 143.26 | 151.10 |
2 | Density of sewer networks, km∙km−2—S | 60.85 | 69.53 | 96.15 | 107.66 |
3 | Municipal spending per capita on wastewater management and water conservation (PLN) *—S | 44.61 | 53.23 | 63.26 | 38.73 |
4 | Size of wastewater treatment plants (PE)—S | 1.00 | 1.03 | 1.12 | 1.23 |
5 | Treated municipal wastewater per 100 km2 (dam3)—S | 1659.26 | 1614.13 | 1563.48 | 1519.29 |
6 | Treated industrial wastewater per 100 km2 (dam3)—S | 801.49 | 769.60 | 787.43 | 714.44 |
7 | Throughput of wastewater treatment plants with enhanced removal of biogenic impurities per capita (m3∙day−1)—S | 0.12 | 0.13 | 0.15 | 0.16 |
8 | Withdrawal of underground water in the industrial sector relative to total water consumption in industry (%)—D | 74.21 | 77.73 | 77.54 | 73.39 |
9 | BOD5 load of wastewater evacuated to water bodies or land per 100 km2—D | 3833.42 | 3635.80 | 3748.12 | 3184.41 |
10 | COD load of wastewater evacuated to water bodies or land per 100 km2—D | 23,492.61 | 24,186.74 | 25,318.03 | 26,329.66 |
USD 1 * EUR 1 * | PLN 3.8889 PLN 4.3978 | PLN 3.3304 PLN 4.1515 | PLN 2.9556 PLN 4.0177 | PLN 3.6615 PLN 4.2473 |
No. | Indicator | Average Values for Poland | |||
---|---|---|---|---|---|
Base Year | 1st Financial Framework | 2nd Financial Framework | 3rd Financial Framework | ||
2003 | 2004–2006 | 2007–2013 | 2014–2017 | ||
1 | Municipal spending per capita on waste management (PLN) *—S | 4.19 | 5.24 | 11.31 | 79.85 |
2 | Municipal spending per capita on waste collection (PLN) *—S | 12.40 | 12.95 | 16.19 | 15.17 |
3 | Annual waste production (excluding municipal waste) in ‘000 mg per 100 km2—D | 129.18 | 129.87 | 117.90 | 110.67 |
4 | Landfilled waste in ‘000 mg per 100 km2 (landfills, disposal sites for mining waste, such as spoil tips and sediment ponds)—D | 1936.06 | 1774.15 | 1632.06 | 1548.42 |
5 | Waste recycling rate (excluding municipal waste) (%)—S | 69.19 | 73.19 | 79.27 | 16.82 |
6 | Non-reclaimed landfills in ha per 100 km2—D | 11.61 | 11.08 | 9.47 | 8.62 |
USD 1 * EUR 1 * | PLN 3.8889 PLN 4.3978 | PLN 3.3304 PLN 4.1515 | PLN 2.9556 PLN 4.0177 | PLN 3.6615 PLN 4.2473 |
No. | Indicator | Average Values for Poland | |||
---|---|---|---|---|---|
Base Year | 1st Financial Framework | 2nd Financial Framework | 3rd Financial Framework | ||
2003 | 2004–2006 | 2007–2013 | 2014–2017 | ||
1 | Municipal spending on air pollution and climate control per 10,000 population (PLN) *—S | 3242.34 | 10152.80 | 15171.74 | 77651.17 |
2 | Density of the gas grid, km∙km−2—S | 81.92 | 85.37 | 94.11 | 100.92 |
3 | Reduction in particulate and gaseous pollution (mg∙year−1)—S | 654.61 | 944.88 | 122.95 | 314.73 |
4 | Particulate emissions from hazardous industrial plants per 1 km2 (mg∙year−1)—D | 1.77 | 1.43 | 0.76 | 0.48 |
5 | Gaseous emissions from hazardous industrial plants per 1 km2 (mg∙year−1)—D | 2561.26 | 2625.02 | 2544.65 | 2433.37 |
USD 1 * EUR 1 * | PLN 3.8889 PLN 4.3978 | PLN 3.3304 PLN 4.1515 | PLN 2.9556 PLN 4.0177 | PLN 3.6615 PLN 4.2473 |
No. | Indicator | Average Values for Poland | |||
---|---|---|---|---|---|
Base Year | 1st Financial Framework | 2nd Financial Framework | 3rd Financial Framework | ||
2003 | 2004–2006 | 2007–2013 | 2014–2017 | ||
1 | Per capita consumption of mains water in m3—D | 35.62 | 34.60 | 34.00 | 33.23 |
2 | Per capita consumption of natural gas in m3—D | 469.22 | 349.20 | 254.96 | 233.86 |
3 | Proportion of forests (private and municipal) in total area (%)—S | 4.89 | 4.98 | 5.25 | 5.48 |
4 | Municipal spending per capita on public green areas (PLN) *—S | 5.03 | 5.89 | 9.78 | 12.37 |
5 | Percentage of total population connected to a public sewer system (%)—S | 52.34 | 54.95 | 60.30 | 66.48 |
6 | Proportion of protected areas in total area (%)—S | 28.62 | 28.13 | 28.04 | 28.25 |
USD 1 * EUR 1 * | PLN 3.8889 PLN 4.3978 | PLN 3.3304 PLN 4.1515 | PLN 2.9556 PLN 4.0177 | PLN 3.6615 PLN 4.2473 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senetra, A.; Pawlewicz, K.; Pawlewicz, A. The Dynamics of Changes and Spatial Differences in the Synthetic Indicator for Evaluating Environmental Performance in Poland: Current State. Int. J. Environ. Res. Public Health 2019, 16, 4490. https://doi.org/10.3390/ijerph16224490
Senetra A, Pawlewicz K, Pawlewicz A. The Dynamics of Changes and Spatial Differences in the Synthetic Indicator for Evaluating Environmental Performance in Poland: Current State. International Journal of Environmental Research and Public Health. 2019; 16(22):4490. https://doi.org/10.3390/ijerph16224490
Chicago/Turabian StyleSenetra, Adam, Katarzyna Pawlewicz, and Adam Pawlewicz. 2019. "The Dynamics of Changes and Spatial Differences in the Synthetic Indicator for Evaluating Environmental Performance in Poland: Current State" International Journal of Environmental Research and Public Health 16, no. 22: 4490. https://doi.org/10.3390/ijerph16224490
APA StyleSenetra, A., Pawlewicz, K., & Pawlewicz, A. (2019). The Dynamics of Changes and Spatial Differences in the Synthetic Indicator for Evaluating Environmental Performance in Poland: Current State. International Journal of Environmental Research and Public Health, 16(22), 4490. https://doi.org/10.3390/ijerph16224490