Equation Córdoba: A Simplified Method for Estimation of Body Fat (ECORE-BF)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population, and Sample
2.1.1. Phase I
2.1.2. Phase II
2.2. Study Variables and Measurement
2.3. Ethical and Legal Aspects
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Overweight and Obesity (n1)
3.2. Bivariate Analysis and Unadjusted Linear Regression
3.3. Multiple Linear Regression Models (Adjusted) and Clinical Agreement of the Proposed Models
3.4. Validation of the ECORE-FW Method with n2 Sample
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haslam, D.; James, W.P.T. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Romero-Saldaña, M.; Fuentes-Jiménez, F.; Vaquero-Abellán, M.; Álvarez-Fernández, C.; Molina-Recio, G.; López-Miranda, J. New non-invasive method for early detection of metabolic syndrome in the working population. Eur. J. Cardiovasc. Nurs. 2016, 15, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Purcell, K.; Bergin, P.; Spitler, C.; Graves, M.; Russell, G. Management of Pelvic and Acetabular Fractures in the Obese Patient. Orthop. Clin. N. Am. 2018, 49, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, O.; Saneei, P.; Nasiri, M.; Larijani, B.; Esmaillzadeh, A. Abdominal Obesity and Risk of Hip Fracture: A Systematic Review and Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Best, D.; Avenell, A.; Bhattacharya, S. How effective are weight-loss interventions for improving fertility in women and men who are overweight or obese? A systematic review and meta-analysis of the evidence. Hum. Reprod. Update 2017, 23, 681–705. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Carter, A.; Casey, D.C.; Bhutta, Z.A.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 23 January 2019).
- Bai, M.; Wang, R.; Zhu, L.; Li, G.; Yuan, D.; Wang, L.; Jin, T. Age-related differences in limb fat-free mass and fat mass in healthy Chinese Adults. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Douglas, T.; Kennedy, M.; Quirk, M.; Yi, S.; Singh, R. Accuracy of Six Anthropometric Skinfold Formulas Versus Air Displacement Plethysmography for Estimating Percent Body Fat in Female Adolescents with Phenylketonuria. JIMD Rep. 2012, 10, 23–31. [Google Scholar] [CrossRef]
- Eckard, C.; Pruziner, A.; Sanchez, A.; Andrews, A. Metabolic and body composition changes in first year following traumatic amputation. J. Rehabil. Res. Dev. 2015, 52, 553–562. [Google Scholar] [CrossRef]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.; Harvey, N.; Romu, T.; Heymsfield, S.B.; Leinhard, O.D. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G. Reliability and agreement between DXA-derived body volumes and their usage in 4-compartment body composition models produced from DXA and BIA values. J. Sports Sci. 2017, 36, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Belarmino, G.; Horie, L.; Sala, P.; Torrinhas, R.; Heymsfield, S.; Waitzberg, D. Body adiposity index performance in estimating body fat in a sample of severely obese Brazilian patients. Nutr. J. 2015, 14. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.; Parise, E.; Mccrory, J.; Cham, R. A comparison of prediction equations for the estimation of body fat percentage in non-obese and obese older Caucasian adults in the United States. J. Nutr. Health Aging 2014, 18, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Petroski, E.; Peres, M. Is high body fat estimated by body mass index and waist circumference a predictor of hypertension in adults? A population-based study. Nutr. J. 2012, 11. [Google Scholar] [CrossRef] [PubMed]
- Ehrampoush, E.; Arasteh, P.; Homayounfar, R.; Cheraghpour, M.; Alipour, M.; Naghizadeh, M.M.; Davoodi, S.H.; Askari, A.; Razaz, J.M. New anthropometric indices or old ones: Which is the better predictor of body fat? Diabetes Metab. Syndr. 2017, 11, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E.; Silva, A.; Santos, D.; Lemos-Marini, S.; de Oliveira Santos, A.; Mendes-dos-Santos, C.T.; De-Mello, M.P.; Guerra-Júnior, G. Accuracy of anthropometric measurements in estimating fat mass in individuals with 21-hydroxylase deficiency. Nutrition 2012, 28, 984–990. [Google Scholar] [CrossRef]
- Temple, D.; Denis, R.; Walsh, M.; Dicker, P.; Byrne, A. Comparison of anthropometric-based equations for estimation of body fat percentage in a normal-weight and overweight female cohort: Validation via air-displacement plethysmography. Public Health Nutr. 2014, 18, 446–452. [Google Scholar] [CrossRef]
- Hussain, Z.; Jafar, T.; Zaman, M.; Parveen, R.; Saeed, F. Correlations of skin fold thickness and validation of prediction equations using DEXA as the gold standard for estimation of body fat composition in Pakistani children. BMJ Open 2014, 4, e004194. [Google Scholar] [CrossRef]
- Gomez-Ambrosi, J.; Silva, C.; Catalan, V.; Rodriguez, A.; Galofre, J.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical Usefulness of a New Equation for Estimating Body Fat. Diabetes Care 2011, 35, 383–388. [Google Scholar] [CrossRef]
- Suliga, E.; Ciesla, E.; Gluszek-Osuch, M.; Rogula, T.; Gluszek, S.; Koziel, D. The Usefulness of Anthropometric Indices to Identify the Risk of Metabolic Syndrome. Nutrients 2019, 11, E2598. [Google Scholar] [CrossRef] [PubMed]
- Martín, V.; Dávila-Batista, V.; Castilla, J.; Godoy, P.; Delgado-Rodríguez, M.; Soldevila, N.; Molina de la Torre, A.J.; Fernandez Villa, T.; Astray, J.; Castro, A.; et al. Comparison of body mass index (BMI) with the CUN-BAE body adiposity estimator in the prediction of hypertension and type 2 diabetes. BMC Public Health 2016, 16, 82. [Google Scholar] [CrossRef]
- Saklayen, M. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Timmis, A.; Townsend, N.; Gale, C.; Grobbee, R.; Maniadakis, N.; Flather, M.; Wilkins, E.; Wright, L.; Vos, R.; Bax, J.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur. Heart J. 2018, 39, 508–579. [Google Scholar] [CrossRef] [PubMed]
- Fuster-Parra, P.; Bennasar-Veny, M.; Tauler, P.; Yañez, A.; López-González, A.; Aguiló, A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS ONE 2015, 10, e0122291. [Google Scholar] [CrossRef] [PubMed]
- Vandekerckove, J.; Matzke, D.; Wagenmakers, E.J. Model Comparison and the Principle of Parsimony. In The Oxford Handbook of Computational and Mathematical Psychology; Busemeyer, J., Wan, Z., Townsend, J., Eidels, A., Eds.; Oxford University Press: London, UK, 2015; ISBN 978-019-995-799-6. [Google Scholar]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
- Huvanandana, J.; Carberry, A.; Turner, R.; Bek, E.; Raynes-Greenow, C.; McEwan, A.L.; Jeffery, H.E. An anthropometric approach to characterising neonatal morbidity and body composition, using air displacement plethysmography as a criterion method. PLoS ONE 2018, 13, e0195193. [Google Scholar] [CrossRef]
- Callaway, C.; Chumlea, W.; Bouchard, C.; Himes, J.; Lohman, T.; Martin, A.; Mitchell, C.D.; Mueller, W.H. Circumferences. In Anthropometric Standardization Reference Manual; Lohman, T.G., Roche, A., Martorell, R., Eds.; Human Kinetics Books: Champaign, IL, USA, 1991; pp. 44–45. [Google Scholar]
- World Health Organization. Body Mass Index-BMI. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 23 January 2019).
- Gómez-Ambrosi, J.; Silva, C.; Galofré, J.; Escalada, J.; Santos, S.; Millán, D.; Vila, N.; Ibañez, P.; Gil, M.J.; Valentí, V.; et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. (Lond.) 2011, 36, 286–294. [Google Scholar] [CrossRef]
- Reilly, J.; El-Hamdouchi, A.; Diouf, A.; Monyeki, A.; Somda, S. Determining the worldwide prevalence of obesity. Lancet 2018, 391, 1773–1774. [Google Scholar] [CrossRef]
- Peterson, C.; Su, H.; Thomas, D.; Heo, M.; Golnabi, A.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017, 171, 629. [Google Scholar] [CrossRef]
- Deurenberg, P.; Wetstrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age- and sex- specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranasinghe, C.; Gamage, P.; Katulanda, P.; Andraweera, N.; Thilakarathne, S.; Tharanga, P. Relationship between Body mass index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lankan adults: A cross sectional study. BMC Public Health 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Sun, Q.; Sun, L.; Zong, G.; Lu, L.; Liu, G.; Rosner, B.; Ye, X.; Li, H.; Lin, X. The development and validation of new equations for estimating body fat percentage among Chinese men and women. Br. J. Nutr. 2015, 113, 1365–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanellakis, S.; Skoufas, E.; Khudokonenko, V.; Apostolidou, E.; Gerakiti, L.; Andrioti, M.C.; Bountouvi, E.; Manios, Y. Development and validation of two equations based on anthropometry, estimating body fat for the Greek adult population. Obesity (Silver Spring Md) 2017, 25, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goran, M.; Toth, M.; Poehlman, E. Cross-Validation of Anthropometric and Bioelectrical Resistance Prediction Equations for Body Composition in Older People Using the 4-Compartment Model as a Criterion Method. J. Am. Geriatr. Soc. 1997, 45, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Kanellakis, S.; Manios, Y. Validation of Five Simple Models Estimating Body Fat in White Postmenopausal Women: Use in Clinical Practice and Research. Obesity (Silver Spring Md) 2012, 20, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, Y.; Wang, C.; Chuang, C.; Chiang, L.; Lai, C.L.; Lu, H.K.; Dwyer, G.B.; Chao, S.P.; Shih, M.K.; et al. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population. PLoS ONE 2016, 11, e0160105. [Google Scholar] [CrossRef]
- Lara, J.; Siervo, M.; Bertoli, S.; Mathers, J.; Battezzati, A.; Ferraris, C.; Tagliabue, A. Accuracy of three novel predictive methods for measurements of fat mass in healthy older subjects. Aging Clin. Exp. Res. 2014, 26, 319–325. [Google Scholar] [CrossRef]
- Wang, J.; Deurenberg, P. The validity of predicted body composition in Chinese adults from anthropometry and bioelectrical impedance in comparison with densitometry. Br. J. Nutr. 1996, 76, 175. [Google Scholar] [CrossRef] [Green Version]
- Lowry, D.; Tomiyama, A. Air Displacement Plethysmography versus Dual-Energy X-Ray Absorptiometry in Underweight, Normal-Weight, and Overweight/Obese Individuals. PLoS ONE 2015, 10, e0115086. [Google Scholar] [CrossRef] [Green Version]
- Munguia-Izquierdo, D.; Suarez-Arrones, L.; Di Salvo, V.; Paredes-Hernandez, V.; Alcazar, J.; Ara, I.; Kreider, R.; Mendez-Villanueva, A. Validation of Field Methods to Assess Body Fat Percentage in Elite Youth Soccer Players. Int. J. Sports Med. 2018, 39, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Sardinha, L.; Silva, A.; Teixeira, P. Usefulness of age-adjusted equations to estimate body fat with air displacement plethysmography in male adolescent athletes. Acta Diabetol. 2003, 40, s63–s67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Lin, W.; Liu, C.; Hsu, H.; Lee, C.C.; Chen, F.N.; Li, T.C.; Lin, C.C. Percentage of Body Fat Assessment Using Bioelectrical Impedance Analysis and Dual-Energy X-ray Absorptiometry in a Weight Loss Program for Obese or Overweight Chinese Adults. PLoS ONE 2013, 8, e58272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvero-Cruz, J.R.; Marfaell-Jones, M.; Alacid, F.; Artero, P.; Correas-Gómez, L.; Santoja, F.; Carnero, E.A. Comparison of two field methods for estimating body fat in different Spanish Dance disciplines. Nutr. Hosp. 2014, 30, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Pietiläinen, K.; Kaye, S.; Karmi, A.; Suojanen, L.; Rissanen, A.; Virtanen, K. Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, skeletal muscle and visceral fat during a 12-month weight loss intervention. Br. J. Nutr. 2012, 109, 1910–1916. [Google Scholar] [CrossRef] [Green Version]
- Barreira, T.; Staiano, A.; Harrington, D.; Heymsfield, S.; Smith, S.; Bouchard, C.; Katzmarzyk, P.T. Anthropometric Correlates of Total Body Fat, Abdominal Adiposity, and Cardiovascular Disease Risk Factors in a Biracial Sample of Men and Women. Mayo Clin Proc. 2012, 87, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Duren, D.; Sherwood, R.; Czerwinski, S.; Lee, M.; Choh, A.; Siervogel, R.M.; Chumlea, W.C. Body Composition Methods: Comparisons and Interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sánchez, N.; Galloway, S. Errors in Dual Energy X-Ray Absorptiometry Estimation of Body Composition Induced by Hypohydration. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, U.; Klausmann, F.; Baumann, S.; Honal, M.; Hövener, J.; König, D.; Deibert, P.; Büchert, M. Whole-body MRI-based fat quantification: A comparison to air displacement plethysmography. J. Magn. Reson. Imaging 2014, 40, 1437–1444. [Google Scholar] [CrossRef]
- Mullie, P.; Vansant, G.; Hulens, M.; Clarys, P.; Degrave, E. Evaluation of Body Fat Estimated from Body Mass Index and Impedance in Belgian Male Military Candidates: Comparing Two Methods for Estimating Body Composition. Mil. Med. 2018, 173, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Vinknes, K.; Nurk, E.; Tell, G.; Sulo, G.; Refsum, H.; Elshorbagy, A. The relation of CUN-BAE index and BMI with body fat, cardiovascular events and diabetes during a 6-year follow-up: The Hordaland Health Study. Clin. Epidemiol. 2017, 9, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Total n = 906 | Men n = 572 | Women n = 334 | p | |
---|---|---|---|---|---|
Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | |||
Age (years) | 42 (9.5) | 42.3 (9.9) | 41.3 (8.7) | 0.071 | |
Weight (kg) | 75.4 (15) | 81.6 (12.9) | 64.6 (12.2) | <0.001 | |
Height (m) | 168.9 (8.8) | 173.4 (6.4) | 161.2 (6.5) | <0.001 | |
BMI (kg/m2) | 26.3 (4.4) | 27.1 (3.9) | 24.9 (4.7) | <0.001 | |
Underweight | 11 (1.2%) | 5 (0.9%) | 6 (1.8%) | 0.221 | |
Normal weight | 358 (39.5%) | 168 (29.4%) | 190 (56.9%) | <0.001 | |
Overweight | 378 (41.7%) | 285 (49.8%) | 93 (27.8%) | <0.001 | |
Obesity | 159 (17.5%) | 114 (19.9%) | 45 (13.5%) | <0.05 | |
CUN-BAE | 29.6 (7.3) | 26.4 (5.7) | 34.9 (6.5) | <0.001 | |
Normal weight | 137 (15.1%) | 58 (10.1%) | 79 (23.7%) | <0.001 | |
Overweight | 289 (31.9%) | 185 (32.3%) | 104 (31.1%) | 0.707 | |
Obesity | 480 (53%) | 329 (57.5%) | 151 (45.2%) | <0.001 |
Sex | Age | Weight | Height | BMI | LnBMI |
---|---|---|---|---|---|
Men | 0.471 ** | 0.822 ** | −0.115 * | 0.970 ** | 0.977 ** |
Women | 0.541 ** | 0.868 ** | −0.225 ** | 0.969 ** | 0.986 ** |
Global | |||||||
---|---|---|---|---|---|---|---|
Variable | R2 | Constant | 95% CI | Coefficient | SE | 95% CI | p |
Age | 0.138 | 17.589 | 15.594–19.584 | 0.285 | 0.024 | 0.239–0.332 | <0.001 |
Sex | 0.318 | 26.433 | 25.948–26.937 | 8.552 | 0.415 | 7.708–9.336 | <0.001 |
Weight | 0.074 | 19.587 | 17.246–21.928 | 0.113 | 0.016 | 0.102–0.163 | <0.001 |
Height | 0.227 | 96.788 | 88.708–104.868 | −0.398 | 0.024 | −0.446–−0.350 | <0.001 |
BMI | 0.408 | 1.370 | −0.874–3.614 | 1.072 | 0.043 | 0.988–1.156 | <0.001 |
LnBMI | 0.390 | −63.445 | −71.044–−55.847 | 28.562 | 1.187 | 26.232–30.892 | <0.001 |
Men | |||||||
Age | 0.221 | 14.974 | 13.160–16.789 | 0.270 | 0.021 | 0.228–0.312 | <0.001 |
Weight | 0.675 | −3.419 | −5.141–−1.696 | 0.366 | 0.011 | 0.345–0.387 | <0.001 |
Height | 0.011 | 44.118 | 31.542–56.694 | −0.102 | 0.037 | −0.174–−0.029 | <0.001 |
BMI | 0.940 | −12.453 | −13.268–−11.637 | −1.434 | 0.015 | 1.287–1.359 | <0.001 |
LnBMI | 0.955 | −105.321 | −107.677–−102.964 | 40.046 | 0.364 | 39.330–40.761 | <0.001 |
Women | |||||||
Age | 0.291 | 18.248 | 15.387–21.115 | 0.405 | 0.035 | 0.337–0.472 | <0.001 |
Weight | 0.752 | 5.070 | 3.188–6.951 | 0.462 | 0.015 | 0.433–0.491 | <0.001 |
Height | 0.048 | 71.521 | 54.453–88.590 | −0.227 | 0.054 | −0.333–−0.121 | <0.001 |
BMI | 0.939 | 1.977 | 1.056–2.897 | 1.323 | 0.018 | 1.287–1.359 | <0.001 |
LnBMI | 0.971 | −82.439 | −84.616–−80.263 | 36.685 | 0.345 | 36.006–37.364 | <0.001 |
Model | Standardized Beta Coefficient | R2 | SE | r | p | |
---|---|---|---|---|---|---|
Age | 0.185 | 0.985 | 0.888 | 0.992 | <0.001 | |
Sex | 0.763 | |||||
Weight | 0.941 | |||||
Height | −0.478 | |||||
Sex | 0.764 | 0.958 | 1.496 | 0.979 | <0.001 | |
BMI | 0.824 | |||||
Sex | 0.793 | 0.973 | 1.202 | 0.986 | <0.001 | |
LnBMI | 0.841 | |||||
Age | 0.176 | 0.986 | 0.871 | 0.993 | <0.001 | |
Sex | 0.760 | |||||
BMI | 0.768 | |||||
Age | 0.161 | 0.996 | 0.461 | 0.998 | <0.001 | |
Sex | 0.788 | |||||
LnBMI | 0.787 |
Gold Standard | Test | BF%1 | BF%2 | BF%3 | BF%4 | BF%5 |
---|---|---|---|---|---|---|
Men | ||||||
CUN-BAE | r | 0.991 * | 0.970 * | 0.977 * | 0.993 * | 0.998 * |
ICC | 0.991 (0.989–0.992) | 0.481 (0.415–0.541) | 0.492 (0.427–0.551) | 0.992 (0.991–0.994) | 0.997 (0.996–0.997 | |
Women | ||||||
CUN-BAE | r | 0.987 * | 0.969 * | 0.986 * | 0.985 * | 0.998 * |
ICC | 0.985 (0.982–0.988) | 0.606 (0.533–0.669) | 0.600 (0.527–0.664) | 0.985 (0.981–0.988) | 0.997 (0.996–0.998) |
Model | Mean Difference (±SD) | p | 95% CI |
---|---|---|---|
Global | |||
BF%1 | −0.002 (±0.899) | 0.959 | −1.763 to 1.760 |
BF%2 | 0 (±6.249) | 1.000 | −12.247 to 12.247 |
BF%3 | 0 (±6.227) | 1.000 | −12.205 to 12.205 |
BF%4 | −0.002 (±0.886) | 0.948 | −1.739 to 1.735 |
BF%5 | −0.000 (±0.466) | 0.989 | −0.913 to 0.913 |
Men | |||
BF%1 | −0.002 (±0.776) | 0.961 | −1.523 to 1.519 |
BF%2 | −1.351 (±6.226) | 1.000 | −13.553 to 10.851 |
BF%3 | 1.298 (±6.138) | 1.000 | −13.329 to 10.733 |
BF%4 | −0.001 (±0.688) | 0.977 | −1.349 to 1.348 |
BF%5 | 0 (±0.440) | 0.991 | −0.863 to 0.863 |
Women | |||
BF%1 | −0.001 (±1.079) | 0.981 | −2.115 to 2.113 |
BF%2 | 2.314 (±5.581) | 1.000 | −8.625 to 12.252 |
BF%3 | 2.224 (±5.738) | 1.000 | −9.023 to 13.470 |
BF%4 | −0.004 (±1.150) | 0.953 | −2.258 to 2.251 |
BF%5 | −0.001 (±0.507) | 0.973 | −0.994 to 0.993 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Luque, R.; Romero-Saldaña, M.; Álvarez-Fernández, C.; Bennasar-Veny, M.; Álvarez-López, Á.; Molina-Recio, G. Equation Córdoba: A Simplified Method for Estimation of Body Fat (ECORE-BF). Int. J. Environ. Res. Public Health 2019, 16, 4529. https://doi.org/10.3390/ijerph16224529
Molina-Luque R, Romero-Saldaña M, Álvarez-Fernández C, Bennasar-Veny M, Álvarez-López Á, Molina-Recio G. Equation Córdoba: A Simplified Method for Estimation of Body Fat (ECORE-BF). International Journal of Environmental Research and Public Health. 2019; 16(22):4529. https://doi.org/10.3390/ijerph16224529
Chicago/Turabian StyleMolina-Luque, Rafael, Manuel Romero-Saldaña, Carlos Álvarez-Fernández, Miquel Bennasar-Veny, Álvaro Álvarez-López, and Guillermo Molina-Recio. 2019. "Equation Córdoba: A Simplified Method for Estimation of Body Fat (ECORE-BF)" International Journal of Environmental Research and Public Health 16, no. 22: 4529. https://doi.org/10.3390/ijerph16224529
APA StyleMolina-Luque, R., Romero-Saldaña, M., Álvarez-Fernández, C., Bennasar-Veny, M., Álvarez-López, Á., & Molina-Recio, G. (2019). Equation Córdoba: A Simplified Method for Estimation of Body Fat (ECORE-BF). International Journal of Environmental Research and Public Health, 16(22), 4529. https://doi.org/10.3390/ijerph16224529