Variability of Total Volatile Organic Compounds (TVOC) in the Indoor Air of Retail Stores
Abstract
:1. Introduction
2. Methods
2.1. Field Sampling Design
2.2. Measurement Methods for Environmental Parameters
2.3. Data Analysis
3. Results
3.1. Indoor TVOC Levels and the Health Risks
3.2. Variability of Store TVOC Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- U.S. EPA. Exposure Factors Handbook, 2011 Edition, Table 16–18; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- U.S. Department of Labor. American Time Use Survey, Table A-1. Available online: https://www.bls.gov/tus/tables.htm (accessed on 08 October 2019).
- Kopf, D. Time Spent Shopping is Declining in the US. Available online: https://www.theatlas.com/charts/Hqt5l_oLY (accessed on 8 October 2019).
- First Insight, I. The State of Consumer Spending: In-Store Impulse Shopping Stands the Test of Time. Available online: https://www.firstinsight.com/white-papers-posts/the-state-of-consumer-spending-report (accessed on 8 October 2019).
- Rick, S.I.; Pereira, B.; Burson, K.A. The benefits of retail therapy: Making purchase decisions reduces residual sadness. J. Consum. Psychol. 2014, 24, 373–380. [Google Scholar] [CrossRef]
- Clicktale. Stress Shopping: The Relationship between Stress and Shopping in the Age of Digital Experiences. Available online: https://www.clicktale.com/media/4457/clicktale_stressshopping.pdf (accessed on 8 October 2019).
- Atalay, A.S.; Meloy, M.G. Retail therapy: A strategic effort to improve mood. Psychol. Mark. 2011, 28, 638–659. [Google Scholar] [CrossRef]
- U.S. EPA. Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatograpy/Mass Spectrometry (GC/MS); U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1999; p. 1.
- Loh, M.M.; Houseman, E.A.; Gray, G.M.; Levy, J.I.; Spengler, J.D.; Bennett, D.H. Measured concentrations of VOCs in several non-residential microenvironments in the United States. Environ. Sci. Technol. 2006, 40, 6903–6911. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.M.; Apte, M.G.; Maddalena, R.; Bennett, D.H. Volatile organic compounds in small- and medium-sized commercial buildings in California. Environ. Sci. Technol. 2011, 45, 9075–9083. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Batterman, S.; Godwin, C.; Charles, S.; Chin, J.Y. Sources and migration of volatile organic compounds in mixed-use buildings. Indoor Air 2010, 20, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.R.; Cohn, S.; Sidheswaran, M.; Sullivan, D.P.; Fisk, W.J. Contaminant levels, source strengths, and ventilation rates in California retail stores. Indoor Air 2015, 25, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Batterman, S.; Godwin, C. VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmos. Environ. 2008, 42, 2083–2100. [Google Scholar] [CrossRef]
- Zaatari, M.; Nirlo, E.; Jareemit, D.; Crain, N.; Srebric, J.; Siegel, J. Ventilation and indoor air quality in retail stores: A critical review (RP-1596). HVAC R Res. 2014, 20. [Google Scholar] [CrossRef]
- Sexton, K.; Mongin, S.J.; Adgate, J.L.; Pratt, G.C.; Ramachandran, G.; Stock, T.H.; Morandi, M.T. Estimating volatile organic compound concentrations in selected microenvironments using time-activity and personal exposure data. J. Toxicol. Environ. Health Part A Current Issues 2007, 70, 465–476. [Google Scholar] [CrossRef]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Mendell, M.J. Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: A review. Indoor Air 2007, 17, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jang, M.; Choi, K.; Kim, K. Perception of indoor air quality (IAQ) by workers in underground shopping centers in relation to sick-building syndrome (SBS) and store type: A cross-sectional study in Korea. BMC Public Health 2019, 19, 632. [Google Scholar] [CrossRef] [PubMed]
- Mujan, I.; Andelkovic, A.S.; Muncan, V.; Kljajic, M.; Ruzic, D. Influence of indoor environmental quality on human health and productivity—A review. J. Clean Prod. 2019, 217, 646–657. [Google Scholar] [CrossRef]
- WorldGBC. Health, Wellbeing & Productivity in Retail: The Impact of Green Buildings on People and Profit; World Green Building Council: London, UK, 2016. [Google Scholar]
- Amodio, M.; Dambruoso, P.R.; de Gennaro, G.; de Gennaro, L.; Loiotile, A.D.; Marzocca, A.; Stasi, F.; Trizio, L.; Tutino, M. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC). Environ. Sci. Pollut. Res. 2014, 21, 13186–13195. [Google Scholar] [CrossRef]
- Eklund, B.M.; Burkes, S.; Morris, P.; Mosconi, L. Spatial and temporal variability in VOC levels within a commercial retail building. Indoor Air 2008, 18, 365–374. [Google Scholar] [CrossRef]
- Bocos-Bintintan, V.; Smolenschi, A.; Ratiu, I.A. Rapid determination of indoor air contaminants in shoe shops using photoionization detectors. Studia Univ. Babes Bolyai Chem. 2016, 61, 203–212. [Google Scholar]
- Mizukoshi, A.; Kumagai, K.; Yamamoto, N.; Noguchi, M.; Yoshiuchi, K.; Kumano, H.; Yanagisawa, Y. A novel methodology to evaluate health impacts caused by VOC exposures using real-time VOC and Holter monitors. Int. J. Environ. Res. Public Health 2010, 7, 4127–4138. [Google Scholar] [CrossRef]
- Coy, J.D.; Bigelow, P.L.; Buchan, R.M.; Tessari, J.D.; Parnell, J.O. Field evaluation of a portable photoionization detector for assessing exposure to solvent mixtures. AIHAJ A J. Sci. Occup. Environ. Health Saf. 2000, 61, 268–274. [Google Scholar]
- RAE Systems Inc. The PID Handbook: Theory and Applications of Direct-Reading Photoionization Detectors, 3rd ed.; RAE Systems Inc.: San Jose, CA, USA, 2013. [Google Scholar]
- Jia, C.; Batterman, S.A.; Relyea, G.E. Variability of indoor and outdoor VOC measurements: An analysis using variance components. Environ. Pollut. 2012, 169, 152–159. [Google Scholar] [CrossRef]
- U.S. EPA. Volatile Organic Compounds’ Impact on Indoor Air Quality. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 16 October 2019).
- Persily, A. Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62. Build. Environ. 2015, 91, 61–69. [Google Scholar] [CrossRef]
- LEED. LEED v4 for Building Design and Construction; U.S. Green Building Council: Washington, DC, USA, 2019. [Google Scholar]
- Stamatelopoulou, A.; Asimakopoulos, D.N.; Maggos, T. Effects of PM, TVOCs and comfort parameters on indoor air quality of residences with young children. Build. Environ 2019, 150, 233–244. [Google Scholar] [CrossRef]
- ASHRAE. Standard 55-2017 Standard 55: Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2017. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 62.1-2016 Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2016. [Google Scholar]
- Grenga, P.N.; Gallagher, M.J.; McGahan, M.E.; Raymond, D.M.; Priefer, R. Assessment of airborne total volatile organic compounds of Niagara Falls residences as compared to resident lifestyle. Indoor Built Environ. 2011, 20, 226–231. [Google Scholar] [CrossRef]
- Zhong, L.X.; Su, F.C.; Batterman, S. Volatile organic compounds (VOCs) in conventional and high performance school buildings in the US. Int. J. Environ. Res. Public Health 2017, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- Rackes, A.; Waring, M.S. Modeling impacts of dynamic ventilation strategies on indoor air quality of offices in six US cities. Build. Environ. 2013, 60, 243–253. [Google Scholar] [CrossRef]
- Fedoruk, M.J.; Kerger, B.D. Measurement of volatile organic compounds inside automobiles. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 31–41. [Google Scholar] [CrossRef]
- Pavilonis, B.; Roelofs, C.; Blair, C. Assessing indoor air quality in New York City nail salons. J. Occup. Environ. Hyg. 2018, 15, 422–429. [Google Scholar] [CrossRef]
- Nirlo, E.L.; Crain, N.; Corsi, R.L.; Siegel, J.A. Volatile organic compounds in fourteen U.S. retail stores. Indoor Air 2014, 24, 484–494. [Google Scholar] [CrossRef]
- Vornanen-Winqvist, C.; Salonen, H.; Jarvi, K.; Andersson, M.A.; Mikkola, R.; Marik, T.; Kredics, L.; Kurnitski, J. Effects of ventilation improvement on measured and perceived indoor air quality in a school building with a hybrid ventilation system. Int. J. Environ. Res. Public Health 2018, 15, 1414. [Google Scholar] [CrossRef]
- Dutton, S.M.; Fisk, W.J. Energy and indoor air quality implications of alternative minimum ventilation rates in California offices. Build. Environ. 2014, 82, 121–127. [Google Scholar] [CrossRef]
- Chan, W.R.; Parthasarathy, S.; Fisk, W.J.; McKone, T.E. Estimated effect of ventilation and filtration on chronic health risks in US offices, schools, and retail stores. Indoor Air 2016, 26, 331–343. [Google Scholar] [CrossRef]
- Challoner, A.; Gill, L. Indoor/outdoor air pollution relationships in ten commercial buildings: PM2.5 and NO2. Build. Environ 2014, 80, 159–173. [Google Scholar] [CrossRef]
- Zaatari, M.; Novoselac, A.; Siegel, J. Impact of ventilation and filtration strategies on energy consumption and exposures in retail stores. Build. Environ. 2016, 100, 186–196. [Google Scholar] [CrossRef]
- Shang, Y.Z.; Li, B.Z.; Baldwin, A.N.; Ding, Y.; Yu, W.; Cheng, L. Investigation of indoor air quality in shopping malls during summer in Western China using subjective survey and field measurement. Build. Environ. 2016, 108, 1–11. [Google Scholar] [CrossRef]
- Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madureira, J.; Paciencia, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; Fernandes, E.D. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Nasreddine, R.; Person, V.; Serra, C.A.; Le Calvé, S. Development of a novel portable miniaturized GC for near real-time low level detection of BTEX. Sens. Actuators B Chem. 2016, 224, 159–169. [Google Scholar] [CrossRef]
- Pang, X.; Nan, H.; Zhong, J.; Ye, D.; Shaw, M.D.; Lewis, A.C. Low-cost photoionization sensors as detectors in GC × GC systems designed for ambient VOC measurements. Sci. Total Environ. 2019, 664, 771–779. [Google Scholar] [CrossRef]
- Molhave, L.; Clausen, G.; Berglund, B.; de Ceaurriz, J.; Kettrup, A.; Lindvall, T.; Maroni, M.; Pickering, A.C.; Risse, U.; Rothweiler, H.; et al. Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air 1997, 7, 225–240. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Mean | SD | GM | GSD | Min | Median | P90 | Max |
---|---|---|---|---|---|---|---|---|---|
Indoor TVOC | ppb | 271 | 194 | 212 | 2 | 30 | 202 | 510 | 869 |
Indoor temperature | °C | 24.8 | 1.3 | 24.7 | 1.1 | 22.2 | 25.0 | 25.9 | 27.6 |
Indoor humidity | % | 45.7 | 7.5 | 45.2 | 1.2 | 34.1 | 43.6 | 57.4 | 64.4 |
Indoor air velocity | m/s | 0.0 | 0.1 | NA | NA | 0.0 | 0.0 | 0.1 | 0.2 |
Outdoor TVOC | ppb | 22 | 22 | NA | NA | 0 | 19 | 44 | 78 |
Outdoor temperature | °C | 29.5 | 3.2 | 29.3 | 1.1 | 20.2 | 30.0 | 33.3 | 34.8 |
Outdoor humidity | % | 48.9 | 16.5 | 46.0 | 1.5 | 22.2 | 52.0 | 66.1 | 79.1 |
Outdoor air velocity | m/s | 1.0 | 0.7 | 0.8 | 2.15 | 0.2 | 1.0 | 2.2 | 3.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Cao, K.; Valaulikar, R.; Fu, X.; Sorin, A.B. Variability of Total Volatile Organic Compounds (TVOC) in the Indoor Air of Retail Stores. Int. J. Environ. Res. Public Health 2019, 16, 4622. https://doi.org/10.3390/ijerph16234622
Jia C, Cao K, Valaulikar R, Fu X, Sorin AB. Variability of Total Volatile Organic Compounds (TVOC) in the Indoor Air of Retail Stores. International Journal of Environmental Research and Public Health. 2019; 16(23):4622. https://doi.org/10.3390/ijerph16234622
Chicago/Turabian StyleJia, Chunrong, Kevin Cao, Riya Valaulikar, Xianqiang Fu, and Anna Bess Sorin. 2019. "Variability of Total Volatile Organic Compounds (TVOC) in the Indoor Air of Retail Stores" International Journal of Environmental Research and Public Health 16, no. 23: 4622. https://doi.org/10.3390/ijerph16234622
APA StyleJia, C., Cao, K., Valaulikar, R., Fu, X., & Sorin, A. B. (2019). Variability of Total Volatile Organic Compounds (TVOC) in the Indoor Air of Retail Stores. International Journal of Environmental Research and Public Health, 16(23), 4622. https://doi.org/10.3390/ijerph16234622