Determination of Lead Elemental Concentration and Isotopic Ratios in Coal Ash and Coal Fly Ash Reference Materials Using Isotope Dilution Thermal Ionization Mass Spectrometry
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Coal Fly Ash and Coal Ash Certificate Reference Materials
2.3. Sample Digestion
2.4. Pb Purification Using Column Chemistry and Procedural Blank
2.5. Thermal Ionization Mass Spectrometry Measurement
3. Results and Discussion
3.1. Pb Elemental Concentration Results
3.2. Pb isotopic Ratio Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stigliani, W.M.; Doelman, P.; Salomons, W.; Schulin, R.; Schmidt, G.R.B.; Van der Zee, S.E. Chemical time bombs: Predicting the unpredictable. Environment 1991, 33, 26–30. [Google Scholar] [CrossRef]
- Fang, T.; Liu, G.J.; Zhou, C.C.; Sun, R.Y.; Chen, J.; Wu, D. Lead in Chinese coals: Distribution, modes of occurrence, and environmental effects. Environ. Geochem. Health 2014, 36, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.Y.; Li, Z.G.; Wang, S.X.; Zhang, L.; Xu, R.; Liu, J.L.; Yang, H.M.; Guo, M.Z. Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing. Environ. Sci. Technol. 2017, 51, 13502–13508. [Google Scholar] [CrossRef] [PubMed]
- IEA. Table 1.8: World Consumption of Primary Energy by Energy Type and Selected Country Groups,1980–2006. In International Energy Annual 2006; US Energy Information Administration: Washington, DC, USA, 2008. [Google Scholar]
- IEA (International Energy Agency). World Energy Outlook 2017. Available online: http://www.iea.org/weo2017/ (accessed on 14 November 2017).
- Maggio, G.; Cacciola, G. When will oil, narural gas, and coal peak? Fuel 2012, 98, 111–123. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, H.; Zhou, T.; Lin, C.; Guo, S. The estimated atmospheric lead emissions in China, 1990∓2009. Atmos. Environ. 2012, 60, 1–8. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Boit, K.; Pacheco, F.; Teixeira, E.C.; Schneider, I.L.; Crissien, T.J.; Pinto, D.C.; Oyaga, R.M.; Silva, L.F.O. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 2018, 160, 562–567. [Google Scholar] [CrossRef]
- Ruhl, L.; Vengosh, A.; Dwyer, G.S.; Hsu-Kim, H.; Schwartz, G.; Romanski, A.; Smith, S.D. The impact of coal combustion residue effluent on water resources: A North Carolina example. Environ. Sci. Technol. 2012, 46, 12226–12233. [Google Scholar] [CrossRef]
- Ruhl, L.; Vengosh, A.; Dwyer, G.S.; Hsu-Kim, H.; Deonarine, A.; Bergin, M.; Kravchenko, J. Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee. Environ. Sci. Technol. 2009, 43, 6326–6333. [Google Scholar] [CrossRef]
- Silva, L.F.O.; Daboit, K.; Sampaio, C.H.; Jasper, A.; Andrade, M.L.; Kostova, I.J.; Waanders, F.B.; Henke, K.R.; Hower, J.C. The occurrence of hazardous volatile elements and nanoparticles in bulgarian coal fly ashes and the effect on human health exposure. Sci. Total Environ. 2012, 416, 513–526. [Google Scholar] [CrossRef]
- Rodriguez-Iruretagoiena, A.; Vallejuelo, S.F.O.D.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; Diego, A.D.; Madariaga, J.M.; Silva, L.F.O. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Martinello, K.; Oliveira, M.L.S.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F.O. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Sajwan, K.S.; Alva, A.K.; Keefer, R.F. Chemistry of Trace Elements in Fly Ash; Springer Science+Business Media: New York, NY, USA, 2003. [Google Scholar]
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Harkness, J.S.; Ruhl, L.S.; Millot, R.; Kloppman, W.; Hower, J.C.; Hsu-Kim, H.; Vengosh, A. Lithium isotope fingerprints in coal and coal combustion residuals from the United States. Prog. Earth Planet. Sci. 2015, 13, 134–137. [Google Scholar] [CrossRef]
- Sun, R.Y.; Sonke, J.E.; Heimbürger, L.E.; Belkin, H.E.; Liu, G.J.; Shome, D.; Cukrowska, E.; Liousse, C.; Pokrovsky, O.S.; Streets, D.G. Mercury Stable Isotope Signatures of World Coal Deposits and Historical Coal Combustion Emissions. Environ. Sci. Technol. 2014, 48, 7660–7668. [Google Scholar] [CrossRef]
- Ruhl, L.S.; Dwyer, G.S.; Hsu-Kim, H.; Hower, J.C.; Vengosh, A. Boron and strontium isotopic characterization of coal combustion residuals: Validation of new environmental tracers. Environ. Sci. Technol. 2014, 48, 14790–14798. [Google Scholar] [CrossRef]
- Straughan, I.R.; Elseewi, A.A.; Page, A.L.; Kaplan, I.R.; Hurst, R.W.; Davis, T.E. Fly ash-derived strontium as an index to monitor deposition from coal-fired power plants. Science 1981, 212, 1267–1269. [Google Scholar] [CrossRef]
- Hurst, R.W.; Davis, T.E. Strontium isotopes as tracers of airborne flyash from coal-fired power plants. Environ. Geol. 1981, 3, 363–367. [Google Scholar] [CrossRef]
- Li, C.F.; Wu, H.Q.; Chu, Z.Y.; Wang, X.C.; Guo, J.H.; Li, Y.L. Precise determination of radiogenic Sr and Nd isotopic ratios and Rb, Sr, Sm, Nd elemental concentrations in four coal ash and coal flfly ash reference materials using isotope dilution thermal ionization mass spectrometry. Microchem. J. 2019, 146, 906–913. [Google Scholar] [CrossRef]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef]
- Krata, A.A.; Wojciechowski, M.; Kalabun, M.; Bulska, E. Reference measurements of cadmium and lead contents in candidates for new environmental certified materials by isotope dilution inductively coupled plasma mass spectrometry. Microchem. J. 2018, 142, 36–42. [Google Scholar] [CrossRef]
- Vassileva, E.; Wysocka, I.; Betti, M. Reference measurements for cadmium, copper, mercury, lead, zinc and methyl mercury mass fractions in scallop sample by isotope dilution inductively coupled plasma mass spectrometry. Microchem. J. 2014, 116, 197–205. [Google Scholar] [CrossRef]
- Terashima, S.; Taniguchi, M.; Mikoshiba, M.; Imai, N. Preparation of Two New GSJ Geochemical Reference Materials: Basalt JB-1b and Coal Fly Ash JCFA-1. Geostand. Newsl. 1998, 22, 113–117. [Google Scholar] [CrossRef]
- Halmosa, P.; Borsze’ki, J.; Szabó, S.; Halmos, E. Direct analysis of fly ash materials by inductively coupled plasma atomic emission spectrometry using slurry nebulization. Microchem. J. 2005, 79, 25–28. [Google Scholar] [CrossRef]
- Mketo, N.; Nomngongo, P.N.; Ngila, J.C. An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry. Microchem. J. 2016, 124, 201–208. [Google Scholar] [CrossRef]
- Li, C.F.; Chu, Z.Y.; Guo, J.H.; Li, Y.L.; Yang, Y.H.; Li, X.H. A rapid single column separation scheme for high-precision Sr–Nd–Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Anal. Methods 2015, 7, 4793–4802. [Google Scholar] [CrossRef]
- Li, C.F.; Wang, X.C.; Guo, J.H.; Chu, Z.Y.; Feng, L.J. Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. J. Anal. Spectrom. 2016, 31, 1150–1159. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Volker, F.; Mcculloch, M.T. Routine lead isotope determinations using a lead-207-lead-204 double spike: A long-term assessment of analytical precision and accuracy. Analyst 1995, 120, 35–39. [Google Scholar] [CrossRef]
- Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; De, J.J.; Williams, G.A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.S.; et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef]
- Fourny, A.; Weis, D.; Scoates, J.S. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials. Geochem. Geophys. Geosyst. 2016, 17, 739–773. [Google Scholar] [CrossRef]
- Taylor, R.N.; Ishizuka, O.; Michalik, A.; Milton, J.A.; Croudace, I.W. Evaluating the precision of Pb isotope measurement by mass spectrometry. J. Anal. Spectrom. 2015, 30, 198–213. [Google Scholar] [CrossRef]
- Dodson, M.H. A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: Part I—General first-order algebraic solutions. J. Sci. Instrum. 1963, 40, 289–295. [Google Scholar] [CrossRef]
- Hattori, M.; Takaku, Y.; Shimamura, T. Novel rapid separation of lead using highly selective resin for measurement of precise lead isotope ratio and its application to geochemical reference samples. Bunseki Kagaku 2008, 57, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Pin, C.; Gannoun, A.; Dupont, A. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. J. Anal. At. Spectrom. 2014, 29, 1858–1870. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M. Pb-isotope analyses of USGS reference materials. Geostand. Newsl. J. Geostand. Geoanal. 2000, 24, 33–38. [Google Scholar] [CrossRef]
- Vogl, J. Characterisation of reference materials by isotope dilution mass spectrometry. J. Anal. Spectrom. 2007, 22, 475–492. [Google Scholar] [CrossRef]
- Berglund, M. Introduction to Isotope Dilution Mass Spectrometry (IDMS). In Handbook of Stable Isotope Analytical Techniques; De Groot, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 820–834. [Google Scholar]
- Imai, N.; Terashima, S.; Itoh, S.; Ando, A. 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, “Igneous Rock Series”. Geostand. Newsl. J. Geostand. Geoanal. 1995, 19, 135–213. [Google Scholar] [CrossRef]
- Dulski, P. Reference Materials for Geochemical Studies: New Analytical Data by ICP-MS and Critical Discussion of Reference Values. Geostand. Newsl. J. Geostand. Geoanal. 2001, 25, 87–125. [Google Scholar] [CrossRef]
- Cotta, A.J.B.; Enzweiler, J. Classical and New Procedures of Whole Rock Dissolution for Trace Element Determination by ICP-MS. Geostand. Geoanal. Res. 2012, 36, 27–50. [Google Scholar] [CrossRef]
- Stracke, A.; Palme, H.; Gellissen, M.; Munker, C.; Kleine, T.; Birbaum, K.; Gunther, D.; Bourdon, B.; Zipfel, J. Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochim. Cosmochim. Acta 2012, 85, 114–141. [Google Scholar] [CrossRef]
- Kuritani, T.; Usui, T.; Yokoyama, T.; Nakamura, E. Accurate Isotopic and Concentration Analyses of Small Amounts of Pb Using Isotope Dilution Coupled with the Double Spike Technique. Geostand. Geoanal. Res. 2006, 30, 209–220. [Google Scholar] [CrossRef]
Spikes | 204Pb | 206Pb | 207Pb | 208Pb |
---|---|---|---|---|
207Pb | 0.1391 | 2.452 | 92.813 | 4.631 |
204Pb–207Pb | 40.165 | 1.555 | 55.457 | 2.823 |
Procedure | Eluting Reagent | Eluting Volume (mL) |
---|---|---|
Cleaning column | 6.0 M HCl | 4.0 |
Cleaning column | Milli-Q Water | 5.0 |
Cleaning column | 0.7 M HBr | 1.0 |
Loading sample | 0.7 M HBr | 0.5 |
Rinsing | 0.7 M HBr | 4.2 |
Eluting Pb | 6.0 M HCl | 1.2 |
Element | C | H1 | H2 | H3 |
---|---|---|---|---|
Pb | 204Pb | 206Pb | 207Pb | 208Pb |
CRMs | GBW08401 | GBW11124 | GBW1125d | JCFA-1 | Reported | JB-3 | Reported | BCR-2 | Reported |
---|---|---|---|---|---|---|---|---|---|
Pb (μg/g) | Pb (μg/g) | Pb (μg/g) | Pb (μg/g) | Value (μg/g) | Pb (μg/g) | Value (μg/g) | Pb (μg/g) | Value (μg/g) | |
36.62 | 41.14 | 63.93 | 47.64 | 47.2 (Ref. 26) | 5.33 | 5.58 (Ref. 41) | 10.95 | 11.02 (Ref. 32) | |
36.66 | 41.15 | 63.34 | 47.76 | 5.34 | 5.04 (Ref. 42) | 10.98 | 10.50 (Ref. 43) | ||
36.93 | 41.01 | 63.88 | 47.59 | 5.29 | 5.035 (Ref. 45) | 10.84 | 10.90 (Ref. 44) | ||
36.75 | 41.16 | 64.24 | 47.61 | 5.35 | 10.91 | ||||
Mean | 36.74 | 41.12 | 63.85 | 47.65 | 5.33 | 10.92 | |||
SD | 0.14 | 0.07 | 0.37 | 0.08 | 0.03 | 0.06 | |||
RSD (%) | 0.38 | 0.17 | 0.58 | 0.17 | 0.56 | 0.55 |
CRMs | 206Pb/204Pb | 2 SE | 207Pb/204Pb | 2 SE | 208Pb/204Pb | 2 SE | 206Pb/207Pb | 2 SE | 208Pb/206Pb | 2 SE |
---|---|---|---|---|---|---|---|---|---|---|
GBW08401 | 17.9918 | 0.0006 | 15.5114 | 0.0005 | 38.1801 | 0.0014 | 1.15991 | 0.00001 | 2.12209 | 0.00002 |
GBW08401 | 17.9933 | 0.0007 | 15.5122 | 0.0007 | 38.1816 | 0.0017 | 1.15994 | 0.00002 | 2.12199 | 0.00003 |
GBW08401 | 17.9903 | 0.0006 | 15.5119 | 0.0005 | 38.1840 | 0.0013 | 1.15978 | 0.00001 | 2.12247 | 0.00002 |
GBW08401 | 17.9919 | 0.0006 | 15.5126 | 0.0006 | 38.1829 | 0.0015 | 1.15982 | 0.00001 | 2.12223 | 0.00002 |
GBW08401 | 17.9947 | 0.0007 | 15.5154 | 0.0006 | 38.1895 | 0.0015 | 1.15980 | 0.00001 | 2.12226 | 0.00002 |
GBW08401 | 17.9948 | 0.0007 | 15.5158 | 0.0006 | 38.1874 | 0.0014 | 1.15978 | 0.00001 | 2.12213 | 0.00002 |
GBW08401 | 17.9930 | 0.0007 | 15.5134 | 0.0006 | 38.1798 | 0.0016 | 1.15983 | 0.00001 | 2.12193 | 0.00002 |
GBW08401 | 17.9946 | 0.0008 | 15.5152 | 0.0006 | 38.1890 | 0.0016 | 1.15980 | 0.00002 | 2.12225 | 0.00003 |
Mean | 17.9931 | 15.5135 | 38.1843 | 1.15983 | 2.12217 | |||||
2SD | 0.0033 | 0.0035 | 0.0078 | 0.00012 | 0.00035 | |||||
2RSD (%) | 0.018 | 0.022 | 0.020 | 0.010 | 0.016 | |||||
GBW11124 | 19.2195 | 0.0007 | 15.6657 | 0.0006 | 39.0419 | 0.0016 | 1.22685 | 0.00001 | 2.03137 | 0.00002 |
GBW11124 | 19.2306 | 0.0007 | 15.6784 | 0.0006 | 39.0823 | 0.0016 | 1.22657 | 0.00001 | 2.03230 | 0.00002 |
GBW11124 | 19.2239 | 0.0006 | 15.6696 | 0.0005 | 39.0556 | 0.0012 | 1.22683 | 0.00001 | 2.03161 | 0.00003 |
GBW11124 | 19.2342 | 0.0008 | 15.6764 | 0.0007 | 39.0724 | 0.0018 | 1.22695 | 0.00002 | 2.03140 | 0.00003 |
GBW11124 | 19.2137 | 0.0007 | 15.6707 | 0.0005 | 39.0330 | 0.0014 | 1.22609 | 0.00001 | 2.03152 | 0.00002 |
GBW11124 | 19.2358 | 0.0007 | 15.6783 | 0.0006 | 39.0787 | 0.0015 | 1.22690 | 0.00001 | 2.03157 | 0.00002 |
GBW11124 | 19.2325 | 0.0006 | 15.6819 | 0.0006 | 39.0881 | 0.0015 | 1.22642 | 0.00001 | 2.03239 | 0.00003 |
GBW11124 | 19.2354 | 0.0008 | 15.6810 | 0.0006 | 39.0862 | 0.0015 | 1.22667 | 0.00001 | 2.03200 | 0.00002 |
Mean | 19.2282 | 15.6753 | 39.0673 | 1.22666 | 2.03177 | |||||
2SD | 0.0164 | 0.0117 | 0.0423 | 0.00059 | 0.00081 | |||||
2RSD (%) | 0.086 | 0.075 | 0.108 | 0.048 | 0.040 | |||||
GBW11125d | 18.4685 | 0.0007 | 15.6435 | 0.0006 | 38.6202 | 0.0016 | 1.18058 | 0.00001 | 2.09114 | 0.00002 |
GBW11125d | 18.4774 | 0.0007 | 15.6445 | 0.0007 | 38.6250 | 0.0017 | 1.18108 | 0.00002 | 2.09040 | 0.00003 |
GBW11125d | 18.4682 | 0.0007 | 15.6427 | 0.0006 | 38.6202 | 0.0015 | 1.18063 | 0.00001 | 2.09117 | 0.00002 |
GBW11125d | 18.4762 | 0.0006 | 15.6486 | 0.0005 | 38.6320 | 0.0013 | 1.18069 | 0.00001 | 2.09091 | 0.00002 |
GBW11125d | 18.4767 | 0.0007 | 15.6479 | 0.0006 | 38.6430 | 0.0016 | 1.18078 | 0.00001 | 2.09145 | 0.00003 |
GBW11125d | 18.4791 | 0.0007 | 15.6458 | 0.0006 | 38.6283 | 0.0015 | 1.18109 | 0.00001 | 2.09038 | 0.00002 |
GBW11125d | 18.4775 | 0.0008 | 15.6504 | 0.0008 | 38.6378 | 0.0018 | 1.18065 | 0.00001 | 2.09107 | 0.00003 |
GBW11125d | 18.4731 | 0.0007 | 15.6489 | 0.0006 | 38.6407 | 0.0016 | 1.18047 | 0.00001 | 2.09173 | 0.00002 |
Mean | 18.4746 | 15.6466 | 38.6309 | 1.18075 | 2.09103 | |||||
2SD | 0.0084 | 0.0056 | 0.0179 | 0.00045 | 0.00094 | |||||
2RSD (%) | 0.046 | 0.036 | 0.046 | 0.038 | 0.045 | |||||
JCFA-1 | 18.3987 | 0.0007 | 15.5652 | 0.0006 | 38.4265 | 0.0014 | 1.18204 | 0.00001 | 2.08854 | 0.00002 |
JCFA-1 | 18.3899 | 0.0007 | 15.5602 | 0.0006 | 38.4073 | 0.0014 | 1.18186 | 0.00001 | 2.08850 | 0.00002 |
JCFA-1 | 18.3934 | 0.0007 | 15.5594 | 0.0006 | 38.4089 | 0.0015 | 1.18214 | 0.00001 | 2.08819 | 0.00002 |
JCFA-1 | 18.3948 | 0.0006 | 15.5603 | 0.0005 | 38.4124 | 0.0013 | 1.18216 | 0.00001 | 2.08822 | 0.00002 |
JCFA-1 | 18.4032 | 0.0007 | 15.5718 | 0.0006 | 38.4456 | 0.0016 | 1.18183 | 0.00001 | 2.08907 | 0.00002 |
JCFA-1 | 18.3953 | 0.0007 | 15.5603 | 0.0006 | 38.4095 | 0.0015 | 1.18220 | 0.00001 | 2.08801 | 0.00002 |
JCFA-1 | 18.3970 | 0.0007 | 15.5640 | 0.0007 | 38.4238 | 0.0017 | 1.18203 | 0.00001 | 2.08860 | 0.00003 |
JCFA-1 | 18.3985 | 0.0006 | 15.5636 | 0.0006 | 38.4228 | 0.0013 | 1.18215 | 0.00001 | 2.08837 | 0.00002 |
Mean | 18.3964 | 15.5631 | 38.4196 | 1.18205 | 2.08844 | |||||
2SD | 0.0080 | 0.0082 | 0.0259 | 0.00028 | 0.00065 | |||||
2RSD (%) | 0.043 | 0.053 | 0.067 | 0.024 | 0.031 | |||||
JCFA-1 ref value | ||||||||||
Ref. 36 | 18.399 | 15.565 | 38.426 | 1.18208 | 2.08842 | |||||
JB-3 | 18.2932 | 0.0007 | 15.5338 | 0.0006 | 38.2436 | 0.0015 | 1.17764 | 0.00001 | 2.09059 | 0.00002 |
JB-3 | 18.2936 | 0.0007 | 15.5357 | 0.0006 | 38.2479 | 0.0016 | 1.17752 | 0.00001 | 2.09079 | 0.00003 |
JB-3 | 18.2928 | 0.0008 | 15.5354 | 0.0008 | 38.2430 | 0.0020 | 1.17749 | 0.00002 | 2.09060 | 0.00003 |
JB-3 | 18.2936 | 0.0008 | 15.5365 | 0.0008 | 38.2480 | 0.0020 | 1.17746 | 0.00002 | 2.09078 | 0.00003 |
JB-3 | 18.2899 | 0.0007 | 15.5310 | 0.0007 | 38.2327 | 0.0017 | 1.17763 | 0.00001 | 2.09038 | 0.00003 |
JB-3 | 18.2923 | 0.0006 | 15.5349 | 0.0005 | 38.2413 | 0.0013 | 1.17750 | 0.00001 | 2.09056 | 0.00002 |
Mean | 18.2926 | 0.0007 | 15.5346 | 0.0006 | 38.2427 | 0.0015 | 1.17754 | 0.00001 | 2.09062 | 0.00002 |
2SD | 0.0028 | 0.0039 | 0.0112 | 0.00016 | 0.00031 | |||||
2RSD (%) | 0.015 | 0.025 | 0.029 | 0.014 | 0.015 | |||||
JB-3 ref values | ||||||||||
Ref. 33 | 18.2942 | 15.5355 | 38.2496 | 1.17757 | 2.09080 | |||||
Ref. 37 | 18.2592 | 15.5356 | 38.2506 | 1.17531 | 2.09487 | |||||
Ref. 29 | 18.2900 | 15.5310 | 38.2320 | 1.17764 | 2.09032 | |||||
Ref. 30 | 18.2997 | 15.5228 | 38.2441 | 1.17889 | 2.08988 | |||||
Ref. 36 | 18.2910 | 15.5403 | 38.2500 | 1.17700 | 2.09119 | |||||
Ref. 45 | 18.2954 | 15.5380 | 38.2516 | 1.17746 | 2.09078 | |||||
Mean | 18.2883 | 15.5339 | 38.2463 | 1.17731 | 2.09131 | |||||
BCR-2 | 18.7523 | 0.0006 | 15.6184 | 0.0005 | 38.7105 | 0.0012 | 1.20065 | 0.00001 | 2.06431 | 0.00003 |
BCR-2 | 18.7561 | 0.0008 | 15.6212 | 0.0009 | 38.7168 | 0.0024 | 1.20068 | 0.00002 | 2.06422 | 0.00004 |
BCR-2 | 18.7527 | 0.0007 | 15.6248 | 0.0008 | 38.7162 | 0.0023 | 1.20019 | 0.00002 | 2.06457 | 0.00003 |
BCR-2 | 18.7477 | 0.0008 | 15.6161 | 0.0006 | 38.7076 | 0.0015 | 1.20053 | 0.00001 | 2.06466 | 0.00002 |
BCR-2 | 18.7517 | 0.0007 | 15.6245 | 0.0006 | 38.7268 | 0.0015 | 1.20015 | 0.00001 | 2.06524 | 0.00002 |
BCR-2 | 18.7531 | 0.0006 | 15.6195 | 0.0005 | 38.7141 | 0.0013 | 1.20063 | 0.00001 | 2.06441 | 0.00002 |
Mean | 18.7523 | 15.6207 | 38.7153 | 1.20047 | 2.06457 | |||||
2SD | 0.0055 | 0.0069 | 0.0133 | 0.00048 | 0.00074 | |||||
2RSD (%) | 0.029 | 0.044 | 0.034 | 0.040 | 0.036 | |||||
BCR-2 ref values | ||||||||||
Ref. 29 | 18.7520 | 15.6200 | 38.7150 | 1.20051 | 2.06458 | |||||
Ref. 30 | 18.7580 | 15.6240 | 38.7210 | 1.20059 | 2.06424 | |||||
Ref. 32 | 18.7529 | 15.6250 | 38.7237 | 1.20019 | 2.06494 | |||||
Ref. 38 | 18.7540 | 15.6230 | 38.7230 | 1.20041 | 2.06479 | |||||
Mean | 18.7542 | 15.6230 | 38.7207 | 1.20042 | 2.06464 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, H.; Wang, X.; Chu, Z.; Li, Y.; Guo, J. Determination of Lead Elemental Concentration and Isotopic Ratios in Coal Ash and Coal Fly Ash Reference Materials Using Isotope Dilution Thermal Ionization Mass Spectrometry. Int. J. Environ. Res. Public Health 2019, 16, 4772. https://doi.org/10.3390/ijerph16234772
Li C, Wu H, Wang X, Chu Z, Li Y, Guo J. Determination of Lead Elemental Concentration and Isotopic Ratios in Coal Ash and Coal Fly Ash Reference Materials Using Isotope Dilution Thermal Ionization Mass Spectrometry. International Journal of Environmental Research and Public Health. 2019; 16(23):4772. https://doi.org/10.3390/ijerph16234772
Chicago/Turabian StyleLi, Chaofeng, Huiqian Wu, Xuance Wang, Zhuyin Chu, Youlian Li, and Jinghui Guo. 2019. "Determination of Lead Elemental Concentration and Isotopic Ratios in Coal Ash and Coal Fly Ash Reference Materials Using Isotope Dilution Thermal Ionization Mass Spectrometry" International Journal of Environmental Research and Public Health 16, no. 23: 4772. https://doi.org/10.3390/ijerph16234772
APA StyleLi, C., Wu, H., Wang, X., Chu, Z., Li, Y., & Guo, J. (2019). Determination of Lead Elemental Concentration and Isotopic Ratios in Coal Ash and Coal Fly Ash Reference Materials Using Isotope Dilution Thermal Ionization Mass Spectrometry. International Journal of Environmental Research and Public Health, 16(23), 4772. https://doi.org/10.3390/ijerph16234772