Nitrogen Removal from Domestic Wastewater and the Development of Tropical Ornamental Plants in Partially Saturated Mesocosm-Scale Constructed Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Description of the System
2.3. Plant Development
2.4. Biomass Production
2.5. System Monitoring
2.6. Data Analysis
3. Results
3.1. Plant Development
3.2. Wastewater Analysis
3.3. Elimination of COD in CWs-VPS
3.4. Elimination of N-NH4 in CWs-VPS
3.5. Elimination of N-NO3 in CWs-VPS
Scale | Type of Wetland | Plants | Pollutant Removal (%) | Reference |
---|---|---|---|---|
Microcosm | Subsurface Vertical Flow with Intermittent Aeration | Oenanthe Javanica | N-NH4: 15–28%. TN: 17–53% | Zhou et al. [54] |
Microcosm | Subsurface Vertical Flow | Phragmites australis | N-NH4: 57–65% | Dan et al. [55] |
Mesocosms | Subsurface Vertical Outdoor Flow with Modified Pallet Tanks | A. halimus J. acutus S. perennis P. australis | TN: 23–30% | Fountoulakis et al. [56] |
Microcosm | Aerated Vertical Flow | Acorus calamus L | N-NH4: 43–81% TN: 29–52% | Zhang et al. [57] |
3.6. Elimination of Norg in CWs-VPS
3.7. Elimination of TN in CWs-VPS
3.8. TP Elimination in CWs-VPS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Friedler, E.; Butler, D.; Alfiya, Y. Source Separation and Decentralization Wastewater Management; IWA Publishing: London, UK, 2013; Available online: www.iwappublishing.com (accessed on 1 November 2019).
- Holmes, D.E.; Dang, Y.; Smith, J.A. Nitrogen cycling during wastewater treatment. Adv. Appl. Microbiol. 2019, 106, 113. [Google Scholar]
- Chen, D.; Gu, X.; Zhu, W.; He, S.; Huang, J.; Zhou, W. Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios. Bioresour. Technol. 2019, 285, 121313. [Google Scholar] [CrossRef]
- Chang, M.; Wang, Y.; Pan, Y.; Zhang, K.; Lyu, L.; Wang, M.; Zhu, T. Nitrogen removal from wastewater via simultaneous nitrification and denitrification using a biological folded non-aerated filter. Bioresour. Technol. 2019, 289, 121696. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Rodriguez, C.I.; Fernandez-Poulussen, A.; Merchan, D.; Beriain, M.J.; Llamas, R. Grey water footprint as an indicator for diffuse nitrogen pollution: The case of Navarra, Spain. Sci. Total Environ. 2019, 698, 134338. [Google Scholar] [CrossRef]
- Ghimire, U.; Nandimandalam, H.; Martinez-Guerra, E.; Gude, V.G. Wetlands for Wastewater Treatment. Water Environ. Res. 2019, 91, 1378–1389. [Google Scholar] [CrossRef]
- Shi, W.; Li, H.; Li, A. Mechanism and influencing factors of nitrogen removal in subsurface flow constructed wetland. Appl. Chem. Eng. 2018, 1, 9–14. [Google Scholar] [CrossRef]
- Kumar, S.; Dutta, V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: An overview. Environ. Sci. Pollut. Res. 2019, 26, 11662–11673. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Metcalf & Eddy wastewater engineering: Treatment and reuse. Int. Edition. McGrawHill 2003, 4, 361–411. [Google Scholar]
- Bojorges, T.; Xitlalli, Á.; Hernández Razo, N.A.; Urquieta, F.; Aseret, A.; Zurita Martínez, F. Evaluación de tres sistemas de humedales híbridos a escala piloto para la remoción de nitrógeno. Rev. Int. Cont. Amb. 2017, 33, 37–47. [Google Scholar] [CrossRef]
- Avellán, T.; Gremillion, P. Constructed wetlands for resource recovery in developing countries. Renew. Sustain. Energy Rev. 2019, 99, 42–57. [Google Scholar] [CrossRef]
- Aalam, T.; Khalil, N. Performance of horizontal sub-surface flow constructed wetlands with different flow patterns using dual media for low-strength municipal wastewater: A case of pilot scale experiment in a tropical climate region. J. Environ. Sci. Health Part A 2019, 54, 1245–1253. [Google Scholar] [CrossRef]
- Martínez, N.B.; Tejeda, A.; Del Toro, A.; Sánchez, M.P.; Zurita, F. Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon. Sci. Total Environ. 2018, 645, 524–532. [Google Scholar] [CrossRef]
- Ali, Z.; Mohammad, A.; Riaz, Y.; Quraishi, U.M.; Malik, R.N. Treatment efficiency of a hybrid constructed wetland system for municipal wastewater and its suitability for crop irrigation. Int. J. Phytoremed. 2018, 20, 1152–1161. [Google Scholar] [CrossRef]
- Herrera-Melián, J.; Borreguero-Fabelo, A.; Araña, J.; Peñate-Castellano, N.; Ortega-Méndez, J. Effect of Substrate, Feeding Mode and Number of Stages on the Performance of Hybrid Constructed Wetland Systems. Water 2018, 10, 39. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Luo, P.; Chen, X.; Chen, J.; Huang, Z.; Peng, J.; Xiao, R.; Wu, J. Stimulation of optimized influent C: N ratios on nitrogen removal in surface flow constructed wetlands: Performance and microbial mechanisms. Sci. Total Environ. 2019, 694, 133575. [Google Scholar] [CrossRef]
- Groh, T.A.; Gentry, L.E.; David, M.B. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water. J. Environ. Qual. 2015, 44, 1001–1010. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J. Wetlands; John Wiley and Sons Inc.: New York, NY, USA, 2015. [Google Scholar]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review. J. Environ. Manag. 2017, 198, 372–383. [Google Scholar] [CrossRef]
- Lin-Lan, Z.; Ting, Y.; Jian, Z.; Xiangzheng, L. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresour. Technol. 2019, 293, 122086. [Google Scholar] [CrossRef]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Yadav, A.K.; Garaniya, V.; Lewis, T.; Abbassi, R.; Khan, S. Electrode dependent anaerobic ammonium oxidation in microbial fuel cell integrated hybrid constructed wetlands: A new process. Sci. Total Environ. 2019, 698, 134248. [Google Scholar] [CrossRef] [PubMed]
- Silveira, D.D.; Belli Filho, P.; Philippi, L.S.; Kim, B.; Molle, P. Influence of partial saturation on total nitrogen removal in a single-stage French constructed wetland treating raw domestic wastewater. Ecol. Eng. 2015, 77, 257–264. [Google Scholar] [CrossRef]
- Kraiem, K.; Kallali, H.; Wahab, M.A.; Fra-vazquez, A.; Mosquera-Corral, A.; Jedidi, N. Comparative study on pilots between ANAMMOX favored conditions in a partially saturated vertical flow constructed wetland and a hybrid system for rural wastewater treatment. Sci. Total Environ. 2019, 670, 644–653. [Google Scholar] [CrossRef]
- Han, Z.; Miao, Y.; Dong, J.; Shen, Z.; Zhou, Y.; Liu, S.; Yang, C. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater. Front. Environ. Sci. Eng. 2019, 13, 52. [Google Scholar] [CrossRef]
- National Institute of Statistical Geography and Data Processing. Yearbook Statistical and Geographical of Veracruz de Ignacio de la Llave. 2014. Available online: http://www.inegi.gob.mx (accessed on 29 July 2019).
- Zurita, F.; de Anda, J.; Belmont, M.A. Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water Qual. Res. J. 2006, 41, 410–417. [Google Scholar] [CrossRef]
- Trejo-Téllez, L.I.; Ramírez-Martínez, M.; Gómez-Merino, F.C.; García-Albarado, J.C.; Baca-Castillo, G.A.; Tejeda-Sartorius, O. Physical and chemical evaluation of volcanic rocks and its use for tulip production. Rev. Mex. Cienc. Agrícolas 2013, 4, 863–876. Available online: http://www.inifap.gob.mx/SitePages/revistas/rmca.aspx (accessed on 15 November 2019).
- Marín-Muñiz, J.L.; García-González, M.C.; Ruelas-Monjardín, L.C.; Moreno-Casasola, P. Influence of different porous media and ornamental vegetation on wastewater pollutant removal in vertical subsurface flow wetland microcosms. Environ. Eng. Sci. 2018, 35, 88–94. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005; p. 1220. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Cruz-Castillo, J.G.; Torres-Lima, P.A. ‘Deja Vu’: A new calla lily (Zantedeschia aethiopica) cultivar. Rev. Chapingo Ser. Hortic. 2017, 23, 97–101. [Google Scholar] [CrossRef]
- Haritash, A.K.; Sharma, A.; Bahel, K. The Potential of Canna lily for Wastewater Treatment Under Indian Conditions. Int. J. Phytoremed. 2015, 17, 999–1004. [Google Scholar] [CrossRef]
- Tran, H.D.; Vi, H.M.T.; Dang, H.T.T.; Narbaitz, R.M. Pollutant removal by Canna Generalis in tropical constructed wetlands for domestic wastewater treatment. Glob. J. Environ. Sci. Manag. 2019, 5, 331–344. [Google Scholar] [CrossRef]
- Kato, M.; Inthavongsa, K.; Imai, K. An estimation of leaf area in edible canna (Canna edulis Ker.). Jpn. J. Crop. Sci. 1989, 58, 753–754. [Google Scholar] [CrossRef]
- Casierra-Posada, F.; Nieto, P.J.; Ulrichs, C. Crecimiento, producción y calidad de flores en calas (Zantedeschia aethiopica (L.) K. Spreng) expuestas a diferente calidad de luz. Rev. UDCAv Div. Cient. 2012, 15, 97–105. Available online: https://repository.udca.edu.co/handle/11158/1858 (accessed on 15 November 2019).
- Zamora-Castro, S.A.; Marín-Muñiz, J.L.; Sandoval, L.; Vidal-Álvarez, M.; Carrión-Delgado, J.M. Effect of Ornamental Plants, Seasonality, and Filter Media Material in Fill-and-Drain Constructed Wetlands Treating Rural Community Wastewater. Sustainability 2019, 11, 2350. [Google Scholar] [CrossRef]
- Cui, L.; Ouyang, Y.; Lou, Q.; Yang, F.; Chen, Y.; Zhu, W.; Luo, S. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol. Eng. 2012, 36, 1083–1088. [Google Scholar] [CrossRef]
- Kuschk, P.; Wiessner, A.; Kappelmeyer, U.; Weissbrodt, E.; Kästner, M.; Stottmeister, U. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res. 2003, 37, 4236–4242. [Google Scholar] [CrossRef]
- Akratos, C.S.; Tsihrintzis, V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2007, 29, 173–191. [Google Scholar] [CrossRef]
- Alemu, K.; Assefa, B.; Kifle, D.; Kloos, H. Nitrogen and Phosphorous Removal from Municipal Wastewater Using High Rate Algae Ponds. INAE Lett. 2018, 3, 21–32. [Google Scholar] [CrossRef]
- Kadlec, R.H. Comparison of free water and horizontal subsurface treatment wetlands. Ecol. Eng. 2009, 35, 159–174. [Google Scholar] [CrossRef]
- Winkler, M.K.; Straka, L. New directions in biological nitrogen removal and recovery from wastewater. Curr. Opin. Biotechnol. 2019, 57, 50–55. [Google Scholar] [CrossRef]
- Wiebner, A.; Kappelmeyer, K.; Kuschk, P.; Kästner, M. Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Res. 2005, 39, 248–256. [Google Scholar] [CrossRef]
- Zhang, X.; Zha, L.; Jiang, P.; Wang, X.; Lu, K.; He, S.; Huang, J.; Zhou, W. Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus. Environ. Sci. Pollut. Res. 2019, 26, 23696–23706. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, M.; Liu, F.; Chen, L.; Li, Y.; Xiao, R.; Wu, J. Seasonality distribution of the abundance and activity of nitrification and denitrification microorganisms in sediments of surface flow constructed wetlands planted with Myriophyllum elatinoides during swine wastewater treatment. Bioresour. Technol. 2018, 248, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, L.; Zamora-Castro, S.A.; Vidal-Álvarez, M.; Marín-Muñiz, J.L. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Zurita, F.; White, J. Comparative study of three two-stage hybrid ecological wastewater treatment systems for producing high nutrient, reclaimed water for irrigation reuse in developing countries. Water 2014, 6, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.-G.; Zaman, M.; Tillman, R.W. Denitrification and N2O: N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef]
- Vera, L.; Vidal, G.; Salvato, M.; Borin, M. Consideraciones para la eliminación del nitrógeno en humedales artificiales. Tecnol. Agua 2011, 31, 40–49. Available online: https://dialnet.unirioja.es/ejemplar/283695 (accessed on 15 November 2019).
- Dušek, J.; Picek, T.; Čížková, H. Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: Diel, seasonal and spatial fluctuations. Ecol. Eng. 2008, 34, 223–232. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Zhang, H.; Wu, H. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour. Technol. 2017, 241, 269–275. [Google Scholar] [CrossRef]
- Dan, A.; Fujii, D.; Soda, S.; Machimura, T.; Ike, M. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. Sci. Total Environ. 2017, 578, 566–576. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Sabathianakis, G.; Kritsotakis, I.; Kabourakis, E.M.; Manios, T. Halophytes as vertical-flow constructed wetland vegetation for domestic wastewater treatment. Sci. Total Environ. 2017, 583, 432–439. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Z.; Ngo, H.H.; Zhang, J.; Guo, W.; Liang, S.; Xie, H. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland. Water Res. 2018, 130, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arteaga-Cortez, V.M.; Quevedo-Nolasco, A.; del Valle-Paniagua, D.H.; Castro-Popoca, M.; Bravo-Vinaja, Á.; Ramírez-Zierold, J.A. A current review of the mechanisms that make the artificial wetlands for the removal of nitrogen and phosphorus. Tecnol. Cienc. Agua 2019, 10, 319–342. [Google Scholar] [CrossRef]
- Zurita, F.; De Anda, J.; Belmont, M.A. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol. Eng. 2009, 35, 861–869. [Google Scholar] [CrossRef]
- Shen, Y.; Zhuang, L.; Zhang, J.; Fan, J.; Yang, T.; Sun, S. A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands. Chem. Eng. J. 2019, 359, 706–712. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C.A. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecol. Eng. 2005, 25, 491–500. [Google Scholar] [CrossRef]
- Bolton, L.; Joseph, S.; Greenway, M.; Donne, S.; Munroe, P.; Marjo, C.E. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecol. Eng. 2019, 1, 100005. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
COD (mg/L) | 550.7 ± 33.6 |
N-NH4 (mg/L) | 75.8 ± 21.7 |
N-NO3 (mg/L) | 5.7 ± 2.4 |
N Org (mg/L) | 8.3 ± 1.7 |
TN (mg/L) | 99.8 ± 25.78 |
TP (mg/L) | 9.7 ± 3.4 |
Dissolved Oxygen | 1.2 ± 0.78 |
pH | 8.0 ± 0.32 |
Parameter | Influent | Canna indica + TZN | Zantedeschia aethiopica + TZN | Control TZN |
---|---|---|---|---|
Water Temperature (°C) | 24.6 ± 2.3 | 18.3 ± 2.4 | 17.9 ± 1.4 | 19.1 ± 1.2 |
DO (mg/L) | 1.2 ± 0.78 | 8.9 ± 0.3 | 7.2 ± 0.2 | 4.8 ± 0.4 |
pH | 8.0 ± 0.32 | 7.4 ± 0.4 | 7.7 ± 0.2 | 7.05 ± 0.6 |
Parameters | Vegetation | Water Quality in the Mesocosms (Concentration mg/L) | Elimination Efficiency (%) | |
---|---|---|---|---|
Input | Output | |||
CDO (mg/L) | Canna hybrids + TZN | 550.7 ± 33.6 | 16.4 ± 14.6 | 97.07 ± 2.72 |
Zantedeschia aethiopica + TZN | 550.7 ± 33.6 | 14.62 ± 11.4 | 97.47 ± 1.92 | |
Control TZN | 550.7 ± 33.6 | 17.6 ± 11.6 | 96.92 ± 1.92 | |
N-NH4 (mg/L) | Canna hybrids + TZN | 75.8 ± 21.7 | 26.7 ± 12.6 | 72.52 ± 0.11 |
Zantedeschia aethiopica + TZN | 75.8 ± 21.7 | 33.5 ± 16.3 | 58.57 ± 9.64 | |
Control TZN | 75.8 ± 21.7 | 52.4 ± 14.7 | 30.75 ± 0.43 | |
N-NO3 (mg/L) | Canna hybrids + TZN | 5.7 ± 2.4 | 1.1 ± 0.9 | 84.62 ± 9.32 |
Zantedeschia aethiopica + TZN | 5.7 ± 2.4 | 1.3 ± 1.1 | 82.44 ± 9.5 | |
Control TZN | 5.7 ± 2.4 | 0.3 ± 0.2 | 94.40 ± 1.57 | |
N Org (mg/L) | Canna hybrids + TZN | 8.3 ± 1.7 | 2.1 ± 1.5 | 77.46 ± 13.46 |
Zantedeschia aethiopica + TZN | 8.3 ± 1.7 | 2.7 ± 2.1 | 71.38 ± 19.45 | |
Control TZN | 8.3 ± 1.7 | 3.6 ± 1.4 | 58.34 ± 8.34 | |
TN (mg/L) | Canna hybrids + TZN | 99.8 ± 25.78 | 29.9 ± 14.87 | 72.02 ± 7.67 |
Zantedeschia aethiopica + TZN | 99.8 ± 25.78 | 37.5 ± 19.49 | 65.15 ± 10.52 | |
Control TZN | 99.8 ± 25.78 | 56.3 ± 16.26 | 44.07 ± 1.84 | |
TP (mg/L) | Canna hybrids + TZN | 9.7 ± 3.4 | 0.3 ± 0.2 | 95.30 ± 0.89 |
Zantedeschia aethiopica + TZN | 9.7 ± 3.4 | 2.1 ± 1.6 | 81.89 ± 10.17 | |
Control TZN | 9.7 ± 3.4 | 5.6 ± 1.8 | 41.6 ± 1.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakase, C.; Zurita, F.; Nani, G.; Reyes, G.; Fernández-Lambert, G.; Cabrera-Hernández, A.; Sandoval, L. Nitrogen Removal from Domestic Wastewater and the Development of Tropical Ornamental Plants in Partially Saturated Mesocosm-Scale Constructed Wetlands. Int. J. Environ. Res. Public Health 2019, 16, 4800. https://doi.org/10.3390/ijerph16234800
Nakase C, Zurita F, Nani G, Reyes G, Fernández-Lambert G, Cabrera-Hernández A, Sandoval L. Nitrogen Removal from Domestic Wastewater and the Development of Tropical Ornamental Plants in Partially Saturated Mesocosm-Scale Constructed Wetlands. International Journal of Environmental Research and Public Health. 2019; 16(23):4800. https://doi.org/10.3390/ijerph16234800
Chicago/Turabian StyleNakase, Carlos, Florentina Zurita, Graciela Nani, Guillermo Reyes, Gregorio Fernández-Lambert, Arturo Cabrera-Hernández, and Luis Sandoval. 2019. "Nitrogen Removal from Domestic Wastewater and the Development of Tropical Ornamental Plants in Partially Saturated Mesocosm-Scale Constructed Wetlands" International Journal of Environmental Research and Public Health 16, no. 23: 4800. https://doi.org/10.3390/ijerph16234800
APA StyleNakase, C., Zurita, F., Nani, G., Reyes, G., Fernández-Lambert, G., Cabrera-Hernández, A., & Sandoval, L. (2019). Nitrogen Removal from Domestic Wastewater and the Development of Tropical Ornamental Plants in Partially Saturated Mesocosm-Scale Constructed Wetlands. International Journal of Environmental Research and Public Health, 16(23), 4800. https://doi.org/10.3390/ijerph16234800