Mapping Environmental Suitability of Scrub Typhus in Nepal Using MaxEnt and Random Forest Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.2.1. Scrub Typhus Occurrence Location
2.2.2. Environmental Covariates
2.3. Mapping and Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knoop, F.C. Scrub typhus. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–3. ISBN 978-0-08-055232-3. [Google Scholar]
- Nayak, N. Scrub typhus in Nepal. Nepal J. Epidemiol. 2016, 6, 563–564. [Google Scholar] [CrossRef]
- Xu, G.; Walker, D.H.; Jupiter, D.; Melby, P.C.; Arcari, C.M. A review of the global epidemiology of scrub typhus. PLoS Negl. Trop. Dis. 2017, 11, e0006062. [Google Scholar] [CrossRef]
- Kelly, D.J.; Fuerst, P.A.; Ching, W.; Richards, A.L. Scrub typhus: The geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin. Infect. Dis. 2009, 48, S203–S230. [Google Scholar] [CrossRef]
- Luce-Fedrow, A.; Lehman, M.; Kelly, D.; Mullins, K.; Maina, A.; Stewart, R.; Ge, H.; John, H.; Jiang, J.; Richards, A. A review of scrub typhus (Orientia tsutsugamushi and related organisms): Then, now, and tomorrow. Trop. Med. Infect. Dis. 2018, 3, 8. [Google Scholar] [CrossRef]
- Varghese, G.; Raj, D.; Francis, M.; Sarkar, R.; Trowbridge, P.; Muliyil, J. Epidemiology & risk factors of scrub typhus in south India. Indian J. Med. Res. 2016, 144, 76–81. [Google Scholar]
- Karki, K.B.; Acharya, B.P.; Dhimal, M.; Aryal, K.K.; Sharma, G.N.; Khanal, P.; Ranabhat, K.; Dumre, S.P.; Jha, A.K. Descriptive Epidemiology of Scrub Typhus in Nepal, 2017; Government of Nepal, Nepal Health Research Council: Kathmandu, Nepal, 2017.
- Traub, R.; Wisseman, C.L. Review article: The ecology of chigger-borne Rickettsiosis (scrub typhus)1, 2. J. Med. Entomol. 1974, 11, 237–303. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, D.; Ding, F.; Fu, J.; Hao, M. Spatiotemporal patterns and risk factors for scrub typhus from 2007 to 2017 in Southern China. Clin. Infect. Dis. 2019, 69, 1205–1211. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, Y.; Li, X.; Ma, Y.; Tao, X.; Wu, X.; Yang, Z. Climate variability, animal reservoir and transmission of scrub typhus in Southern China. PLoS Negl. Trop. Dis. 2017, 11, e0005447. [Google Scholar] [CrossRef]
- Wardrop, N.A.; Kuo, C.-C.; Wang, H.-C.; Clements, A.C.A.; Lee, P.-F.; Atkinson, P.M. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan. Geospat. Health 2013, 8, 229–239. [Google Scholar] [CrossRef]
- Tsai, P.-J.; Yeh, H.-C. Scrub typhus islands in the Taiwan area and the association between scrub typhus disease and forest land use and farmer population density: Geographically weighted regression. BMC Infect. Dis. 2013, 13, 191. [Google Scholar] [CrossRef]
- McMahon, B.J.; Morand, S.; Gray, J.S. Ecosystem change and zoonoses in the Anthropocene. Zoonoses Public Health 2018, 65, 755–765. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Huang, J.-L.; Ko, C.-Y.; Lee, P.-F.; Wang, H.-C. Spatial analysis of scrub typhus infection and its association with environmental and socioeconomic factors in Taiwan. Acta Trop. 2011, 120, 52–58. [Google Scholar] [CrossRef]
- Min, K.D.; Lee, J.Y.; So, Y.; Cho, S.I. Deforestation increases the risk of scrub typhus in Korea. Int. J. Environ. Res. Public. Health 2019, 16, 1518. [Google Scholar] [CrossRef]
- Escobar, L.E.; Craft, M.E. Advances and limitations of disease biogeography using ecological niche modeling. Front. Microbiol. 2016, 7, 1–21. [Google Scholar] [CrossRef]
- Hay, S.I.; Battle, K.E.; Pigott, D.M.; Smith, D.L.; Moyes, C.L.; Bhatt, S.; Brownstein, J.S.; Collier, N.; Myers, M.F.; George, D.B.; et al. Global mapping of infectious disease. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 1614. [Google Scholar] [CrossRef]
- Ostfeld, R.; Glass, G.; Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 2005, 20, 328–336. [Google Scholar] [CrossRef]
- Brijnath, B.; de Souza, D.K. Four ways geographic information systems can help to enhance health service planning and delivery for infectious diseases in low-income countries. J. Health Care Poor Underserved 2012, 23, 1410–1420. [Google Scholar] [CrossRef]
- Machado-Machado, E.A. Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Appl. Geogr. 2012, 33, 82–93. [Google Scholar] [CrossRef]
- Scavuzzo, J.M.; Trucco, F.; Espinosa, M.; Tauro, C.B.; Abril, M.; Scavuzzo, C.M.; Frery, A.C. Modeling Dengue vector population using remotely sensed data and machine learning. Acta Trop. 2018, 185, 167–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Breiman, L. Classification and regression based on a forest of trees using random inputs. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bastola, A.; Marahatta, S.B.; Jha, S.; Pant, N. Aftermath earthquake in Nepal: Burden of scrub typhus cases and their presentations. J. Trop. Dis. 2017, 5, 236. [Google Scholar]
- Gautam, R.; Parajuli, K.; Sherchand, J.B. Epidemiology, risk factors and seasonal variation of scrub typhus fever in Central Nepal. Trop. Med. Infect. Dis. 2019, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, B.P.; Shakya, G.; Adhikari, S.; Rijal, N.; Acharya, J.; Maharjan, L.; Marasini, B.R. Scrub typhus: An emerging neglected tropical disease in Nepal. J. Nepal Health Res. Counc. 2016, 14, 122–127. [Google Scholar] [PubMed]
- MoFALD. Local Government Operative Act, 2017; Ministry of Federal Affairs and Local Development (MoFALD), Government of Nepal: Kathmandu, Nepal, 2017.
- LRMP, Land System Report and Map; Land Resources Mapping Project/HMG: Ottawa, ON, Canada, 1986.
- Shrestha, A.B.; Wake, C.P.; Mayewski, P.A.; Dibb, J.E. Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. J. Clim. 1999, 12, 2775–2786. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, Y.; Luo, L.; Xiao, X.; Liu, L.; Yang, Z. Rapid increase of scrub typhus: An epidemiology and spatial-temporal cluster analysis in Guangzhou City, Southern China, 2006–2012. PLoS ONE 2014, 9, e101976. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Acharya, B.; Cao, C.; Xu, M.; Khanal, L.; Naeem, S.; Pandit, S. Present and future of dengue fever in Nepal: Mapping climatic suitability by ecological Niche Model. Int. J. Environ. Res. Public. Health 2018, 15, 187. [Google Scholar] [CrossRef]
- Didan, K. MOD13A3 MODIS/Terra vegetation indices monthly L3 global 1km SIN grid V006(Data set). NASA EOSDIS Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- Busetto, L.; Ranghetti, L. MODIStsp: An R package for automatic preprocessing of MODIS Land Products time series. Comput. Geosci. 2016, 97, 40–48. [Google Scholar] [CrossRef]
- Uddin, K.; Shrestha, H.L.; Murthy, M.S.R.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 national land cover database for the Nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Conley, A.K.; Fuller, D.O.; Haddad, N.; Hassan, A.N.; Gad, A.M.; Beier, J.C. Modeling the distribution of the West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa. Parasit. Vectors 2014, 7, 289. [Google Scholar] [CrossRef] [Green Version]
- Ryzin, J.V.; Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. J. Am. Stat. Assoc. 1986, 81, 253. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Jiang, D.; Hao, M.; Ding, F.; Fu, J.; Li, M. Mapping the transmission risk of Zika virus using machine learning models. Acta Trop. 2018, 185, 391–399. [Google Scholar] [CrossRef]
- Eneanya, O.A.; Cano, J.; Dorigatti, I.; Anagbogu, I.; Okoronkwo, C.; Garske, T.; Donnelly, C.A. Environmental suitability for lymphatic filariasis in Nigeria. Parasit. Vectors 2018, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R.; Kariyawasam, C.S. Modelling climate suitability for rainfed Maize cultivation in Kenya using a Maximum Entropy (MaxENT) approach. Agronomy 2019, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Pun, S.B. Rise of scrub typhus: Urgent action required. Himal. Times. Available online: https://thehimalayantimes.com/opinion/rise-of-scrub-typhus-urgent-action-required/ (accessed on 12 December 2018).
- Jones-Farrand, D.T.; Fearer, T.M.; Thogmartin, W.E.; Iii, F.R.T.; Nelson, M.D.; Tirpak, J.M. Comparison of statistical and theoretical habitat models for conservation planning: The benefit of ensemble prediction. Ecol. Appl. 2011, 21, 2269–2282. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.W.; Shirai, A.; Gan, E.; Bernthal, P. Antibodies to typhus in Eastern Nepal. Trans. R. Soc. Trop. Med. Hyg. 1981, 75, 586–587. [Google Scholar] [CrossRef]
- Dorji, K.; Phuentshok, Y.; Zangpo, T.; Dorjee, S.; Dorjee, C.; Jolly, P.; Morris, R.; Marquetoux, N.; McKenzie, J. Clinical and epidemiological patterns of scrub typhus, an emerging disease in Bhutan. Trop. Med. Infect. Dis. 2019, 4, 56. [Google Scholar] [CrossRef] [Green Version]
- DoH, Annual Health Report (2015/2016); Department of Health Services, Government of Nepal: Kathmandu, Nepal, 2017.
- Sharma, P.K.; Ramakrishnan, R.; Hutin, Y.J.F.; Barui, A.K.; Manickam, P.; Kakkar, M.; Mittal, V.; Gupte, M.D. Scrub typhus in Darjeeling, India: Opportunities for simple, practical prevention measures. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1153–1158. [Google Scholar] [CrossRef]
- Paudel, B.; Zhang, Y.; Li, S.; Liu, L. Spatiotemporal changes in agricultural land cover in Nepal over the last 100 years. J. Geogr. Sci. 2018, 28, 1519–1537. [Google Scholar] [CrossRef] [Green Version]
- Basnyat, B. Typhoid versus typhus fever in post-earthquake Nepal. Lancet Glob. Health 2016, 4, e516–e517. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-W.; Ha, N.-Y.; Ryu, B.; Bang, J.H.; Song, H.; Kim, Y.; Kim, G.; Oh, M.; Cho, N.-H.; Lee, J. Urbanization of scrub typhus disease in South Korea. PLoS Negl. Trop. Dis. 2015, 9, e0003814. [Google Scholar] [CrossRef]
Variable Category | Variables | Description | Sources |
---|---|---|---|
Topographical | Elevation | Elevation (m) | SRTM 90 m digital elevation data |
Slope | Slope(degree) | SRTM 90 m digital elevation data, http://www.csi.cgiar.org/, computed using the Slope Analysis tool in ESRI ArcGIS 10.2; a 1-km resolution dataset was generated | |
Aspect | Aspect | SRTM 90 m digital elevation data, http://www.csi.cgiar.org/, computed using the Aspect Analysis tool in ESRI ArcGIS 10.2; a 1-km resolution dataset was generated | |
Climate | Bio2 | Mean diurnal range of temperature | Worldclim Geoportal, http://worldclim.org/ |
Bio3 | Isothermality | Worldclim Geoportal, http://worldclim.org/ | |
Bio9 | Mean temperature of driest quarter | Worldclim Geoportal, http://worldclim.org/ | |
Bio14 | Precipitation of driest months | Worldclim Geoportal, http://worldclim.org/ | |
Bio16 | Precipitation of wettest quarter | Worldclim Geoportal, http://worldclim.org/ | |
Bio19 | Precipitation of coldest quarter | Worldclim Geoportal, http://worldclim.org/ | |
Proximity | Dist2Urban | Distance to urban area (km) | Landcover map 2010, http://rds.icimod.org/Home/,computed using the Euclidean Distance Analysis and Zonal Statistics tool in ESRI ArcGIS 10.2 at 1-km resolution |
Dist2Cropland | Distance to cropland (km) | Landcover map 2010, http://rds.icimod.org/Home/,computed using the Euclidean Distance Analysis and Zonal Statistics tool in ESRI ArcGIS 10.2 at 1-km resolution | |
Dist2Shrub | Distance to shrubland (km) | Land cover map 2010, http://rds.icimod.org/Home/,computed using the Euclidean Distance Analysis and Zonal Statistics tool in ESRI ArcGIS 10.2 at 1-km resolution | |
Dist2Earthquake | Distance to earthquake epicenter (km) | Earthquake epicenter location between 2015–2017 with >5.5, https://earthquake.usgs.gov,computed using the Euclidean Distance Analysis and Zonal Statistics tool in ESRI ArcGIS 10.2 at 1-km resolution | |
NDVI | NDVI_min | Minimum NDVI during the study period 2015–2018 | MOD13A3, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006, calculated minimum, mean, and maximum function in R |
NDVI_mean | Mean NDVI during the study period 2015–2018 | MOD13A3, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006, calculated minimum, mean, and maximum function in R | |
NDVI_max | Maximum NDVI during the study period 2015–2018 | MOD13A3, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006, calculated minimum, mean, and maximum function in R |
Methods | AUC | TSS | ||
---|---|---|---|---|
Training | Test | Training | Test | |
MaxEnt | 0.84 | 0.84 | 0.62 | 0.60 |
RF | 0.86 | 0.86 | 0.65 | 0.58 |
Class of Suitability | Suitability Cut-of Values | Area (Km2) | Area (%) | Population | Population (%) |
---|---|---|---|---|---|
Unsuitable | <0.18 | 63,817.68 | 43.35 | 1,116,808 | 6.06 |
Moderately suitable | 0.18–0.35 | 34,528.66 | 23.46 | 4,031,218 | 21.87 |
Suitable | 0.3–0.5 | 27,758.33 | 18.86 | 5,395,633 | 29.27 |
Highly suitable | >0.52 | 21,076.31 | 14.32 | 7,887,215 | 42.79 |
Total | 147,181 | 100.00 | 18,434,230 | 1000.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, B.K.; Chen, W.; Ruan, Z.; Pant, G.P.; Yang, Y.; Shah, L.P.; Cao, C.; Xu, Z.; Dhimal, M.; Lin, H. Mapping Environmental Suitability of Scrub Typhus in Nepal Using MaxEnt and Random Forest Models. Int. J. Environ. Res. Public Health 2019, 16, 4845. https://doi.org/10.3390/ijerph16234845
Acharya BK, Chen W, Ruan Z, Pant GP, Yang Y, Shah LP, Cao C, Xu Z, Dhimal M, Lin H. Mapping Environmental Suitability of Scrub Typhus in Nepal Using MaxEnt and Random Forest Models. International Journal of Environmental Research and Public Health. 2019; 16(23):4845. https://doi.org/10.3390/ijerph16234845
Chicago/Turabian StyleAcharya, Bipin Kumar, Wei Chen, Zengliang Ruan, Gobind Prasad Pant, Yin Yang, Lalan Prasad Shah, Chunxiang Cao, Zhiwei Xu, Meghnath Dhimal, and Hualiang Lin. 2019. "Mapping Environmental Suitability of Scrub Typhus in Nepal Using MaxEnt and Random Forest Models" International Journal of Environmental Research and Public Health 16, no. 23: 4845. https://doi.org/10.3390/ijerph16234845
APA StyleAcharya, B. K., Chen, W., Ruan, Z., Pant, G. P., Yang, Y., Shah, L. P., Cao, C., Xu, Z., Dhimal, M., & Lin, H. (2019). Mapping Environmental Suitability of Scrub Typhus in Nepal Using MaxEnt and Random Forest Models. International Journal of Environmental Research and Public Health, 16(23), 4845. https://doi.org/10.3390/ijerph16234845