How Much Is Too Much? The Influence of Work Hours on Social Development: An Empirical Analysis for OECD Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Construction
2.2. Data Resources
3. Results
3.1. Descriptive Statistics for Work Hours in OECD countries
3.2. Work Hours and Individual Health
3.3. Work Hours and Organizational Performance
3.4. Work Hours and Social Development
4. Discussion
4.1. Impact of Work Hours
4.2. Analysis of Differences between Work Hours and Levels of Development among Countries
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kates, M. Sweatshops, exploitation, and the case for a fair wage. J. Political Philos. 2019, 27, 26–47. [Google Scholar] [CrossRef] [Green Version]
- Sang, K.; Powell, A.; Finkel, R.; Richards, J. ‘Being an academic is not a 9–5 job’: Long working hours and the ‘ideal worker’ in UK academia. Labour Ind. 2015, 25, 235–249. [Google Scholar] [CrossRef]
- Kuroda, S.; Yamamoto, I. The era of the 24-h society? Assessing changes in work timing using a Japanese time use survey. Appl. Econ. Lett. 2012, 19, 1035–1038. [Google Scholar] [CrossRef]
- Nemoto, K. Long working hours and the corporate gender divide in Japan. Gender Work Organ. 2013, 20, 512–527. [Google Scholar] [CrossRef]
- Van Der Molen, H.F.; Stocks, S.J.; Frings-Dresen, M.H.W. Exploring study designs for evaluation of interventions aimed to reduce occupational diseases and injuries. Saf. Health Work 2016, 7, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Horst, M. Flexible working and unpaid overtime in the UK: The role of gender, parental and occupational status. Soc. Indic. Res. 2018, 26, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, Y.; Tatemaru, M. Working hours and psychological health among Japanese restaurant services workers. Int. J. Psychol. Couns. 2010, 2, 65–71. [Google Scholar]
- Fein, E.C.; Skinner, N.; Machin, M.A. Work intensification, work–life interference, stress, and well-being in Australian workers. Int. Stud. Manag. Organ. 2017, 47, 360–371. [Google Scholar] [CrossRef]
- Fisher, A.; Ucci, M.; Smith, L.; Sawyer, A.; Spinney, R.; Konstantatou, M.; Marmot, A. Associations between the objectively measured office environment and workplace step count and sitting time: Cross-sectional analyses from the active buildings study. Int. J. Environ. Res. Public Health 2018, 15, 1135. [Google Scholar] [CrossRef] [Green Version]
- Haar, J.M.; Sune, A.; Russo, M.; Ollier-Malaterre, A. A cross-national study on the antecedents of work-life balance from the fit and balance perspective. Soc. Indic. Res. 2018, 142, 261–282. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.; Huang, X. Map changes and theme evolution in work hours: A co-word analysis. Int. J. Environ. Res. Public Health 2018, 15, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, D. Social work and social development: Towards an integrative model for social work practice. Int. Soc. Work 1993, 36, 21–36. [Google Scholar] [CrossRef]
- Fadakinte, M. State and society in Africa: An exploration of African development crisis. Scott. J. Arts Soc. Sci. Sci. Stud. 2015, 25, 3–19. [Google Scholar]
- Dusterhoff, C.; Cunningham, J.; Macgregor, J. The effects of performance rating, leader–member exchange, perceived utility, and organizational justice on performance appraisal satisfaction: Applying a moral Judgment perspective. J. Bus. Ethics 2014, 119, 265–273. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, W.; Tsai, S. Social responsibility toward the employees and career development sustainability during manufacturing transformation in China. Sustainability 2019, 11, 4778. [Google Scholar] [CrossRef] [Green Version]
- Drucker, P.F. The Practice of Management; HarperCollins Publishers: New York, NY, USA, 2006; pp. 142–144. [Google Scholar]
- Sulemana, I.; Iddrisu, A.M.; Kyoore, J.E. A micro-level study of the relationship between experienced corruption and subjective well being in Africa. J. Develop. Stud. 2017, 53, 1–18. [Google Scholar] [CrossRef]
- Ko, Y.J.; Choi, J.N. Overtime work as the antecedent of employee satisfaction, firm productivity, and innovation. J. Organ. Behav. 2019, 40, 282–295. [Google Scholar] [CrossRef]
- Cascio, W.F. Training trends: Macro, micro, and policy issues. Hum. Resour. Manag. Rev. 2017, 29, 284–297. [Google Scholar] [CrossRef]
- Shockey, T.M.; Zack, M.; Sussell, A. Health-related quality of life among us workers: Variability across occupation groups. Am. J. Public Health 2017, 107, 1–8. [Google Scholar] [CrossRef]
- Dinh, H.; Strazdins, L.; Welsh, J. Hour-glass ceilings: Work-hour thresholds, gendered health inequities. Soc. Sci. Med. 2017, 176, 42–51. [Google Scholar] [CrossRef]
- Kivimäki, M.; Jokela, M.; Nyberg, S.T.; Singh-Manoux, A.; Fransson, E.I.; Alfredsson, L.; Bjorner, J.B.; Borritz, M.; Burr, H.; Casini, A.; et al. Long working hours and risk of coronary heart disease and stroke: A systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet 2015, 386, 1739–1746. [Google Scholar]
- Castleberry, S.B.; Tanner, J.F. Salespersons commitment to the organization: Associations with performance, motivation, conflict, satisfaction, and relationship with the manager. J. Appl. Bus. Res. 2011, 5, 84. [Google Scholar] [CrossRef]
- Angermund, E.; Lindqvist, E. Working with time management in it consulting: Developing a time management strategy by using performance management. Int. Food Agribus. Manag. 2013, 02, 131–143. [Google Scholar]
- Meena, M.L.; Dangayach, G.S.; Bhardwaj, A. Measuring quality of work life among workers in handicraft industries of Jaipur. Int. J. Ind. Syst. Eng. 2014, 17, 376–390. [Google Scholar] [CrossRef]
- Bernstrøm, V.H. Long working hours and sickness absence-a fixed effects design. BMC Public Health 2018, 18, 578. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.C.; Nitta, M.; Kim, S.W.; Wang, W. Working overtime in East Asia: Convergence or divergence? J. Contemp. Asia 2016, 4, 1–23. [Google Scholar] [CrossRef]
- Greve, B. How to measure social progress? Soc. Policy Adm. 2017, 51, 1002–1022. [Google Scholar] [CrossRef]
- Glosser, S.M.; Golden, L. Average work hours as a leading economic variable in USA manufacturing industries. Int. J. Forecast. 1997, 13, 175–195. [Google Scholar] [CrossRef]
- Sanders, B.S. Measuring community health levels. Am. J. Public Health Nations Health 1964, 54, 1063. [Google Scholar] [CrossRef] [Green Version]
- Sikdar, K.C.; Wang, P.P.; MacDonald, D.; Gadag, V.G. Diabetes and its impact on health-related quality of life: A life table analysis. Qual. Life Res. 2010, 19, 781–787. [Google Scholar] [CrossRef]
- Collins, B. Using a survey to estimate health expectancy and quality-adjusted life expectancy to assess inequalities in health and quality of life. Value Health 2013, 16, 599–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comin, D. Total Factor Productivity; Palgrave Macmillan: London, UK, 2010; pp. 171–190. [Google Scholar]
- Sarkar, S.; Sensarma, R. Partial privatization and bank performance: Evidence from India. J. Financ. Econ. Policy 2010, 2, 276–306. [Google Scholar] [CrossRef] [Green Version]
- Doeringer, P.B.; Terkla, D.G. How intangible factors contribute to economic development: Lessons from a mature local economy. World Dev. 2004, 18, 1295–1308. [Google Scholar] [CrossRef]
- United Nations Development Programme. Human Development Indices and Indicators; New York United Nations: New York, NY, USA, 2010. [Google Scholar]
- Shao, B.B.M.; Lin, W.T.; Tsai, J.Y. An empirical study of the telecommunications service industries using productivity decomposition. IEEE Trans. Eng. Manag. 2017, 99, 1–13. [Google Scholar] [CrossRef]
- Mohapatra, S. Economic growth, public expenditure on health and IMR in India: An econometric investigation of causal linkages. Int. J. Soc. Econ. 2017, 44, 2002–2018. [Google Scholar] [CrossRef]
- Aslaksen, E.W. The Social Bond: How the Interaction between Individuals Drives the Evolution of Society; Springer: Berlin, Germany, 2018. [Google Scholar]
- Kahneman, D. Attention and effort. Englewood Cliffs; Prentice-Hall: Upper Saddle River, NJ, USA, 1973. [Google Scholar]
- Nekrep, A.; Strašek, S.; Boršič, D. Productivity and economic growth in the European Union: Impact of investment in research and development. Naše Gospod. Our Econ. 2018, 64, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.C.; Chen, J.D.; Cheng, T.J. The associations between long working hours, physical inactivity, and burnout. J. Occup. Environ. Med. 2016, 58, 514–518. [Google Scholar] [CrossRef]
- Ogawa, R.; Seo, E.; Maeno, T.; Ito, M.; Sanuki, M.; Maeno, T. The relationship between long working hours and depression among first-year residents in Japan. BMC Med. Educ. 2018, 18, 50. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, A.; Sakano, N.; Miyatake, N. Combined effects of working hours, income, and leisure time on suicide in all 47 prefectures of Japan. Ind. Health 2014, 52, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Mariappanadar, S.; Aust, I. The dark side of overwork: An empirical evidence of social harm of work from a sustainable HRM perspective. Int. Stud. Manag. Organ. 2017, 47, 372–387. [Google Scholar] [CrossRef]
- Hoffman, B.; Breuil, C. Reducing hours of work: Does Overtime Act as a brake upon employment growth? An analysis by gender for the case of Italy. Gianna Claudia Giannelli 2002, 41, 168–175. [Google Scholar]
- Lagus, H. Introduction of the forty-hour week in Finland. Int’l Lab. Rev. 1968, 98, 27–38. [Google Scholar]
- Cowling, M. Still at work? An empirical test of competing theories of long hours culture. MPRA Paper 2007, 16, 852–855. [Google Scholar]
- Boniol, M.; McIsaac, M.; Xu, L.; Wuliji, T.; Diallo, K.; Campbell, J. Gender Equity in the Health Workforce: Analysis of 104 Countries; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Bøler, E.A.; Javorcik, B.; Ulltveit-Moe, K.H. Working across time zones: Exporters and the gender wage gap. J. Int. Econ. 2018, 111, 122–133. [Google Scholar] [CrossRef]
- Stam, P.; Coleman, J. The relationship between hours worked in the UK and the economy. Econ. Labour Mark. Rev. 2010, 4, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Mcauliffe, R.E. Diminishing Marginal Utility; John Wiley & Sons, Ltd. Back Cover: Hoboken, NJ, USA, 2015. [Google Scholar]
- Xiang, W.; Qu, H.; Ma, E. How does leisure time affect production efficiency? Evidence from China, Japan, and the US. Soc. Ind. Res. 2016, 127, 101–122. [Google Scholar]
- Ndesaulwa, A.P. The Impact of technology and innovation (Technovation) in developing countries: A review of empirical evidence. J. Bus. Manag. Sci. 2016, 4, 7–11. [Google Scholar]
- Chansarn, S. Labor Productivity Growth, Education, Health and Technological Progress: A Cross-Country Analysis. Econ. Anal. Policy 2010, 40, 249–261. [Google Scholar] [CrossRef]
- Sadig, H. Determinants of subjective job satisfaction in developing countries: Contrasting managers and regular employees. Econ. Bus. J. 2014, 8, 1250–1255. [Google Scholar]
- Lukac, M.; Doerflinger, N.; Pulignano, V. Developing a cross-national comparative framework for studying labour market segmentation: Measurement equivalence with latent class analysis. Soc. Ind. Res. 2019, 145, 233–255. [Google Scholar] [CrossRef]
- Lewis, L.F., Jr. Should we limit resident work hours? Ann. Surg. 2003, 237, 458. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zheng, H.; Feng, Z.; Tucker, W.; Lu, Y.; Yuan, Z. Hospitalization services utilization between permanent and migrant females in underdeveloped rural regions and contributing factors: A five-time data collection and analysis. Int. J. Environ. Res. Public Health 2019, 16, 3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, S. Do Japanese work shorter hours than before? Measuring trends in market work and leisure using 1976–2006 Japanese time-use survey. J. Jpn. Int. Econ. 2010, 24, 481–502. [Google Scholar] [CrossRef] [Green Version]
- Hogan, V.; Hogan, M.; Hodgins, M.; Kinman, G.; Bunting, B. An examination of gender differences in the impact of individual and organisational factors on work hours, work-life conflict and psychological strain in academics. Ir. J. Psychol. 2014, 35, 133–150. [Google Scholar] [CrossRef]
- Jewell, J.P. Perceptions of mothers’ work choices. J. Manag. Strategy 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
Variable | Mark | Unit | Date Resource | N | Mean | SD |
---|---|---|---|---|---|---|
Per capita GDP | GDP | ten thousand | World Bank Database (date to April 2018) | 527 | 3.83 | 2.21 |
Work hours | WH | H/year | OECD Database (date to April 2018) | 527 | 1734.96 | 197.78 |
Total factor productivity | TFP | -- | Federal Reserve Economic Database (date to April 2018) | 527 | 0.88 | 0.21 |
Life expectancy | LE | -- | World Bank Database (date to April 2018) | 527 | 78.81 | 3.03 |
Financial development | E | % | World Bank Database (date to April 2018) | 527 | 50.10 | 54.85 |
Openness | F | % | World Bank Database (date to April 2018) | 527 | 5.54 | 14.66 |
Human capital | H | % | World Bank Database (date to April 2018) | 527 | 63.90 | 18.13 |
Industrial development | I | % | World Bank Database (date to April 2018) | 527 | 0.24 | 0.05 |
Government research and development | RD | % | World Bank Database (date to April 2018) | 527 | 1.76 | 0.88 |
Infrastructure | Infra | Tens of millions of hours | World Bank Database (date to April 2018) | 527 | 0.93 | 0.80 |
Juvenile dependency ratio | Young | % | World Bank Database (date to April 2018) | 527 | 17.56 | 3.82 |
Old-age dependency ratio | Old | % | World Bank Database (date to April 2018) | 527 | 23.36 | 5.53 |
Savings rate | S | % | World Bank Database (date to April 2018) | 527 | 23.29 | 6.15 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Time→Life | Life→GDP | |||||
Whole | Whole | Developed | Developing | |||
Life | Life | Life | Life | GDP | GDP | |
WH | −0.0072 *** (−6.14) | −0.0033 ** (−2.02) | −0.0107 *** (−6.53) | |||
M-WH | −0.0057 *** (−5.75) | |||||
F-WH | −0.0012 *** (−1.41) | |||||
GDP | 1.2017 *** (7.81) | 0.9164 *** (6.55) | 1.3836 *** (7.92) | 1.0712 *** (3.81) | ||
H | 0.0219 *** (5.36) | 0.0198 *** (4.17) | 0.0309 *** (5.53) | 0.0123 ** (2.23) | ||
Young | −0.2242 *** (−4.88) | −0.2601 *** (−4.96) | −0.3649 *** (−4.43) | −0.1566 *** (−3.00) | ||
Old | 0.2254 *** (13.59) | 0.2683 *** (13.93) | 0.1226 *** (7.22) | 0.4497 *** (14.73) | ||
S | −0.0195 * (−1.71) | −0.0395 *** (−3.07) | −0.0895 *** (−6.63) | 0.0306 (1.50) | ||
EL | 0.1531 *** (14.68) | |||||
L.-Life | 0.1516 *** (14.90) | |||||
Cons | 84.4830 *** (34.80) | 80.4571 *** (29.10) | 82.0118 *** (26.97) | 86.4199 *** (23.44) | −9.6120 *** (−7.67) | −10.7864 (−8.72) |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Country effect | Yes | Yes | Yes | Yes | Yes | Yes |
Tine effect | Yes | Yes | Yes | Yes | Yes | Yes |
N | 527 | 527 | 346 | 181 | 527 | 496 |
R2 | 0.77 | 0.76 | 0.82 | 0.88 | 0.50 | 0.48 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Whole | Whole | Developed | Developing | TFP→GDP | ||
TFP | TFP | TFP | TFP | GDP | GDP | |
WH | −0.0153 *** (−3.99) | 0.0006 *** (4.38) | −0.0002 * (−1.69) | |||
M-WH | 0.0005 *** (5.35) | |||||
F-WH | −0.0005 *** (−3.37) | |||||
GDP | 0.0210 * (1.78) | 0.0305 *** (2.66) | 0.0119 (0.75) | 0.0911 *** (4.27) | ||
H | 0.0001 (0.40) | 0.0012 *** (3.16) | 0.0005 (0.81) | −0.0013 *** (−5.05) | ||
E | 0.0002 * (1.87) | 0.0001 (1.16) | 0.0002 * (1.66) | −0.0003 (−1.13) | ||
I | 0.7978 *** (6.56) | 0.4779 *** (3.74) | 0.4347 *** (2.79) | 1.0503 *** (6.38) | ||
Infra | 0.0391 *** (3.31) | 0.0308 *** (2.77) | 0.4104 *** (5.40) | 0.2421 *** (4.27) | ||
TFP | 0.1133 (0.64) | |||||
L.TFP | 0.2396 (1.39) | |||||
Cons | −0.0744 (−0.39) | 0.3389 * (1.67) | −0.6864 ** (−2.38) | 0.5411 *** (2.74) | 2.6626 *** (13.93) | 2.5983 *** (13.63) |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Country effect | Yes | Yes | Yes | Yes | Yes | Yes |
Tine effect | Yes | Yes | Yes | Yes | Yes | Yes |
N | 527 | 527 | 346 | 181 | 527 | 496 |
R2 | 0.15 | 0.21 | 0.23 | 0.53 | 0.24 | 0.20 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Whole | Whole | Developed | Developing | |||
GDP | GDP | GDP | GDP | GDP | GDP | |
WH | −0.0019 *** (−4.93) | −0.0027 *** (−5.19) | 0.001 ** (2.52) | |||
M-WH | −0.0020 *** (−5.48) | 0.0060 *** (6.86) | −0.0007 *** (−2.68) | |||
W-WH | 0.0002 *** (0.38) | −0.0026 *** (−5.52) | −0.0022 *** (−5.27) | |||
RD | 0.0596 (1.19) | 0.1001 ** (2.05) | −0.131 * (−1.74) | 0.0223 (0.33) | 0.125 *** (3.16) | 0.0490 * (1.34) |
H | 0.0078 *** (5.88) | 0.0049 *** (3.18) | 0.014 *** (5.75) | 0.006 *** (2.53) | 0.002 * (1.76) | 0.0017 * (1.61) |
E | 0.0006 (1.59) | 0.0007 ** (1.98) | 0.001 * (1.85) | 0.0014 *** (3.75) | 0.002 * (1.70) | 0.0017 * (1.64) |
FDI | −0.0003 (−0.45) | −0.0002 (−0.24) | −0.001 (−1.22) | −0.0010 (−0.38) | −0.001 (−0.49) | 0.000 (0.28) |
I | 0.4224 (0.90) | 1.2536 ** (2.49) | −0.690 (−1.20) | 1.2082 *** (2.16) | 3.989 *** (7.92) | 3.806 *** (7.08) |
Infra | 0.0528 (1.08) | 0.1001 ** (2.18) | −0.090 (−1.62) | 0.0185 (0.39) | 3.617 *** (12.27) | 3.074 *** (10.69) |
Cons | 6.3374 *** (8.48) | 5.1155 *** (7.96) | 9.065 *** (9.02) | 2.576 *** (2.41) | −2.908 *** (−4.08) | 2.032 *** (2.98) |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Country effect | Yes | Yes | Yes | Yes | Yes | Yes |
Tine effect | Yes | Yes | Yes | Yes | Yes | Yes |
R2 | 0.28 | 0.29 | 0.28 | 0.26 | 0.24 | 0.36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Chen, H.; Gan, X. How Much Is Too Much? The Influence of Work Hours on Social Development: An Empirical Analysis for OECD Countries. Int. J. Environ. Res. Public Health 2019, 16, 4914. https://doi.org/10.3390/ijerph16244914
Liu B, Chen H, Gan X. How Much Is Too Much? The Influence of Work Hours on Social Development: An Empirical Analysis for OECD Countries. International Journal of Environmental Research and Public Health. 2019; 16(24):4914. https://doi.org/10.3390/ijerph16244914
Chicago/Turabian StyleLiu, Bei, Hong Chen, and Xin Gan. 2019. "How Much Is Too Much? The Influence of Work Hours on Social Development: An Empirical Analysis for OECD Countries" International Journal of Environmental Research and Public Health 16, no. 24: 4914. https://doi.org/10.3390/ijerph16244914
APA StyleLiu, B., Chen, H., & Gan, X. (2019). How Much Is Too Much? The Influence of Work Hours on Social Development: An Empirical Analysis for OECD Countries. International Journal of Environmental Research and Public Health, 16(24), 4914. https://doi.org/10.3390/ijerph16244914