The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ethics Committee Approval
2.3. Selection of Subjects
2.4. Questionnaire
2.5. Height
2.6. Impedance
2.7. BMI
2.8. Urine
2.8.1. Urinary 15-F2t IsoP
2.8.2. Urinary Cotinine
2.8.3. Urinary Creatinine
2.9. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bono, R.; Tassinari, R.; Bellisario, V.; Gilli, G.; Pazzi, M.; Pirro, V.; Mengozzi, G.; Bugiani, M.; Piccioni, P. Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth. Environ. Res. 2015, 137, 141–146. [Google Scholar] [CrossRef]
- Kostikas, K.; Minas, M.; Nikolaou, E.; Papaioannou, A.I.; Liakos, P.; Gougoura, S.; Gourgoulianis, K.I.; Dinas, P.C.; Metsios, G.S.; Jamurtas, A.Z.; et al. Secondhand smoke exposure induces acutely airway acidification and oxidative stress. Respir. Med. 2013, 107, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Çolak, Y.; Afzal, S.; Lange, P.; Nordestgaard, B.G. Smoking, Systemic Inflammation, and Airflow Limitation: A Mendelian Randomization Analysis of 9808-5 Individuals From the General Population. Nicotine Tob. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Van’t Erve, T.J.; Kadiiska, M.B.; London, S.J.; Mason, R.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biol. 2017, 12, 582–599. [Google Scholar] [CrossRef] [PubMed]
- Kilic, E.; Özer, Ö.F.; Erek Toprak, A.; Erman, H.; Torun, E.; Kesgin Ayhan, S.; Caglar, H.G.; Selek, S.; Kocyigit, A. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor. Med. Sci. Monit. 2016, 22, 3673–3679. [Google Scholar] [CrossRef] [PubMed]
- Lechuga-Sancho, A.M.; Gallego-Andujar, D.; Ruiz-Ocaña, P.; Visiedo, F.M.; Saez-Benito, A.; Schwarz, M.; Segundo, C.; Mateos, R.M. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age. PLoS ONE 2018, 13, e0191547. [Google Scholar] [CrossRef] [PubMed]
- Bono, R.; Bellisario, V.; Romanazzi, V.; Pirro, V.; Piccioni, P.; Pazzi, M.; Bugiani, M.; Vincenti, M. Oxidative stress in adolescent passive smokers living in urban and rural environments. Int. J. Hyg. Environ. Health 2014, 217, 287–293. [Google Scholar] [CrossRef]
- Theodorou, A.A.; Paschalis, V.; Kyparos, A.; Panayiotou, G.; Nikolaidis, M.G. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: Does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus? Biochem. Biophys. Res. Commun. 2014, 454, 131–136. [Google Scholar] [CrossRef]
- Kahraman, F.U.; Torun, E.; Osmanoğlu, N.K.; Oruçlu, S.; Özer, Ö.F. Serum oxidative stress parameters and paraoxonase-1 in children and adolescents exposed to passive smoking. Pediatr. Int. 2017, 59, 68–73. [Google Scholar] [CrossRef]
- Vijayakanthi, N.; Greally, J.M.; Rastogi, D. Pediatric Obesity-Related Asthma: The Role of Metabolic Dysregulation. Pediatrics 2016, 137. [Google Scholar] [CrossRef]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.D. Type 2 diabetes as a redox disease. Lancet 2014, 383, 841–843. [Google Scholar] [CrossRef]
- Zhang, Z.-J. Systematic review on the association between F2-isoprostanes and cardiovascular disease. Ann. Clin. Biochem. 2012, 50, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Greabu, M.; Totan, A.; Battino, M.; Mohora, M.; Didilescu, A.; Totan, C.; Spinu, T. Cigarette smoke effect on total salivary antioxidant capacity, salivary glutathione peroxidase and gamma-glutamyltransferase activity. BioFactors 2008, 33, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Remesh Kumar, R.; Jayakumar, P.R.; Krishna Mohan, R. Children Deserve Smoke Free World. Indian J. Pediatr. 2018, 85, 295–299. [Google Scholar] [CrossRef]
- Azuonwu, O.; Nweze, O.J.; Agom, D.A. Associated Public Health and Disease Consequences of Infants/Children’s Exposure to Second Hand Smoking: A Systematic Review. J. Lung Pulm. Respir. Res. 2017, 4, 00140. [Google Scholar]
- Breysse, P.N.; Diette, G.B.; Matsui, E.C.; Butz, A.M.; Hansel, N.N.; McCormack, M.C. Indoor Air Pollution and Asthma in Children. Proc. Am. Thorac. Soc. 2010, 7, 102–106. [Google Scholar] [CrossRef]
- Dick, S.; Doust, E.; Cowie, H.; Ayres, J.G.; Turner, S. Associations between environmental exposures and asthma control and exacerbations in young children: A systematic review. BMC Open 2014, 4, e003827. [Google Scholar] [CrossRef]
- Flouris, A.D.; Vardavas, C.I.; Metsios, G.S.; Tsatsakis, A.M.; Koutedakis, Y. Biological evidence for the acute health effects of secondhand smoke exposure. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 298, 3–12. [Google Scholar] [CrossRef]
- Vecchio, M.G.; Nikolakis, A.; Galasso, F.; Baldas, S.; Gregori, D. Even a very intense exposure to TV advertising promoting fruit consumption is not enough to make children eat more fruit: results from an experimental study in Italy. Med. J. Nutrition Metab. 2018. [Google Scholar] [CrossRef]
- Bahreynian, M.; Qorbani, M.; Motlagh, M.E.; Riahi, R.; Kelishadi, R. Association of dietary fiber intake with general and abdominal obesity in children and adolescents: The Weight disorder survey of the CASPIAN-IV Study. Med. J. Nutrition Metab. 2018, 11, 251–260. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Report of the Commission on Ending Childhood Obesity; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Fonseca-Alaniz, M.H.; Takada, J.; Alonso-Vale, M.I.C.; Lima, F.B. Adipose tissue as an endocrine organ: from theory to practice. J. Pediatr. (Rio. J). 2007, 83, S192–S203. [Google Scholar] [CrossRef]
- Khan, N.I.; Naz, L.; Yasmeen, G. Obesity: An independent risk factor for systemic oxidative stress. Pak. J. Pharm. Sci. 2006, 19, 62–65. [Google Scholar] [PubMed]
- Sengenès, C.; Miranville, A.; Lolmède, K.; Curat, C.A.; Bouloumié, A. The role of endothelial cells in inflamed adipose tissue. J. Intern. Med. 2007, 262, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Rzheshevsky, A.V. Fatal “Triad”: Lipotoxicity, oxidative stress, and phenoptosis. Biochem. 2013, 78, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative Stress in Obesity: A Critical Component in Human Diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Ranzi, A.; Freni Sterrantino, A.; Forastiere, F.; Sartini, C.; Casale, G.; Cavallini, R.; De Togni, A.; Gallo, L.; Lauriola, P. Asthmatic symptoms and air pollution: a panel study on children living in the Italian Po Valley. Geospat. Health 2015, 10, 366. [Google Scholar] [CrossRef]
- Renzoni, E. Asthma and respiratory symptoms in 6–7 yr old Italian children: gender, latitude, urbanization and socioeconomic factors SIDRIA (Italian Studies on Respiratory Disorders in Childhood and the Environment). Eur. Respir. J. 1997, 10, 1780–1786. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and development. Vital Health Stat. 2002, 11, 1–190. [Google Scholar]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Heal. Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Bellisario, V.; Mengozzi, G.; Grignani, E.; Bugiani, M.; Sapino, A.; Bussolati, G.; Bono, R. Towards a formalin-free hospital. Levels of 15-F2t-isoprostane and malondialdehyde to monitor exposure to formaldehyde in nurses from operating theatres. Toxicol. Res. 2016, 5, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, V.; Pirro, V.; Bellisario, V.; Mengozzi, G.; Peluso, M.; Pazzi, M.; Bugiani, M.; Verlato, G.; Bono, R. 15-F2t isoprostane as biomarker of oxidative stress induced by tobacco smoke and occupational exposure to formaldehyde in workers of plastic laminates. Sci. Total Environ. 2013, 442, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Bono, R.; Munnia, A.; Romanazzi, V.; Bellisario, V.; Cellai, F.; Peluso, M.E.M. Formaldehyde-induced toxicity in the nasal epithelia of workers of a plastic laminate plant. Toxicol. Res. 2016, 5, 752–760. [Google Scholar] [CrossRef]
- Hensley, K.; Robinson, K.A.; Gabbita, S.P.; Salsman, S.; Floyd, R.A. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 2000, 28, 1456–1462. [Google Scholar] [CrossRef]
- Shields, M.; Tremblay, M.S. Canadian childhood obesity estimates based on WHO, IOTF and CDC cut-points. Int. J. Pediatr. Obes. 2010, 5, 265–273. [Google Scholar] [CrossRef]
- Kêkê, L.M.; Samouda, H.; Jacobs, J.; di Pompeo, C.; Lemdani, M.; Hubert, H.; Zitouni, D.; Guinhouya, B.C. Body mass index and childhood obesity classification systems: A comparison of the French, International Obesity Task Force (IOTF) and World Health Organization (WHO) references. Rev. Epidemiol. Sante Publique 2015, 63, 173–182. [Google Scholar] [CrossRef]
- Valerio, G.; Balsamo, A.; Baroni, M.G.; Brufani, C.; Forziato, C.; Grugni, G.; Licenziati, M.R.; Maffeis, C.; Miraglia Del Giudice, E.; Morandi, A.; et al. Childhood obesity classification systems and cardiometabolic risk factors: a comparison of the Italian, World Health Organization and International Obesity Task Force references. Ital. J. Pediatr. 2017, 43, 19. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Casanova, I.; Sarmiento, O.L.; Gazmararian, J.A.; Cunningham, S.A.; Martorell, R.; Pratt, M.; Stein, A.D. Comparing three body mass index classification systems to assess overweight and obesity in children and adolescents. Rev. Panam. Salud Publica 2013, 33, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Vanderwall, C.; Eickhoff, J.; Randall Clark, R.; Carrel, A.L. BMI z-score in obese children is a poor predictor of adiposity changes over time. BMC Pediatr. 2018, 18, 187. [Google Scholar] [CrossRef] [PubMed]
- Lønnebotn, M.; Svanes, C.; Igland, J.; Franklin, K.A.; Accordini, S.; Benediktsdóttir, B.; Bentouhami, H.; Blanco, J.A.G.; Bono, R.; Corsico, A.; et al. Body silhouettes as a tool to reflect obesity in the past. PLoS ONE 2018, 13, e0195697. [Google Scholar] [CrossRef] [PubMed]
- Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 2008, 30, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
Females n = 161 (48.8%) | Males n = 169 (51.2%) | p-Value | Total 330 | ||
---|---|---|---|---|---|
Age (years) | 8 | 51 (31.7) | 56 (33.1) | 0.84 | 107 (32.4) |
9 | 58 (36.0) | 53 (31.4) | 111 (33.6) | ||
10+ | 52 (32.3) | 60 (35.5) | 112 (33.9) | ||
Ethnicity (n) | Non-Caucasian mothers a | 15 (9.3) | 17 (10.6) | 0.32 | 32 (9.7) |
Non-Caucasian fathers a | 17 (10.1) | 17 (10.1) | 0.54 | 34 (10.3) | |
Height (cm) | 138.4 ± 9.3 | 138.9 ± 8.4 | 0.57 | 138.4 ± 8.7 | |
Weight (kg) | 36.5 ± 10.1 | 36.8 ± 10.8 | 0.78 | 36.3 ± 10.2 | |
BMI (kg/m2) | 19.1 ± 3.6 | 18.8 ± 3.6 | 0.28 | 18.8 ± 0.2 | |
FMI (kg/m2) | 5.2 ± 2.2 | 4.8 ± 2.3 | 0.07 | 5.0 ± 2.3 | |
FFMI (kg/m2) | 13.9 ± 1.9 | 14.0 ± 1.6 | 0.44 | 14.0 ± 1.8 | |
Body Fat (%) | 26.9 ± 6.2 | 24.3 ± 6.6 | <0.0001 | 25.4 ± 6.5 |
15-F2t IsoP | Exp (β) (95% C.I.) | p-Value |
---|---|---|
Body composition a: | ||
Overweight (IOTF) | 1.22 (0.97–1.56) | 0.095 |
Obese (IOTF) | 1.56 (1.07–2.27) | 0.020 |
Cotinine quartiles b: | ||
COT 2nd quartile | 1.27 (0.93–1.72) | 0.130 |
COT 3rd quartile | 1.45 (1.06–1.97) | 0.020 |
COT 4th quartile | 2.04 (1.55–2.69) | <0.0001 |
Physical activity c: | ||
Moderate | 1.00 (0.83–1.23) | 0.944 |
Intense | 1.14 (0.81–(1.61) | 0.440 |
General characteristics d: | ||
Sex | 1.09 (0.92–1.31) | 0.297 |
Age | 1.06 (0.96–1.15) | 0.210 |
Body fat (%) | 1.00 (0.97–1.01) | 0.110 |
Normal Weight n = 45 | Obese n = 45 | p-Value | Gradients ∆ | |
---|---|---|---|---|
AGE (years) | 9.2 ± 0.9 | 9.2 ± 1.0 | 0.81 | |
FMI (Kg/m2) | 3.6 ± 0.9 | 8.8 ± 2.3 | <0.0001 | 5.2 ± 2.5 |
FFMI (Kg/m2) | 12.8 ± 0.9 | 16.3 ± 1.6 | <0.0001 | 3.5 ± 1.9 |
15-F2t IsoP (ng/mg Crea) | 3.8 ± 3.7 | 5.7 ± 4.7 | 0.039 | 4.1 ± 4.8 |
Ln(15-F2t IsoP) (ng/mg Crea) | 0.99 ± 0.79 | 1.50 ± 0.67 | 0.002 | 0.8 ± 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squillacioti, G.; Bellisario, V.; Grignani, E.; Mengozzi, G.; Bardaglio, G.; Dalmasso, P.; Bono, R. The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure. Int. J. Environ. Res. Public Health 2019, 16, 490. https://doi.org/10.3390/ijerph16030490
Squillacioti G, Bellisario V, Grignani E, Mengozzi G, Bardaglio G, Dalmasso P, Bono R. The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure. International Journal of Environmental Research and Public Health. 2019; 16(3):490. https://doi.org/10.3390/ijerph16030490
Chicago/Turabian StyleSquillacioti, Giulia, Valeria Bellisario, Elena Grignani, Giulio Mengozzi, Giulia Bardaglio, Paola Dalmasso, and Roberto Bono. 2019. "The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure" International Journal of Environmental Research and Public Health 16, no. 3: 490. https://doi.org/10.3390/ijerph16030490
APA StyleSquillacioti, G., Bellisario, V., Grignani, E., Mengozzi, G., Bardaglio, G., Dalmasso, P., & Bono, R. (2019). The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure. International Journal of Environmental Research and Public Health, 16(3), 490. https://doi.org/10.3390/ijerph16030490