Associations of Serum 25-Hydroxyvitamin D with Physical Performance and Bone Health in Overweight and Obese Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometrics
2.3. Questionnaire
2.4. Blood Biochemistry
2.5. Muscle Strength and Physical Function
2.6. Body Composition and Bone Health
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daly, R.M.; Gagnon, C.; Lu, Z.X.; Magliano, D.J.; Dunstan, D.W.; Sikaris, K.A.; Zimmet, P.Z.; Ebeling, P.R.; Shaw, J.E. Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clin. Endocrinol. 2012, 77, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hirani, V.; Naganathan, V.; Blyth, F.; Le Couteur, D.G.; Seibel, M.J.; Waite, L.M.; Handelsman, D.J.; Cumming, R.G. Longitudinal associations between body composition, sarcopenic obesity and outcomes of frailty, disability, institutionalisation and mortality in community-dwelling older men: The Concord Health and Ageing in Men Project. Age Ageing 2017, 46, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Blizzard, L.; Fell, J.; Ding, C.; Winzenberg, T.; Jones, G. A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults. Clin. Endocrinol. 2010, 73, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 2008, 29, 726–776. [Google Scholar] [CrossRef]
- Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef]
- Yu, R.; Leung, J.; Woo, J. Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: results from the Osteoporotic Fractures in Men (MrOs) Study. J. Am. Med. Dir. Assoc. 2014, 15, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Visvanathan, R.; Haywood, C.; Piantadosi, C.; Appleton, S. Australian and New Zealand Society for Geriatric Medicine: Position statement—Obesity and the older person. Australas. J. Ageing 2012, 31, 261–267. [Google Scholar]
- Pereira-Santos, M.; Costa, P.R.; Assis, A.M.; Santos, C.A.; Santos, D.B. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef]
- Drincic, A.T.; Armas, L.A.; Van Diest, E.E.; Heaney, R.P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Bredella, M.A.; Lin, E.; Gerweck, A.V.; Landa, M.G.; Thomas, B.J.; Torriani, M.; Bouxsein, M.L.; Miller, K.K. Determinants of bone microarchitecture and mechanical properties in obese men. J. Clin. Endocrinol. Metab. 2012, 97, 4115–4122. [Google Scholar] [CrossRef] [PubMed]
- Compston, J.E.; Watts, N.B.; Chapurlat, R.; Cooper, C.; Boonen, S.; Greenspan, S.; Pfeilschifter, J.; Silverman, S.; Diez-Perez, A.; Lindsay, R.; et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 2011, 124, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Rejeski, W.J.; Marsh, A.P.; Chmelo, E.; Rejeski, J.J. Obesity, intentional weight loss and physical disability in older adults. Obes. Rev. 2010, 11, 671–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villareal, D.T.; Banks, M.; Siener, C.; Sinacore, D.R.; Klein, S. Physical frailty and body composition in obese elderly men and women. Obes. Res. 2004, 12, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Himes, C.L.; Reynolds, S.L. Effect of obesity on falls, injury, and disability. J. Am. Geriatr. Soc. 2012, 60, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Ahern, T.; Khattak, A.; O’Malley, E.; Dunlevy, C.; Kilbane, M.; Woods, C.; McKenna, M.J.; O’Shea, D. Association between vitamin D status and physical function in the severely obese. J. Clin. Endocrinol. Metab. 2014, 99, E1327–E1331. [Google Scholar] [CrossRef] [PubMed]
- Saarnio, E.; Pekkinen, M.; Itkonen, S.T.; Kemi, V.; Karp, H.; Ivaska, K.K.; Risteli, J.; Koivula, M.K.; Karkkainen, M.; Makitie, O.; Sievanen, H.; Lamberg-Allardt, C. Low free 25-hydroxyvitamin D and high vitamin D binding protein and parathyroid hormone in obese Caucasians. A complex association with bone? PLoS ONE 2018, 13, e0192596. [Google Scholar] [CrossRef]
- Walsh, J.S.; Evans, A.L.; Bowles, S.; Naylor, K.E.; Jones, K.S.; Schoenmakers, I.; Jacques, R.M.; Eastell, R. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am. J. Clin. Nutr. 2016, 103, 1465–1471. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.; Shore-Lorenti, C.; McMillan, L.B.; Mesinovic, J.; Clark, R.A.; Hayes, A.; Sanders, K.M.; Duque, G.; Ebeling, P.R. Calf muscle density is independently associated with physical function in overweight and obese older adults. J. Musculoskelet. Neuronal Interact. 2018, 18, 9–17. [Google Scholar]
- Brown, W.J.; Burton, N.W.; Marshall, A.L.; Miller, Y.D. Reliability and validity of a modified self-administered version of the Active Australia physical activity survey in a sample of mid-age women. Aust. N. Z. J. Public Health 2008, 32, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Ersfeld, D.L.; Rao, D.S.; Body, J.J.; Sackrison, J.L., Jr.; Miller, A.B.; Parikh, N.; Eskridge, T.L.; Polinske, A.; Olson, G.T.; MacFarlane, G.D. Analytical and clinical validation of the 25 OH vitamin D assay for the LIAISON automated analyzer. Clin. Biochem. 2004, 37, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Glendenning, P. Measuring vitamin D. Aust. Prescr. 2015, 38, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.F.; Kiely, D.K.; LaRose, S.; Alian, J.; Frontera, W.R. Is stair climb power a clinically relevant measure of leg power impairments in at-risk older adults? Arch. Phys. Med. Rehabil. 2007, 88, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Freiberger, E.; de Vreede, P.; Schoene, D.; Rydwik, E.; Mueller, V.; Frandin, K.; Hopman-Rock, M. Performance-based physical function in older community-dwelling persons: A systematic review of instruments. Age Ageing 2012, 41, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.H.; Gregson, C.L.; Patel, H.P.; Jameson, K.A.; Harvey, N.C.; Sayer, A.A.; Dennison, E.M.; Cooper, C. Muscle size, strength, and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J. Bone Miner. Res. 2013, 28, 2295–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dam, T.T.; von Muhlen, D.; Barrett-Connor, E.L. Sex-specific association of serum vitamin D levels with physical function in older adults. Osteoporos. Int. 2009, 20, 751–760. [Google Scholar] [CrossRef]
- Ornoy, A.; Suissa, M.; Yaffe, P.; Boyan, B.D.; Schwartz, Z. Gender-related effects of vitamin D metabolites on cartilage and bone. Bone Miner. 1994, 27, 235–247. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Harris, S.S.; Krall, E.A.; Dallal, G.E. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med. 1997, 337, 670–676. [Google Scholar] [CrossRef]
- Nguyen, T.; Sambrook, P.; Kelly, P.; Jones, G.; Lord, S.; Freund, J.; Eisman, J. Prediction of osteoporotic fractures by postural instability and bone density. BMJ 1993, 307, 1111–1115. [Google Scholar] [CrossRef]
- Scott, D.; Stuart, A.L.; Kay, D.; Ebeling, P.R.; Nicholson, G.; Sanders, K.M. Investigating the predictive ability of gait speed and quadriceps strength for incident falls in community-dwelling older women at high risk of fracture. Arch. Gerontol. Geriatr. 2014, 58, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Begerow, B.; Minne, H.W.; Suppan, K.; Fahrleitner-Pammer, A.; Dobnig, H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos. Int. 2009, 20, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Geusens, P.; Vandevyver, C.; Vanhoof, J.; Cassiman, J.J.; Boonen, S.; Raus, J. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J. Bone Miner. Res. 1997, 12, 2082–2088. [Google Scholar] [CrossRef] [PubMed]
- Grundberg, E.; Brandstrom, H.; Ribom, E.L.; Ljunggren, O.; Mallmin, H.; Kindmark, A. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur. J. Endocrinol. 2004, 150, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahat, G.; Saka, B.; Erten, N.; Ozbek, U.; Coskunpinar, E.; Yildiz, S.; Sahinkaya, T.; Karan, M.A. BsmI polymorphism in the vitamin D receptor gene is associated with leg extensor muscle strength in elderly men. Aging Clin. Exp. Res. 2010, 22, 198–205. [Google Scholar] [CrossRef]
- Filus, A.; Trzmiel, A.; Kuliczkowska-Plaksej, J.; Tworowska, U.; Jedrzejuk, D.; Milewicz, A.; Medras, M. Relationship between vitamin D receptor BsmI and FokI polymorphisms and anthropometric and biochemical parameters describing metabolic syndrome. Aging Male 2008, 11, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Ebeling, P.R.; Sanders, K.M.; Aitken, D.; Winzenberg, T.; Jones, G. Vitamin d and physical activity status: associations with five-year changes in body composition and muscle function in community-dwelling older adults. J. Clin. Endocrinol. Metab. 2015, 100, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.; Puglisi, D.A.; Davies, B.N.; Rybchyn, M.; Whitehead, N.P.; Brock, K.E.; Cole, L.; Gordon-Thomson, C.; Fraser, D.R.; Mason, R.S. Evidence for a specific uptake and retention mechanism for 25-hydroxyvitamin D (25OHD) in skeletal muscle cells. Endocrinology 2013, 154, 3022–3030. [Google Scholar] [CrossRef]
- Bell, N.H.; Godsen, R.N.; Henry, D.P.; Shary, J.; Epstein, S. The effects of muscle-building exercise on vitamin D and mineral metabolism. J. Bone Miner. Res. 1988, 3, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Ferrari, H.A.; Dietrich, T.; Orav, E.J.; Hu, F.B.; Zhang, Y.; Karlson, E.W.; Dawson-Hughes, B. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y. Am. J. Clin. Nutr. 2004, 80, 752–758. [Google Scholar] [CrossRef]
- Sanders, K.M.; Stuart, A.L.; Williamson, E.J.; Simpson, J.A.; Kotowicz, M.A.; Young, D.; Nicholson, G.C. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 2010, 303, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Winzenberg, T.; van der Mei, I.; Mason, R.S.; Nowson, C.; Jones, G. Vitamin D and the musculoskeletal health of older adults. Aust. Fam. Physician 2012, 41, 92–99. [Google Scholar]
- Bislev, L.S.; Langagergaard Rodbro, L.; Rolighed, L.; Sikjaer, T.; Rejnmark, L. Effects of Vitamin D3 Supplementation on Muscle Strength, Mass, and Physical Performance in Women with Vitamin D Insufficiency: A Randomized Placebo-Controlled Trial. Calcif Tissue Int. 2018, 103, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 1993, 30, 210–223. [Google Scholar]
- Walker, M.D.; Nishiyama, K.K.; Zhou, B.; Cong, E.; Wang, J.; Lee, J.A.; Kepley, A.; Zhang, C.; Guo, X.E.; Silverberg, S.J. Effect of Low Vitamin D on Volumetric Bone Mineral Density, Bone Microarchitecture, and Stiffness in Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2016, 101, 905–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, I.R.; Bolland, M.J.; Grey, A. Effects of vitamin D supplements on bone mineral density: A systematic review and meta-analysis. Lancet 2014, 383, 146–155. [Google Scholar] [CrossRef]
- Sayed-Hassan, R.; Abazid, N.; Koudsi, A.; Alourfi, Z. Vitamin D status and parathyroid hormone levels in relation to bone mineral density in apparently healthy Syrian adults. Arch. Osteoporos. 2016, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Zhang, Y.; Hannan, M.T.; Anderson, J.J. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J. Bone Miner. Res. 1993, 8, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Fuller, H.; Fuller, R.; Pereira, R.M. High resolution peripheral quantitative computed tomography for the assessment of morphological and mechanical bone parameters. Rev. Bras. Reumatol. 2015, 55, 352–362. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Women | p-Value | Men | p-Value | ||
---|---|---|---|---|---|---|
25(OH)D ≥ 50 N = 23 | 25(OH)D < 50 N = 23 | 25(OH)D ≥ 50 N = 19 | 25(OH)D < 50 N = 19 | |||
Age (years) | 60.7 ± 6.6 | 63.3 ± 8.5 | 0.253 | 65.8 ± 8.6 | 59.8 ± 7.0 | 0.024 |
BMI (kg/m2) | 33.0 ± 7.7 | 33.5 ± 5.2 | 0.823 | 30.6 ± 5.5 | 32.3 ± 5.4 | 0.338 |
Total body fat percentage (%) | 42.1 ± 6.2 | 43.2 ± 4.9 | 0.499 | 29.5 ± 6.2 | 30.3 ± 4.9 | 0.672 |
Self-reported diabetes (%) # | 8.7 | 34.8 | 0.032 | 10.5 | 31.6 | 0.111 |
Moderate and vigorous physical activity (min/week) * | 45.0 (0.0, 180.0) | 2.0 (0.0, 40.0) | 0.152 | 120.0 (0.0, 360.0) | 120.0 (0.0, 300.0) | 0.906 |
Time spent outdoor (hours/week) | 4.3 ± 3.4 | 4.6 ± 3.0 | 0.782 | 7.6 ± 5.6 | 6.7 ± 4.5 | 0.560 |
Serum 25(OH)D (nmol/L) | 62 ± 11 | 36 ± 10 | <0.001 | 66 ± 11 | 35 ± 10 | <0.001 |
Hand grip strength (kg) | 22.9 ± 5.9 | 23.4 ± 5.9 | 0.810 | 37.6 ± 7.5 | 38.9 ± 7.3 | 0.607 |
Quadricep strength (kg) | 15.7 ± 6.9 | 12.4 ± 6.5 | 0.106 | 22.1 ± 9.8 | 19.6 ± 11.0 | 0.467 |
Gait speed (cm/s) | 80.6 ± 20.2 | 76.1 ± 17.6 | 0.435 | 74.1 ± 18.4 | 79.5 ± 11.2 | 0.285 |
Stair climb power (W) | 254.0 ± 84.0 | 244.0 ± 59.9 | 0.646 | 283.2 ± 83.1 | 337.9 ± 66.1 | 0.031 |
SPPB score | 10.0 ± 1.9 | 9.8 ± 1.7 | 0.618 | 9.8 ± 2.2 | 9.7 ± 1.4 | 0.860 |
66% site of tibia cortical density (mg/cm3) | 1042.90 ± 48.51 | 1040.48 ± 32.85 | 0.844 | 1050.65 ± 32.67 | 1064.25 ± 38.66 | 0.250 |
Distal tibia trabecular density (mg/cm3) | 222.58 ± 49.75 | 234.15 ± 40.69 | 0.406 | 240.02 ± 37.99 | 250.13 ± 35.08 | 0.400 |
66% site of radius cortical density (mg/cm3) | 1074.85 ± 54.90 | 1059.49 ± 62.53 | 0.381 | 1070.17 ± 53.63 | 1085.44 ± 45.83 | 0.352 |
Distal radius trabecular density (mg/cm3) | 171.28 ± 31.62 | 173.29 ± 37.23 | 0.845 | 204.03 ± 41.21 | 214.11 ± 35.67 | 0.425 |
Characteristic | Serum 25(OH)D (nmol/L) | |
---|---|---|
Women | Men | |
Age (year) * | 0.005 (0.976) | 0.373 (0.021) |
BMI (kg/m2) * | −0.202 (0.178) | −0.213 (0.199) |
Total body fat percentage (%) * | −0.063 (0.679) | −0.183 (0.272) |
Appendicular lean mass (kg) * | −0.093 (0.538) | −0.076 (0.652) |
Physical activity (min/week) * | 0.302 (0.042) | 0.098 (0.557) |
Time spent outdoors (hours/week) * | 0.053 (0.725) | 0.083 (0.621) |
Hand grip strength (kg) * | −0.008 (0.956) | 0.061 (0.717) |
Quadricep strength (kg) * | 0.334 (0.023) | 0.174 (0.295) |
Gait speed (m/s) | 0.165 (0.272) | −0.225 (0.175) |
Chair standing time (s) * | 0.011 (0.941) | −0.171 (0.311) |
Stair climb power (W) | 0.124 (0.412) | −0.254 (0.124) |
SPPB score * | 0.069 (0.647) | 0.087 (0.605) |
Characteristic | Serum 25(OH)D (nmol/L) | |
---|---|---|
Women | Men | |
Distal tibia total density (mg/cm3) * | −0.264 (0.083) | −0.095 (0.569) |
Distal tibia total area (mm2) | 0.030 (0.846) | 0.151 (0.364) |
Distal tibia trabecular density (mg/cm3) | −0.307 (0.043) | −0.165 (0.321) |
66% site of tibia cortical density (mg/cm3) | 0.163 (0.280) | −0.050 (0.764) |
66% site of tibia cortical area (mm2) | 0.048 (0.750) | 0.047 (0.779) |
66% site of tibia cortical thickness (mm) | 0.020 (0.895) | 0.056 (0.737) |
Distal radius total density (mg/cm3) | −0.108 (0.474) | −0.082 (0.626) |
Distal radius total area (mm2) * | −0.038 (0.801) | 0.422 (0.008) |
Distal radius trabecular density (mg/cm3) * | −0.131 (0.384) | −0.060 (0.720) |
66% site of radius cortical density (mg/cm3) | 0.103 (0.497) | −0.086 (0.608) |
66% site of radius cortical area (mm2) | −0.008 (0.958) | −0.001 (0.996) |
66% site of radius cortical thickness (mm) | −0.090 (0.553) | −0.244 (0.141) |
Total body BMD (mg/cm2) * | −0.255 (0.088) | 0.011 (0.949) |
Characteristic | Model 1 Adjusted for Age | Model 2 Adjusted for Age, Physical Activity and Total Fat Percentage | ||
---|---|---|---|---|
Women | Men | Women | Men | |
Hand grip strength (kg) | 0.007 (−0.095, 0.110) | 0.108 (−0.013, 0.228) | 0.022 (−0.075, 0.119) | 0.110 (−0.014, 0.234) |
Quadricep strength (kg) | 0.134 (0.017, 0.251) | 0.112 (−0.085, 0.308) | 0.149 (0.024, 0.274) | 0.096 (−0.102, 0.293) |
Gait speed (cm/s) | 0.183 (−0.157, 0.523) | −0.225 (−0.508, 0.058) | 0.236 (−0.125, 0.597) | −0.272 (−0.528, −0.016) |
Chair standing time (s) | −0.020 (−0.209, 0.169) | 0.013 (−0.105, 0.131) | −0.025 (−0.224, 0.174) | 0.039 (−0.073, 0.151) |
Stair climb power (W) | 0.474 (−0.598, 1.546) | −0.854 (−2.309, 0.600) | 1.074 (0.115, 2.033) | −0.984 (−2.413, 0.446) |
SPPB score | 0.004 (−0.028, 0.036) | 0.005 (−0.029, 0.039) | 0.012 (−0.022, 0.045) | 0.000 (−0.034, 0.034) |
Distal tibia total density (mg/cm3) | −0.763 (−1.466, −0.061) | −0.088 (−0.742, 0.567) | −0.693 (−1.467, 0.082) | −0.087 (−0.768, 0.594) |
Distal tibia total area (mm2) | 0.274 (−2.562, 3.109) | −0.230 (−2.933, 2.473) | 0.304 (−2.370, 2.978) | −0.269 (−3.064, 2.525) |
Distal tibia trabecular density (mg/cm3) | −0.843 (−1.640, −0.046) | −0.335 (−1.026, 0.355) | −0.827 (−1.708, 0.053) | −0.331 (−1.049, 0.388) |
66% site of tibia cortical density (mg/cm3) | 0.376 (−0.316, 1.069) | 0.025 (−0.654, 0.704) | 0.510 (−0.211, 1.231) | 0.027 (−0.675, 0.728) |
66% site of tibia cortical area (mm2) | 0.097 (−0.607, 0.800) | 0.148 (−0.790, 1.085) | 0.174 (−0.577, 0.924) | 0.122 (−0.852, 1.096) |
66% site of tibia cortical thickness (mm) | 0.000 (−0.010, 0.011) | 0.003 (−0.010, 0.017) | 0.002 (−0.009, 0.013) | 0.003 (−0.011, 0.017) |
Distal radius total density (mg/cm3) | −0.350 (−1.174, 0.474) | −0.231 (−1.318, 0.855) | −0.405 (−1.285, 0.475) | −0.228 (−1.361, 0.905) |
Distal radial total area (mm2) | −0.003 (−1.024, 1.018) | 1.546 (0.042, 3.049) | 0.165 (−0.841, 1.172) | 1.493 (−0.060, 3.046) |
Distal radius trabecular density (mg/cm3) | −0.364 (−0.954, 0.226) | −0.029 (−0.767, 0.708) | −0.361 (−0.998, 0.277) | −0.063 (−0.819, 0.693) |
66% site of radius cortical density (mg/cm3) | 0.324 (−0.650, 1.298) | 0.080 (−0.819, 0.980) | 0.339 (−0.708, 1.387) | 0.040 (−0.891, 0.970) |
66% site of radius cortical area (mm2) | −0.011 (−0.202, 0.179) | −0.007 (−0.253, 0.239) | −0.005 (−0.207, 0.197) | −0.004 (−0.260, 0.253) |
66% site of radius cortical thickness (mm) | −0.002 (−0.009, 0.005) | −0.004 (−0.010, 0.003) | −0.002 (−0.010, 0.005) | −0.004 (−0.010, 0.002) |
Appendicular lean mass (kg) | −0.005 (−0.091, 0.080) | 0.010 (−0.054, 0.074) | 0.016 (−0.069, 0.101) | 0.018 (−0.045, 0.082) |
Total body BMD (mg/cm2) | −2.093 (−4.59, 0.404) | −0.089 (−2.949, 2.771) | −1.567 (−4.206, 1.072) | 0.070 (−2.881. 3.022) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, M.; Shore-Lorenti, C.; McMillan, L.B.; Mesinovic, J.; Hayes, A.; Ebeling, P.R.; Scott, D. Associations of Serum 25-Hydroxyvitamin D with Physical Performance and Bone Health in Overweight and Obese Older Adults. Int. J. Environ. Res. Public Health 2019, 16, 509. https://doi.org/10.3390/ijerph16030509
Dang M, Shore-Lorenti C, McMillan LB, Mesinovic J, Hayes A, Ebeling PR, Scott D. Associations of Serum 25-Hydroxyvitamin D with Physical Performance and Bone Health in Overweight and Obese Older Adults. International Journal of Environmental Research and Public Health. 2019; 16(3):509. https://doi.org/10.3390/ijerph16030509
Chicago/Turabian StyleDang, Melissa, Cat Shore-Lorenti, Lachlan B. McMillan, Jakub Mesinovic, Alan Hayes, Peter R. Ebeling, and David Scott. 2019. "Associations of Serum 25-Hydroxyvitamin D with Physical Performance and Bone Health in Overweight and Obese Older Adults" International Journal of Environmental Research and Public Health 16, no. 3: 509. https://doi.org/10.3390/ijerph16030509
APA StyleDang, M., Shore-Lorenti, C., McMillan, L. B., Mesinovic, J., Hayes, A., Ebeling, P. R., & Scott, D. (2019). Associations of Serum 25-Hydroxyvitamin D with Physical Performance and Bone Health in Overweight and Obese Older Adults. International Journal of Environmental Research and Public Health, 16(3), 509. https://doi.org/10.3390/ijerph16030509