Ecosystem Spatial Changes and Driving Forces in the Bohai Coastal Zone
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. Landscape Changes
3.2.2. Landscape Metrics
- NP: Number of patchesNP = ni;n: the number of patches, NP ≥ 1, without limit.
- PD: Patch densityPD = N/A;N: number of patches; A: total landscape area, PD > 0, without limit.
- MPS: Mean patch sizeMPS = A/N;N: number of patches; A: total landscape area, MPS > 0, without limit.
- LPI: Largest patch indexLPI = Max(a1, …an)/A×100;ai: area of patch i; A: total landscape area, 0 < LPI ≤ 100.
- SHDI: Shannon–Weaver diversity index;Pi: the proportion of landscape occupied by patch type i; m: number of patch types present in the landscape. SHDI ≥ 0.
3.2.3. Driving Forces Analysis
4. Results
4.1. Characteristics of Ecosystem Spatial Changes
4.1.1. Spatial Distribution Characteristics of Ecosystems
4.1.2. Characteristics of Ecosystem Spatial Changes
4.2. Quantification of Landscape Metrics
4.3. Driving Forces
5. Discussion
5.1. Land Reclamation in Bohai Coastal Zone
5.2. Landscape Changes and Their Impact on Coastal Habitat
5.3. Limitatios of Driving Forces Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ke, C.; Zhang, D.; Wang, F.; Chen, S.; Schmullius, C.; Boerner, W.; Wang, H. Analyzing coastal wetland change in the Yancheng National Nature Reserve, China. Reg. Environ. Chang. 2011, 11, 161–173. [Google Scholar] [CrossRef]
- Shi, L.; Liu, F.; Zhang, Z.; Zhao, X.; Liu, B.; Xu, J.; Wen, Q.; Yi, L.; Hu, S. Spatial differences of coastal urban expansion in China from 1970s to 2013. Chin. Geogr. Sci. 2015, 25, 389–403. [Google Scholar] [CrossRef]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F.; Polasky, S.; Aswani, S.; Cramer, L.A.; et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 2008, 319, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wong, M.H. Current status of coastal zone issues and management in China: A review. Environ. Int. 2007, 33, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Coastal Management in China. Ocean Management in Global Change. In Proceedings of the Conference on Ocean Management in Global Change, Genoa, Italy, 22–26 June 1992; CRC Press: London, UK, 2003; p. 469. [Google Scholar]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model 2015, 318, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Nahuelhual, L.; Carmona, A.; Aguayo, M.; Echeverria, C. Land use change and ecosystem services provision: A case study of recreation and ecotourism opportunities in Southern Chile. Landsc. Ecol. 2014, 29, 329–344. [Google Scholar] [CrossRef]
- Mendoza-González, G.; Martínez, M.L.; Lithgow, D.; Pérez-Maqueo, O.; Simonin, P. Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecol. Econ. 2012, 82, 23–32. [Google Scholar] [CrossRef]
- Zang, S.; Wu, C.; Liu, H.; Na, X. Impact of urbanization on natural ecosystem service values: A comparative study. Environ. Monit. Assess. 2011, 179, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J.L. Land changes and their driving forces in the Southeastern United States. Reg. Environ. Chang. 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Bender, O.; Boehmer, H.J.; Jens, D.; Schumacher, K.P. Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landsc. Ecol. 2005, 20, 149–163. [Google Scholar] [CrossRef]
- Braimoh, A.K. Random and systematic land-cover transitions in Northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Xiaofeng, D.; Lichen, L.; Jianhua, W.; Jin, S.; Jinghu, P. Analysis of the landscape change at River Basin scale based on SPOT and TM fusion remote sensing images: A case study of the Weigou River Basin on the Chinese Loess Plateau. Int. J. Earth Sci. 2009, 98, 651–664. [Google Scholar] [CrossRef]
- Maleki Najafabadi, S.; Soffianian, A.; Rahdari, V.; Amiri, F.; Pradhan, B.; Tabatabaei, T. Geospatial modeling to identify the effects of anthropogenic processes on landscape pattern change and biodiversity. Arab J. Geosci. 2015, 8, 1557–1569. [Google Scholar] [CrossRef]
- Fan, Q.; Ding, S. Landscape pattern changes at a county scale: A case study in Fengqiu, Henan Province, China from 1990 to 2013. Catena 2016, 137, 152–160. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Shi, P.; Zhang, L.; Pan, J.; Zhao, H. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang, China. Environ. Earth Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, L.; Chen, Z.; Zhang, J.; Verburg, P.H. Land-use change simulation and assessment of driving factors in the loess hilly region—A case study as Pengyang County. Environ. Monit. Assess. 2010, 164, 133–142. [Google Scholar] [CrossRef]
- Fathizad, H.; Rostami, N.; Faramarzi, M. Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in Western Iran. Environ. Monit. Assess. 2015, 187, 629. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef]
- Klijn, J.A. Driving Forces behind Landscape Transformation in Europe, From a Conceptual Approach to Policy Options. In The New Dimensions of the European Landscapes; Jongman, R.G.H., Ed.; The New Dimensions of the European Landscapes: Wageningen, The Netherlands, 2004; pp. 201–218. [Google Scholar]
- Burgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change—Current and new directions. Landsc. Ecol. 2004, 19, 857–868. [Google Scholar] [CrossRef]
- Gao, P.; Niu, X.; Wang, B.; Zheng, Y. Land use changes and its driving forces in hilly ecological restoration area based on GIS and RS of Northern China. Sci. Rep. 2015, 5, 11038. [Google Scholar] [CrossRef] [PubMed]
- Krajewski, P.; Solecka, I.; Mrozik, K. Forest Landscape Change and Preliminary Study on Its Driving Forces in Ślęża Landscape Park (Southwestern Poland) in 1883–2013. Sustainability 2018, 10, 4526. [Google Scholar] [CrossRef]
- Finkl, C.W. Coastal Classification: Systematic Approaches to Consider in the Development of a Comprehensive Scheme. J. Coast. Res. 2004, 20, 166–213. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Puyravaud, J. Standardizing the calculation of the annual rate of deforestation. Forest Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, P.; Solecka, I.; Barbara-Mastalska-Cetera. Landscape Change Index as a Tool for Spatial Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 72014. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Shusas, E.; Mceachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M. Quantifying Spatiotemporal Patterns of Urban Land-use Change in Four Cities of China with Time Series Landscape Metrics. Landsc. Ecol. 2005, 20, 871–888. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Godron, M. Landscape Ecology; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar]
- Mcgarigal, K.M.B. FRAGSTATS: Spatial Patterm Analysis Program for Quantifying Landscape Structure. Available online: https://www.fs.usda.gov/treesearch/pubs/3064 (accessed on 17 December 2018).
- Zhang, Z.; van Coillie, F.; Ou, X.; de Wulf, R. Integration of Satellite Imagery, Topography and Human Disturbance Factors Based on Canonical Correspondence Analysis Ordination for Mountain Vegetation Mapping: A Case Study in Yunnan, China. Remote Sens. 2014, 6, 1026–1056. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G.; Gardner, R.H.; O’Neill, R.V. Landscape Ecology in Theory and Practice: Pattern and Process; Springer: New York, NY, USA, 2001. [Google Scholar]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Yu, M.; Yu, D.; Zheng, X.; Zhou, B.; Wei, Y.; Zhong, J.; Yang, Y.; Zeng, F.; et al. Driving factors of coastal wetland degradation in Binhai New Area of Tianjin. Acta. Sci. Circumst. 2012, 32, 480–488. [Google Scholar]
- Blue Economic Zone (BEZ) Executive Summary: Shandong Peninsula Blue Economic Zone, Shandong, China. Available online: https://www.unsw.adfa.edu.au/sino-australian-research-centre-for-coastal-management/blue-economic-zone-bez-executive-summary-shandong-peninsula-blue-economic-zone-shandong-china (accessed on 11 May 2015).
- Ogden, J.C.; Baldwin, J.D.; Bass, O.L.; Browder, J.A.; Cook, M.I.; Frederick, P.C.; Frezza, P.E.; Galvez, R.A.; Hodgson, A.B.; Meyer, K.D.; et al. Waterbirds as indicators of ecosystem health in the coastal marine habitats of southern Florida: 1. Selection and justification for a suite of indicator species. Ecol. Indic. 2014, 44, 148–163. [Google Scholar] [CrossRef]
- Robledano, F.; Esteve, M.A.; Farinós, P.; Carreno, M.F. Terrestrial birds as indicators of agricultural-induced changes and associated loss in conservation value of Mediterranean wetlands. Ecol. Indic. 2010, 10, 274–286. [Google Scholar] [CrossRef]
- China’s Land Reclamation is Endangering Some of the World’s Rarest Water Birds. Available online: https://www.citymetric.com/horizons/chinas-land-reclamation-endangering-some-worlds-rarest-water-birds-1453 (accessed on 2 October 2015).
- Yang, H.-Y.; Chen, B.; Barter, M.; Piersma, T.; Zhou, C.-F.; Li, F.-S.; Zhang, Z.-W. Impacts of tidal land reclamation in Bohai Bay, China: Ongoing losses of critical Yellow Sea waterbird staging and wintering sites. Bird Conserv. Int. 2011, 21, 241–259. [Google Scholar] [CrossRef]
- Kraan, C.; van Gils, J.A.; Spaans, B.; Dekinga, A.; Bijleveld, A.I.; van Roomen, M.; Kleefstra, R.; Piersma, T. Landscape-scale experiment demonstrates that Wadden Sea intertidal flats are used to capacity by molluscivore migrant shorebirds. J. Anim. Ecol. 2009, 78, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Moores, N.; Rogers, D.I.; Rogers, K.; Hansbro, P.M. Reclamation of tidal flats and shorebird declines in Saemangeum and elsewhere in the Republic of Korea. Emu. Austral. Ornithol. 2016, 116, 136–146. [Google Scholar] [CrossRef]
- Burton, N.H.K.; Rehfisch, M.M.; Clark, N.A.; Dodd, S.G. Impacts of sudden winter habitat loss on the body condition and survival of redshank Tringa totanus. J. Appl. Ecol. 2006, 43, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Goss-Custard, J.D.; Burton, N.H.K.; Clark, N.A.; Ferns, P.N.; McGrorty, S.; Reading, C.J.; Rehfisch, M.M.; Stillman, R.A.; Townend, I.; West, A.D.; et al. Test of a behavior-based individual-based model: Response of shorebird mortality to habitat loss. Ecol. Appl. 2006, 16, 2215–2222. [Google Scholar] [CrossRef]
- Sato, S. Drastic change of bivalves and gastropods caused by the huge reclamation projects in Japan and Korea. Plankton Benthos Res. 2006, 1, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Marcucci, D.J. Landscape history as a planning tool. Landsc. Urban Plan 2000, 49, 67–81. [Google Scholar] [CrossRef]
Time 1 | Category 1 | Category 2 | Category 3 | Category 4 | Total Time 2 | Gain | Net Change | |
---|---|---|---|---|---|---|---|---|
Time 2 | ||||||||
Category 1 | P11 | P21 | P31 | P41 | P+1 | P+1 − P11 | P+1 − P1+ | |
Category 2 | P12 | P22 | P32 | P42 | P+2 | P+2 − P22 | P+2 − P2+ | |
Category 3 | P13 | P23 | P33 | P43 | P+3 | P+3 − P33 | P+3 − P3+ | |
Category 4 | P14 | P24 | P34 | P44 | P+4 | P+4 − P44 | P+4 − P4+ | |
Total time 1 | P1+ | P2+ | P3+ | P4+ | 1 | |||
Loss | P1+ − P11 | P2+ − P22 | P3+ − P33 | P4+ − P44 |
Ecosystem Types | 2000 | 2005 | 2010 | 2015 | |||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | ||
WE 1 | Marsh land | 1113.5 | 7.5 | 1022.0 | 6.9 | 804.1 | 5.4 | 599.6 | 4.0 |
Lake | 7.0 | 0.0 | 8.1 | 0.1 | 5.0 | 0.0 | 5.1 | 0.0 | |
Reservoir/Pond | 4515.9 | 30.5 | 4640.3 | 31.3 | 4757.7 | 32.1 | 4653.8 | 31.4 | |
River | 208.2 | 1.4 | 213.4 | 1.4 | 233.5 | 1.6 | 247.2 | 1.7 | |
FL 2 | Paddy field | 409.6 | 2.8 | 348.6 | 2.4 | 363.2 | 2.4 | 378.1 | 2.6 |
Dry land | 4206.1 | 28.4 | 4054.3 | 27.3 | 3904.3 | 26.3 | 3966.9 | 26.8 | |
Garden plot | 36.1 | 0.2 | 40.7 | 0.3 | 41.9 | 0.3 | 41.4 | 0.3 | |
UE 3 | Residential land | 1520.0 | 10.3 | 1717.8 | 11.6 | 2270.0 | 15.3 | 2549.9 | 17.2 |
Urban green land | 75.6 | 0.5 | 78.7 | 0.5 | 82.1 | 0.6 | 88.7 | 0.6 | |
Transportation land | 73.7 | 0.5 | 89.1 | 0.6 | 104.3 | 0.7 | 118.6 | 0.8 | |
Mining area | 9.0 | 0.1 | 10.4 | 0.1 | 9.3 | 0.1 | 13.8 | 0.1 | |
Industrial land | 198.5 | 1.3 | 290.5 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
FE 4 | Broad-leaved forest | 1006.5 | 6.8 | 1029.1 | 6.9 | 1038.9 | 7.0 | 1026.0 | 6.9 |
Coniferous forest | 66.2 | 0.4 | 71.6 | 0.5 | 68.9 | 0.5 | 70.3 | 0.5 | |
Mixed broadleaf-conifer forest | 85.9 | 0.6 | 89.0 | 0.6 | 89.6 | 0.6 | 87.4 | 0.6 | |
Sparse forest | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | |
BL 5 | Bare land | 925.7 | 6.2 | 814.4 | 5.5 | 749.5 | 5.1 | 646.4 | 4.4 |
SE 6 | Broadleaf shrub | 206.4 | 1.4 | 214.5 | 1.4 | 215.3 | 1.5 | 208.2 | 1.4 |
Acerola shrub | 0.1 | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 | 0.2 | 0.0 | |
Sparse shrub | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | |
GL 7 | Meadow | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.2 | 0.0 |
Prairie | 77.2 | 0.5 | 7.9 | 0.1 | 0.0 | 0.0 | 0.6 | 0.0 | |
Tussock | 44.3 | 0.3 | 58.4 | 0.4 | 55.2 | 0.4 | 49.0 | 0.3 | |
Sparse grassland | 43.6 | 0.3 | 29.0 | 0.2 | 31.4 | 0.2 | 73.2 | 0.5 |
Time Interval | Indicator | Ecosystem Types | ||||||
---|---|---|---|---|---|---|---|---|
WE 1 | FL 2 | UE 3 | FE 4 | BL 5 | SE 6 | GL 7 | ||
2000–2005 | K/% | +0.13 | −0.89 | +3.30 | +0.54 | −2.40 | +0.79 | −8.46 |
CA/% | 0.26 | −1.40 | 2.09 | 0.21 | −0.75 | 0.05 | −0.47 | |
LCI | 2.62 | |||||||
2005–2010 | K/% | −0.28 | −0.60 | +2.56 | +0.13 | −1.59 | 0.08 | −1.51 |
CA/% | −0.56 | −0.91 | 1.88 | 0.05 | −0.44 | 0.01 | −0.05 | |
LCI | 1.95 | |||||||
2010–2015 | K/% | −1.02 | +0.36 | +2.48 | −0.22 | −2.75 | −0.61 | +7.93 |
CA/% | −1.99 | 0.52 | 2.06 | −0.09 | −0.69 | −0.04 | 0.24 | |
LCI | 2.81 |
2000 | GL | UE | SE | BL | FL | FE | WE | Total | Gain | Net Change | |
---|---|---|---|---|---|---|---|---|---|---|---|
2005 | |||||||||||
GL | 0.41 | 0.01 | 0.00 | 0.01 | 0.05 | 0.00 | 0.17 | 0.64 | 0.23 | −0.47 | |
UE | 0.30 | 12.10 | 0.00 | 0.15 | 1.28 | 0.20 | 0.71 | 14.74 | 2.64 | 2.09 | |
SE | 0.00 | 0.00 | 1.38 | 0.00 | 0.04 | 0.01 | 0.01 | 1.45 | 0.07 | 0.05 | |
BL | 0.02 | 0.01 | 0.00 | 4.69 | 0.03 | 0.00 | 0.73 | 5.49 | 0.80 | −0.75 | |
FL | 0.08 | 0.38 | 0.01 | 0.03 | 29.14 | 0.09 | 0.26 | 29.98 | 0.84 | −1.40 | |
FE | 0.17 | 0.02 | 0.00 | 0.01 | 0.27 | 7.49 | 0.05 | 8.02 | 0.53 | 0.21 | |
WE | 0.13 | 0.13 | 0.00 | 1.35 | 0.57 | 0.02 | 37.47 | 39.68 | 2.20 | 0.27 | |
Total | 1.11 | 12.65 | 1.39 | 6.24 | 31.38 | 7.81 | 39.41 | 100.00 | |||
Loss | 0.70 | 0.55 | 0.02 | 1.55 | 2.24 | 0.32 | 1.94 |
2005 | GL | UE | SE | BL | FL | FE | WE | Total | Gain | Net Change | |
---|---|---|---|---|---|---|---|---|---|---|---|
2010 | |||||||||||
GL | 0.38 | 0.02 | 0.00 | 0.01 | 0.02 | 0.00 | 0.14 | 0.58 | 0.20 | −0.43 | |
UE | 0.05 | 13.14 | 0.07 | 0.07 | 1.81 | 0.25 | 1.21 | 16.61 | 3.46 | 1.87 | |
SE | 0.00 | 0.07 | 1.21 | 0.00 | 0.09 | 0.07 | 0.01 | 1.45 | 0.24 | 0.01 | |
BL | 0.02 | 0.01 | 0.00 | 3.52 | 0.03 | 0.02 | 1.40 | 5.01 | 1.49 | −0.39 | |
FL | 0.05 | 0.97 | 0.08 | 0.06 | 27.14 | 0.40 | 0.42 | 29.12 | 1.98 | −0.91 | |
FE | 0.01 | 0.24 | 0.07 | 0.01 | 0.47 | 7.24 | 0.05 | 8.09 | 0.84 | 0.05 | |
WE | 0.12 | 0.28 | 0.01 | 1.72 | 0.47 | 0.05 | 36.48 | 39.14 | 2.65 | −0.57 | |
Total | 0.64 | 14.74 | 1.45 | 5.40 | 30.03 | 8.03 | 39.71 | 100.00 | |||
Loss | 0.26 | 1.60 | 0.24 | 1.88 | 2.88 | 0.79 | 3.23 |
2010 | GL | UE | SE | BL | FL | FE | WE | Total | Gain | Net Change | |
---|---|---|---|---|---|---|---|---|---|---|---|
2015 | |||||||||||
GL | 0.52 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.83 | 0.31 | 0.24 | |
UE | 0.04 | 16.31 | 0.04 | 0.05 | 0.81 | 0.18 | 1.25 | 18.69 | 2.38 | 2.06 | |
SE | 0.00 | 0.01 | 1.39 | 0.00 | 0.01 | 0.01 | 0.00 | 1.41 | 0.02 | −0.04 | |
BL | 0.01 | 0.01 | 0.00 | 3.66 | 0.01 | 0.01 | 0.65 | 4.36 | 0.70 | −0.70 | |
FL | 0.00 | 0.15 | 0.01 | 0.02 | 27.86 | 0.05 | 1.51 | 29.59 | 1.74 | 0.52 | |
FE | 0.00 | 0.04 | 0.01 | 0.00 | 0.13 | 7.80 | 0.02 | 7.99 | 0.19 | −0.09 | |
WE | 0.02 | 0.09 | 0.00 | 1.32 | 0.26 | 0.03 | 35.42 | 37.14 | 1.72 | −1.98 | |
Total | 0.59 | 16.63 | 1.45 | 5.05 | 29.07 | 8.08 | 39.12 | 100.00 | |||
Loss | 0.07 | 0.32 | 0.07 | 1.39 | 1.22 | 0.27 | 3.70 |
Metrics at Class Level | Wetland | Farmland | Urban | Forest | Bare Land | Shrub | Grassland | |
---|---|---|---|---|---|---|---|---|
NP | 2000 | 2070 | 2230 | 5974 | 2016 | 750 | 1017 | 606 |
2005 | 2267 | 2478 | 6019 | 1002 | 2198 | 702 | 536 | |
2010 | 2676 | 2760 | 6436 | 2457 | 788 | 1058 | 461 | |
2015 | 3053 | 3028 | 6619 | 2534 | 919 | 1085 | 494 | |
PD | 2000 | 0.14 | 0.15 | 0.40 | 0.14 | 0.05 | 0.07 | 0.04 |
2005 | 0.15 | 0.17 | 0.41 | 0.07 | 0.15 | 0.05 | 0.04 | |
2010 | 0.18 | 0.19 | 0.43 | 0.17 | 0.05 | 0.07 | 0.03 | |
2015 | 0.21 | 0.20 | 0.45 | 0.17 | 0.06 | 0.07 | 0.03 | |
MPS | 2000 | 282.35 | 208.56 | 31.43 | 57.48 | 123.43 | 20.32 | 27.26 |
2005 | 259.55 | 179.29 | 36.34 | 21.43 | 54.14 | 116.01 | 17.80 | |
2010 | 216.74 | 156.14 | 38.31 | 48.73 | 95.11 | 20.37 | 19.13 | |
2015 | 180.33 | 144.87 | 41.87 | 46.72 | 70.31 | 19.25 | 24.92 | |
LPI | 2000 | 18.86 | 6.06 | 2.33 | 1.52 | 0.93 | 0.16 | 0.24 |
2005 | 14.13 | 4.01 | 2.61 | 0.16 | 1.49 | 1.26 | 0.07 | |
2010 | 13.84 | 2.85 | 2.38 | 1.50 | 1.56 | 0.16 | 0.07 | |
2015 | 10.24 | 2.64 | 2.63 | 1.49 | 1.55 | 0.16 | 0.08 |
Landscape Level | NP | PD | MPS | LPI | SHDI |
---|---|---|---|---|---|
2000 | 14,663 | 0.99 | 101.14 | 18.86 | 1.47 |
2005 | 15,202 | 1.03 | 97.54 | 14.13 | 1.47 |
2010 | 16,636 | 1.12 | 89.12 | 13.84 | 1.47 |
2015 | 17,732 | 1.20 | 83.61 | 10.24 | 1.48 |
Axes | Axis 1 | Axis 2 | Axis 3 | Axis 4 | Total Variance |
---|---|---|---|---|---|
Eigenvalues | 0.384 | 0.227 | 0.078 | 0.071 | 1.000 |
Species-environment correlations | 0.984 | 0.946 | 0.880 | 0.714 | |
CV of species data | 38.4 | 61.1 | 68.9 | 76.0 | |
CV of species-environment relation | 47.8 | 76.1 | 85.8 | 98.0 | |
Sum of all eigenvalues | 1.000 | ||||
Sum of all canonical eigenvalues | 0.803 |
Items | Pop | Items | GDP | ||
---|---|---|---|---|---|
POPsm | Pearson correlation | 0.627 * | GDPsm | Pearson correlation | 0.886 ** |
p value | 0.022 | p value | <0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, M.; Huang, B.; Kong, L.; Ouyang, Z. Ecosystem Spatial Changes and Driving Forces in the Bohai Coastal Zone. Int. J. Environ. Res. Public Health 2019, 16, 536. https://doi.org/10.3390/ijerph16040536
Cheng M, Huang B, Kong L, Ouyang Z. Ecosystem Spatial Changes and Driving Forces in the Bohai Coastal Zone. International Journal of Environmental Research and Public Health. 2019; 16(4):536. https://doi.org/10.3390/ijerph16040536
Chicago/Turabian StyleCheng, Min, Binbin Huang, Lingqiao Kong, and Zhiyun Ouyang. 2019. "Ecosystem Spatial Changes and Driving Forces in the Bohai Coastal Zone" International Journal of Environmental Research and Public Health 16, no. 4: 536. https://doi.org/10.3390/ijerph16040536
APA StyleCheng, M., Huang, B., Kong, L., & Ouyang, Z. (2019). Ecosystem Spatial Changes and Driving Forces in the Bohai Coastal Zone. International Journal of Environmental Research and Public Health, 16(4), 536. https://doi.org/10.3390/ijerph16040536