Perceived Risk of Genetically Modified Foods Among Residents in Xi’an, China: A Structural Equation Modeling Approach
Abstract
:1. Introduction
2. The Conceptual Model
2.1. Endogenous Variables: Perceived Risk of GM Foods
2.2. Exogenous Variables
3. Methodology: Structural Equation Model (SEM)
4. Empirical Results
4.1. The Survey
4.2. Descriptive Statistics
4.3. The Estimated SEM
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Frequently Asked Questions on Genetically Modified Foods; WHO: Geneva, Switzerland, 2014; Available online: http://www.who.int/foodsafety/areas_work/food-technology/faq-genetically-modified-food/en (accessed on 10 February 2019).
- ISAAA. 2017 Global Status of Commercialized Biotech/GM Crops in 2017; ISAAA: New York, NY, USA, 2017. [Google Scholar]
- Verma, C.; Nanda, S.; Singh, R.; Singh, R.; Mishra, S. A Review on Impacts of Genetically Modified Food on Human Health. Open Nutraceut. J. 2011, 4, 3–11. [Google Scholar] [CrossRef]
- Gaskell, G.; Alum, N.; Wagner, W.; Kronberger, N.; Torgensern, H.; Hampel, J.; Bardes, J. GM foods and the misperception of risk perception. Risk Anal. 2004, 24, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Herring, R.; Paarlberg, R. The political economy of biotechnology. Ann. Rev. Res. Econ. 2016, 8, 397–416. [Google Scholar] [CrossRef]
- Shao, Q.; Punt, M.; Wesseler, J. New Plant Breeding Techniques Under Food Security Pressure and Lobbying. Front. Plant Sci. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wesseler, J.; Smart, R.D.; Thomson, J.; Zilberman, D. Foregone benefits of important food crop improvements in Sub-Saharan Africa. PLoS ONE 2017, 12, e0181353. [Google Scholar] [CrossRef] [PubMed]
- Graff, G.D.; Hochman, G.; Zilberman, D. The political economy of agricultural biotechnology policies. AgBioForum 2009, 12, 34–469. [Google Scholar]
- Wesseler, J.; Zilberman, D. The Economic Power of the Golden Rice Opposition. Environ. Dev. Econ. 2014, 19, 724–742. [Google Scholar] [CrossRef]
- Smart, R.D.; Blum, M.; Wesseler, J. EU Member States’ Voting for Authorizing Genetically Engineered Crops: A Regulatory Gridlock. Ger. J. Agric. Econ. 2015, 64, 689–701. [Google Scholar]
- Verbeke, W.; Frewer, L.J.; Scholderer, J.; De Brabander, H.F. Why consumers behave as they do with respect to food safety and risk information. Anal. Chim. Acta 2007, 586, 2–7. [Google Scholar]
- Bearth, A.; Cousin, M.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Preference 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Lobb, A.E.; Mazzocchi, M.; Traill, W.B. Modelling risk perception and trust in food safety information within the theory of planned behavior. Food Qual. Preference 2007, 18, 384–395. [Google Scholar] [CrossRef]
- Satterfield, T.; Kandlikar, M.; Beaudrie, C.E.; Conti, J.; Harthorn, B.H. Anticipating the perceived risk of nanotechnologies. Nat. Nanotechnol. 2009, 4, 752–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.; Evan, G.; Leppard, P.; Syrette, J. Reaction to genetically modified food crop and how perception of risks and benefits influence consumers’ information gathering. Risk Anal. 2004, 24, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Costa-Font, M.; Gil, J.M. Structural equation modeling of consumer acceptance of genetically modified (GM) food in the Mediterranean Europe: A cross country study. Food Qual. Preference 2009, 20, 399–409. [Google Scholar] [CrossRef]
- Van Kleef, E.; Houghton, J.R.; Krystallis, A.; Pfenning, U.; Rowe, G.; Van Dijk, H.; Van der Lans, I.A.; Frewer, L.J. Consumer evaluations of food risk management quality in Europe. Risk Anal. 2007, 27, 1565–1580. [Google Scholar] [CrossRef] [PubMed]
- Frewer, L.J.; Bergmann, K.; Brennan, M.; Lion, R.; Meertens, R.; Rowe, G.; Siegrist, M.; Vereijken, C.M. Consumer response to novel agri-food technologies: Implications for predicting consumer acceptance of emerging food technologies. Trends Food Sci. Technol. 2011, 22, 442–456. [Google Scholar] [CrossRef]
- Frewer, L.J. Consumer acceptance and rejection of emerging agrifood technologies and their applications. Eur. Rev. Agric. Econ. 2017, 1–22. [Google Scholar] [CrossRef]
- Gupta, N.; Fischer, A.R.H.; Frewer, L.J. Socio-psychological determinants of public acceptance of technologies: A review. Public Underst. Sci. 2011, 21, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The social amplification of risk: A conceptual framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef]
- Slovic, P. Trust, emotion, sex, polities, and science: Surveying the risk-assessment battlefield. Risk Anal. 1999, 19, 689–701. [Google Scholar] [CrossRef]
- Frewer, L.J.; Howard, C.; Aaron, I. Consumers acceptance of transgenic crops. Pestic. Sci. 1998, 52, 338–393. [Google Scholar] [CrossRef]
- Antonopoulou, L.; Papadas, C.T.; Targoutzidis, A. The Impact Of Socio-Demographic Factors And Political Perceptions On Consumer Attitudes Towards Genetically Modified Foods: An Econometric Investigation. Agric. Econ. Rev. 2009, 10, 89–103. [Google Scholar]
- van der Linden, S. The social-psychological determinants of climate change risk perceptions: Towards a comprehensive model. J. Environ. Psychol. 2015, 41, 112–124. [Google Scholar] [CrossRef]
- Prati, G.; Pietrantoni, L.; Zani, B. The prediction of intention to consume genetically modified food: Test of an integrated psychosocial model. Food Qual. Preference 2012, 25, 163–170. [Google Scholar] [CrossRef]
- Amin, L.; Azad, M.; Abul, K.; Gausmian, M.H.; Zulkifli, F. Determinants of Public Attitudes to Genetically Modified Salmon. PLoS ONE 2014, 9, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Bawa, A.S.; Anilakumar, K.R. Genetically modified foods: Safety, risks and public concerns—A review. J. Food Sci. Technol. 2013, 50, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Gao, Y.; Zhang, Y.; Henneberry, S. Changing attitudes toward genetically modified foods in urban China. China Agric. Econ. Rev. 2017, 9, 397–414. [Google Scholar] [CrossRef]
- ISAAA. 2016 Global Status of Commercialized Biotech/GM Crops: 2016; ISAAA: New York, NY, USA, 2016. [Google Scholar]
- Jin, J.; Wailes, E.J.; Dixon, B.L.; Nayga, R.M.; Zheng, Z. Consumer acceptance and willingness to pay for genetically modified rice in China. In Proceedings of the 2014 AAEA Annual Meeting, Minneapolis, MN, USA, 27–29 July 2014. [Google Scholar]
- De Steur, H.; Gellynck, X.; Storozhenko, S.; Liqun, G.; Lambert, W.; Van Der Straeten, D.; Viaene, J. Willing to accept and purchase genetically modified rice with high folate content in Shanxi province, China. Appetite 2010, 54, 118–125. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Qiu, H.; Huang, Z. A consumer segmentation study with regards to genetically modified food in urban China. Food Policy 2010, 35, 456–462. [Google Scholar] [CrossRef]
- Huang, J.; Hu, R.; Rozelle, S.; Pray, C. Genetically Modified Rice, Yields, and Pesticides: Assessing Farm-Level Productivity Effects in China. Econ. Dev. Cult. Chang. 2008, 56, 241–263. [Google Scholar] [CrossRef]
- Dubock, A. The politics of Golden Rice. GM Crops Food 2014, 5, 210–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.B.; Chen, H. Chinese consumers’ choice for genetically modified (GM) food: Implication for food risk policy in China. Act. Probl. Econ. 2013, 144, 258–266. [Google Scholar]
- Adeola, F.O. Nativity and Environmental Risk Perception: An Empirical Study of Native-Born and Foreign-Born Residents of the USA. Hum. Ecol. Rev. 2007, 14, 80–94. [Google Scholar]
- Kimenju, S.C.; De Groote, H. Consumer willingness to pay for genetically modified food in Kenya. Agric. Econ. 2008, 38, 35–46. [Google Scholar] [CrossRef]
- Marks, L.A.; Kalaitzandonakes, N.; Vickner, S.S. Evaluating Consumer Response to GM Foods: Some Methodological Considerations. Curr. Agric. Food Resour. Issues 2003, 4, 80–94. [Google Scholar]
- Hamilton, L.C. Concern about toxic wastes: Three demographic predictors. Sociol. Perspect. 1985, 28, 463–486. [Google Scholar] [CrossRef]
- Moerbeek, H.; Casimir, G. Gender Differences in Consumers’ Acceptance of Genetically Modified Foods. Int. J. Consum. Stud. 2005, 29, 308–318. [Google Scholar] [CrossRef]
- Simon, R.M. Gender differences in knowledge and attitude towards biotechnology. Public Underst. Sci. 2010, 19, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Brown, J.L. Public Reactions to Information about Genetically Engineered Foods: Effects of Information Formats and Male/Female Differences. Public Underst. Sci. 2007, 16, 471–488. [Google Scholar] [CrossRef]
- Veeman, M.; Adamowicz, W.; Hu, W. Risk Perceptions, Social Interactions and the Influence of Information on Social Attitudes to Agricultural Biotechnology; Project Report 05-02; AARI Project Report 2001J025; Department of Rural Economy, University of Alberta: Edmonton, AB, Canada, 2005. [Google Scholar]
- Chen, M.; Li, H. The consumer’s attitude toward genetically modified foods in Taiwan. Food Qual. Preference 2007, 18, 662–674. [Google Scholar] [CrossRef]
- Tang, J.J.; Folmer, H.; Xue, J.H. Estimation of awareness and perception of water scarcity among farmers in the Guanzhong Plain, China, by means of a structural equation model. J. Environ. Manag. 2013, 126, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.; Moran, D.; Investigating, G.M. Perceptions: A survey of anti-GM and environmental campaign group members. J. Rural Stud. 2006, 22, 29–37. [Google Scholar] [CrossRef]
- Grice, J.; Lawrence, G. Consumer surveys of biotechnology: Asking the questions until we get the answers we want OR Empowering the public to express their opinion. Presented at the Agrifood Research Network Conference, Akaroa, New Zealand, 21–24 April 2003. [Google Scholar]
- Dosman, D.M.; Adamowicz, W.L.; Hrudey, S.E. Socioeconomic Determinants of Health- and Food Safety-Related Risk Perceptions. Risk Anal. 2001, 21, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.J.; Roe, B.; Teisl, M.F. An empirical analysis of united states consumers’ concerns about eight food production and processing technologies. AgBioForum 2005, 8, 40–49. [Google Scholar]
- Boccaletti, S.; Nardellab, M. Consumer willingness to pay for pesticide-free fresh fruit and vegetables in Italy. Int. Food Agribus. Manag. Rev. 2001, 3, 297–310. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, S.; Motamed, M. Perceived risks and safety concerns about fluid milk among Chinese college students. Agric. Econ. 2010, 56, 152–166. [Google Scholar] [CrossRef]
- Oud, J.H.; Folmer, H. A structural equation approach to models with spatial dependence. Geogr. Anal. 2008, 40, 152–166. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Sörbom, D. LISREL 8: User’s Reference Guide; Scientific Software International, Inc.: Chicago, IL, USA, 2001. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. Shaanxi Statistical Yearbook; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2015.
- Hooper, D.; Coughlan, J.; Mullen, M. Structural Equation Modelling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2018; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2018.
- Jing, M. 89% of Chinese Internet Users Use Smartphone to Go Online. China Daily. Available online: http://www.chinadaily.com.cn/business/tech/2015-07/23/content_21388108.htm (accessed on 22 August 2017).
Variables | Min. | Max. | Mean | S.D. |
---|---|---|---|---|
Gender | 0 | 1 | 0.45 | 0.5 |
Age | 15 | 86 | 34.41 | 10.95 |
Education | % | Income (Yuan/Month) ≤1000 1001–3000 3001–5000 5001–7000 ≥7001 | % 21.46 37.8 32.68 5.12 2.95 | |
Primary school or none | 6.69 | |||
Middle school | 12.2 | |||
High school/Vocational School | 20.87 | |||
Junior college | 23.03 | |||
Bachelor’ degree | 31.69 | |||
Master’ degree and above | 5.57 | |||
NFSC | % | |||
Pregnant woman | 2.96 | |||
Infant younger than 6-month old | 4.44 | |||
Patient with chronic diseases | 7.73 | |||
Elderly | 26.32 | |||
Child younger than 12 | 28.13 | |||
None | 30.43 |
Statements | Notations | Totally Unlikely | Unlikely | Unsure | Likely | Totally Likely |
---|---|---|---|---|---|---|
GM foods might damage our immune system. | PR1 | 1.38% | 7.09% | 44.88% | 33.66% | 12.99% |
GM foods might cause allergic reactions. | PR2 | 1.38% | 5.12% | 52.17% | 29.92% | 11.42% |
GM foods might cause gene mutation. | PR3 | 1.97% | 9.06% | 48.23% | 27.95% | 12.80% |
GM foods might increase antibiotic-resistant diseases | PR4 | 1.38% | 6.89% | 50.59% | 28.74% | 12.40% |
GM foods might cause infertility. | PR5 | 1.57% | 6.89% | 50.00% | 29.33% | 12.20% |
Model-Fit Statistics | Initial Model | Final Model | Critical Values |
---|---|---|---|
/DF | 2.42 | 2.81 | <3 |
Goodness-of-fit index (GFI) | 0.97 | 0.97 | >0.90 |
Adjusted goodness-of-fit index (AGFI) | 0.94 | 0.94 | >0.90 |
Comparative fit index (CFI) | 0.98 | 0.98 | >0.90 |
Incremental fit index (IFI) | 0.98 | 0.98 | >0.90 |
Root mean square error of approximation (RMSEA) | 0.053 | 0.057 | <0.05 |
Standardized root mean square residual (SRMR) | 0.024 | 0.026 | <0.08 |
Initial Model | Final Model | |||||
---|---|---|---|---|---|---|
Indicators | Standardized Coefficients | S.E. | R2 | Standardized Coefficients | S.E. | R2 |
PR1 | 0.83 | - | 0.9 | 0.83 | - | 0.69 |
PR2 | 0.83 *** | 0.05 | 0.70 | 0.83 *** | 0.05 | 0.70 |
PR3 | 0.77 *** | 0.05 | 0.59 | 0.77 *** | 0.05 | 0.59 |
PR4 | 0.73 *** | 0.05 | 0.53 | 0.73 *** | 0.05 | 0.53 |
PR5 | 0.76 *** | 0.05 | 0.58 | 0.76 *** | 0.05 | 0.58 |
Perceived Risks (PR) | Initial Model | Final Model |
---|---|---|
Gender | 0.15 *** (0.05) | 0.15 *** (0.05) |
Age | 0.22 *** (0.06) | 0.21 *** (0.06) |
Education | 0.10 (0.06) | 0.11 * (0.06) |
Income | 0.10** (0.05) | 0.11 ** (0.05) |
Family size | −0.07 (0.05) | |
NFSC (Needs for special care) | 0.13 ** (0.05) | 0.10 ** (0.05) |
Health condition | 0.02 (0.05) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xue, J.; Folmer, H.; Hussain, K. Perceived Risk of Genetically Modified Foods Among Residents in Xi’an, China: A Structural Equation Modeling Approach. Int. J. Environ. Res. Public Health 2019, 16, 574. https://doi.org/10.3390/ijerph16040574
Zhang W, Xue J, Folmer H, Hussain K. Perceived Risk of Genetically Modified Foods Among Residents in Xi’an, China: A Structural Equation Modeling Approach. International Journal of Environmental Research and Public Health. 2019; 16(4):574. https://doi.org/10.3390/ijerph16040574
Chicago/Turabian StyleZhang, Wenjing, Jianhong Xue, Henk Folmer, and Khadim Hussain. 2019. "Perceived Risk of Genetically Modified Foods Among Residents in Xi’an, China: A Structural Equation Modeling Approach" International Journal of Environmental Research and Public Health 16, no. 4: 574. https://doi.org/10.3390/ijerph16040574
APA StyleZhang, W., Xue, J., Folmer, H., & Hussain, K. (2019). Perceived Risk of Genetically Modified Foods Among Residents in Xi’an, China: A Structural Equation Modeling Approach. International Journal of Environmental Research and Public Health, 16(4), 574. https://doi.org/10.3390/ijerph16040574