Estimating Ground-Level Concentrations of Multiple Air Pollutants and Their Health Impacts in the Huaihe River Basin in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Ground-Based Measurements
2.2.2. Satellite Data
- Aerosol Optical Depth
- NO2
- SO2
2.2.3. Meteorological Data
2.2.4. Population Data
2.3. Methods
2.3.1. Geographically Weighted Regression
2.3.2. Health Impact Assessment
3. Results
3.1. GWR Model Results and Verification
3.2. Spatial Distribution of Ground-Level Air Pollutants
3.2.1. Spatial Distribution of Ground-Level PM10 and PM2.5
3.2.2. Spatial Distribution of Ground-Level NO2 and SO2
3.3. Health Impact Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, S.H.; Hua, S.B.; Wang, K.; Qiu, P.P.; Liu, H.J.; Wu, B.B.; Shao, P.Y.; Liu, X.Y.; Wu, Y.M.; Xue, Y.F.; et al. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis. Sci. Total Environ. 2018, 624, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health-Glob. 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Requia, W.J.; Adams, M.D.; Arain, A.; Papatheodorou, S.; Koutrakis, P.; Mahmoud, M. Global Association of Air Pollution and Cardiorespiratory Diseases: A Systematic Review, Meta-Analysis, and Investigation of Modifier Variables. Am. J. Public Health 2018, 108, S123–S130. [Google Scholar] [CrossRef] [PubMed]
- Aunan, K.; Pan, X.C. Exposure-response functions for health effects of ambient air pollution applicable for China—A meta-analysis. Sci. Total Environ. 2004, 329, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Madaniyazi, L.; Guo, Y.M.; Chen, R.J.; Kan, H.D.; Tong, S.L. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities. Environ. Pollut. 2016, 208, 40–47. [Google Scholar] [CrossRef]
- Abe, K.C.; Miraglia, S.G.E. Health Impact Assessment of Air Pollution in Sao Paulo, Brazil. Int. J. Environ. Res. Public Health 2016, 13, 694. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Luo, L.W.; Song, C.; Yin, H.; Yang, J.T. Spatiotemporal Assessment of PM2.5-Related Economic Losses from Health Impacts during 2014–2016 in China. Int. J. Environ. Res. Public Health 2018, 15, 1278. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Wang, X.; Meng, X.; Hua, J.; Zhou, Z.J.; Chen, B.H.; Kan, H.D. Communicating air pollution-related health risks to the public: An application of the Air Quality Health Index in Shanghai, China. Environ. Int. 2013, 51, 168–173. [Google Scholar] [CrossRef]
- Guo, P.; Feng, W.R.; Zheng, M.R.; Lv, J.Y.; Wang, L.; Liu, J.; Zhang, Y.H.; Luo, G.F.; Zhang, Y.T.; Deng, C.Y.; et al. Short-term associations of ambient air pollution and cause-specific emergency department visits in Guangzhou, China. Sci. Total Environ. 2018, 613, 306–313. [Google Scholar] [CrossRef]
- Chen, L.; Shi, M.S.; Gao, S.; Li, S.H.; Mao, J.; Zhang, H.; Sun, Y.L.; Bai, Z.P.; Wang, Z.L. Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environ. Pollut. 2017, 221, 311–317. [Google Scholar] [CrossRef]
- Goudarzi, G.; Daryanoosh, S.M.; Godini, H.; Hopke, P.K.; Sicard, P.; De Marco, A.; Rad, H.D.; Harbizadeh, A.; Jahedi, F.; Mohammadi, M.J.; et al. Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah. Public Health 2017, 148, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Song, C.B.; He, J.J.; Wu, L.; Jin, T.S.; Chen, X.; Li, R.P.; Ren, P.P.; Zhang, L.; Mao, H.J. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Huang, W.; Wong, C.M.; Wang, Z.S.; Thach, T.Q.; Chen, B.H.; Kan, H.D.; Grp, C.C. Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: The China air pollution and health effects study (CAPES). Environ. Res. 2012, 118, 101–106. [Google Scholar] [CrossRef]
- Fang, D.; Wang, Q.G.; Li, H.M.; Yu, Y.Y.; Lu, Y.; Qian, X. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China. Sci. Total Environ. 2016, 569, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Cheng, T.H.; Gu, X.F.; Wang, Y.; Chen, H.; Bao, F.W.; Shi, S.Y.; Xu, B.R.; Wang, W.N.; Zuo, X.; et al. Assessment of PM2.5 concentrations and exposure throughout China using ground observations. Sci. Total Environ. 2017, 601, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.; Ma, M.; Chang, N.-B.; Gao, W. Spatiotemporal trend analysis for fine particulate matter concentrations in China using high-resolution satellite-derived and ground-measured PM2.5 data. J. Environ. Manag. 2019, 233, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Hoek, G.; van Vliet, P.; Meliefste, K.; Fischer, P.; Gehring, U.; Heinrich, J.; Cyrys, J.; Bellander, T.; Lewne, M.; et al. Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems. Epidemiology 2003, 14, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.E.; Suh, H.H. Fine particles and coarse particles: Concentration relationships relevant to epidemiologic studies. J. Air Waste Manag. 1997, 47, 1238–1249. [Google Scholar] [CrossRef]
- Evans, J.; van Donkelaar, A.; Martin, R.V.; Burnett, R.; Rainham, D.G.; Birkett, N.J.; Krewski, D. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ. Res. 2013, 120, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.C.; Lin, C.Q.; Li, Y.; Yao, T.; Fung, J.C.H.; Lau, A.K.H. Assessment of health burden caused by particulate matter in southern China using high-resolution satellite observation. Environ. Int. 2017, 98, 160–170. [Google Scholar] [CrossRef]
- Yu, T.; Wang, W.; Ciren, P.; Zhu, Y. Assessment of human health impact from exposure to multiple air pollutants in China based on satellite observations. Int. J. Appl. Earth Obs. 2016, 52, 542–553. [Google Scholar] [CrossRef]
- Gu, J.B.; Chen, L.F.; Yu, C.; Li, S.S.; Tao, J.H.; Fan, M.; Xiong, X.Z.; Wang, Z.F.; Shang, H.Z.; Su, L. Ground-Level NO2 Concentrations over China Inferred from the Satellite OMI and CMAQ Model Simulations. Remote Sens.-Basel 2017, 9, 519. [Google Scholar] [CrossRef]
- He, H.; Li, C.; Loughner, C.P.; Li, Z.Q.; Krotkov, N.A.; Yang, K.; Wang, L.; Zheng, Y.F.; Bao, X.D.; Zhao, G.Q.; et al. SO2 over central China: Measurements, numerical simulations and the tropospheric sulfur budget. J. Geophys. Res.-Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Anand, J.S.; Monks, P.S. Estimating daily surface NO2 concentrations from satellite data—A case study over Hong Kong using land use regression models. Atmos. Chem. Phys. 2017, 17, 8211–8230. [Google Scholar] [CrossRef]
- Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.F.; Fu, Q.Y.; Zhang, Y.; Liu, Y.; Kan, H.D. A land use regression model for estimating the NO2 concentration in shanghai, China. Environ. Res. 2015, 137, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Z.; Jia, H.F.; Huang, J.F.; Zhang, Y.Y. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.L.; Zhang, L.F.; Li, Z.J.; Chen, D.; Zhang, G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens. Environ. 2015, 168, 276–285. [Google Scholar] [CrossRef]
- Guo, Y.X.; Tang, Q.H.; Gong, D.Y.; Zhang, Z.Y. Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sens. Environ. 2017, 198, 140–149. [Google Scholar] [CrossRef]
- Qin, K.; Rao, L.L.; Xu, J.; Bai, Y.; Zou, J.H.; Hao, N.; Li, S.S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens.-Basel 2017, 9, 950. [Google Scholar] [CrossRef]
- Asl, F.B.; Leili, M.; Vaziri, Y.; Arian, S.S.; Cristaldi, A.; Conti, G.O.; Ferrante, M. Health impacts quantification of ambient air pollutants using AirQ model approach in Hamadan, Iran. Environ. Res. 2018, 161, 114–121. [Google Scholar]
- Sun, P.; Sun, Y.Y.; Zhang, Q.; Yao, R. Hydrological Processes in the Huaihe River Basin, China: Seasonal Variations, Causes and Implications. Chin. Geogr. Sci. 2018, 28, 636–653. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.X.; Qin, K.; Zhang, Y.F.; Shen, Y.Y.; Zhou, Y. A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens.-Basel 2016, 8, 262. [Google Scholar] [CrossRef]
- Bai, K.X.; Chang, N.B.; Yu, H.J.; Gao, W. Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations. Remote Sens. Environ. 2016, 182, 150–168. [Google Scholar] [CrossRef]
- Levelt, P.F.; Van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Xu, J.; Xie, P.H.; Si, F.Q.; Dou, K.; Li, A.; Liu, Y.; Liu, W.Q. Retrieval of Tropospheric NO2 by Multi Axis Differential Optical Absorption Spectroscopy. Spectrosc. Spectr. Anal 2010, 30, 2464–2469. [Google Scholar]
- Hong, H.; Lee, H.; Kim, J.; Jeong, U.; Ryu, J.; Lee, D.S. Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals. Remote Sens.-Basel 2017, 9, 208. [Google Scholar] [CrossRef]
- Wang, Y.; Beirle, S.; Lampel, J.; Koukouli, M.; De Smedt, I.; Theys, N.; Li, A.; Wu, D.X.; Xie, P.H.; Liu, C.; et al. Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: Investigation of the effects of priori profiles and aerosols on the satellite products. Atmos. Chem. Phys 2017, 17, 5007–5033. [Google Scholar] [CrossRef]
- Heckel, A.; Kim, S.W.; Frost, G.J.; Richter, A.; Trainer, M.; Burrows, J.P. Influence of low spatial resolution a priori data on tropospheric NO2 satellite retrievals. Atmos. Meas. Tech. 2011, 4, 1805–1820. [Google Scholar] [CrossRef]
- Bucsela, E.J.; Celareier, E.A.; Gleason, J.L.; Krotkov, N.A.; Lamsal, L.N.; Marchenko, S.V.; Swartz, W.H. OMNO2 Readme Document Data Product Version 3.0. Available online: https://acdisc.gesdisc.eosdis.nasa.gov/data//Aura_OMI_Level3/OMNO2d.003/doc/README.OMNO2.pdf (accessed on 20 April 2018).
- Jiang, J. Monitoring and Emission Estimation of SO2 Concentration in China Based on OMI Satellite Data and Numerical Simulation. Ph.D. Thesis, Nanjing Normal University, Nanjing, China, 2012. [Google Scholar]
- Yang, K.; Krotkov, N.A.; Krueger, A.J.; Carn, S.A.; Bhartia, P.K.; Levelt, P.F. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations. J. Geophys. Res.-Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McClure, B.; Dickerson, R.R.; Carn, S.A.; Li, C.; Bhartia, P.K.; Yang, K.; Krueger, A.J.; Li, Z.Q.; Levelt, P.F.; et al. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China. J. Geophys. Res.-Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Hu, X.F.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L. China Population spatial Distribution Kilometer Grid Dataset. Data registration and publishing system of Resource and Environmental Science Data Center of the Chinese Academy of Sciences. Available online: http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121101 (accessed on 29 July 2018).
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Boots, B. Geographically weighted regression: The analysis of spatially varying relationships. Int. J. Geogr. Inf. Sci. 2003, 17, 717–719. [Google Scholar]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.L.; Li, J.L.; Zhao, A.; Fu, H.B.; Wu, Y.; Zhang, L.W.; Kong, L.D.; Chen, J.M. Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014–2016. Atmos. Environ. 2017, 161, 235–246. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.L.; Zhang, L.F.; Li, Y.; Pan, X.B.; Wang, W.Q. National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD. Remote Sens.-Basel 2016, 8, 184. [Google Scholar] [CrossRef]
- Glorennec, P.; Monroux, F. Health impact assessment of PM10 exposure in the city of Caen, France. J. Toxicol. Environ. Health A 2007, 70, 359–364. [Google Scholar] [CrossRef]
- Matus, K.; Nam, K.M.; Selin, N.E.; Lamsal, L.N.; Reilly, J.M.; Paltsev, S. Health damages from air pollution in China. Glob. Environ. Chang. 2012, 22, 55–66. [Google Scholar] [CrossRef]
- Cheng, Z.; Jiang, J.K.; Fajardo, O.; Wang, S.X.; Hao, J.M. Characteristics and health impacts of particulate matter pollution in China (2001–2011). Atmos. Environ. 2013, 65, 186–194. [Google Scholar] [CrossRef]
- Krzyzanowski, M. Global update of WHO air quality guidelines. Epidemiology 2006, 17, S80. [Google Scholar] [CrossRef]
- Zhong, M.T.; Shi, H.; Wang, H.X.; Yang, Z.; Zuo, N. Meta-analysis of air pollutant exposure-response relationship and its application in health impact assessment of exposure to air pollutants in Xi’an. Environ. Sci. Technol. 2017, 40, 171–178. [Google Scholar]
- Xie, P.; Liu, X.Y.; Liu, Z.R. Impact of exposure to air pollutants on human health effects in Pearl River Delta. China Environ. Sci. 2010, 30, 997–1003. [Google Scholar]
- Cao, J.J.; Xu, H.M.; Xu, Q.; Chen, B.H.; Kan, H.D. Fine Particulate Matter Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City. Environ. Health Perspect. 2012, 120, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Research on Prediction, Forewarning and Health Effects of Atmospheric Pollution in Main Cities of China. Master’s Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Song, Y.S.; Wang, X.K.; Maher, B.A.; Li, F.; Xu, C.Q.; Liu, X.S.; Sun, X.; Zhang, Z.Y. The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China. J. Clean. Prod. 2016, 112, 1312–1318. [Google Scholar] [CrossRef]
- Song, C.B.; Wu, L.; Xie, Y.C.; He, J.J.; Chen, X.; Wang, T.; Lin, Y.C.; Jin, T.S.; Wang, A.X.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ying, Q.; Hu, J.L.; Gao, Y.; Yang, Y.; Wang, D.X.; Zhang, H.L. Spatial and temporal variations in criteria air pollutants in three typical terrain regions in Shaanxi, China, during 2015. Air Qual. Atmos. Health 2018, 11, 95–109. [Google Scholar] [CrossRef]
AOD | Days with Valid Observations | Effective Pixel Coverage | Sample Size, N | Correlation Coefficient, R |
---|---|---|---|---|
MYDO4 | 366 | 23.93% | 133 | 0.81 |
MOD04 | 357 | 26.22% | 147 | 0.79 |
Merged | 366 | 33.46% | 196 | 0.83 |
Air Pollutants | (µg/m3) | (%) for Respiratory Disease (95% Confidence Interval) | (%) for Cardiovascular Disease (95% Confidence Interval) |
---|---|---|---|
PM2.5 | 10 | 0.056 (0.039, 0.081) | 0.075 (0.045, 0.125) |
PM10 | 20 | 0.043 (0.023, 0.080) | 0.054 (0.032, 0.091) |
NO2 | 40 | 0.183 (0.108, 0.310) | 0.115 (0.083, 0.161) |
SO2 | 20 | 0.083 (0.021, 0.322) | 0.127 (0.093, 0.172) |
Air Pollutants | Modeling | Verification | ||
---|---|---|---|---|
N | R2 | N | R2 | |
NO2 | 3136 | 0.75 | 1344 | 0.72 |
SO2 | 3067 | 0.79 | 1311 | 0.77 |
PM10 | 3016 | 0.84 | 1293 | 0.81 |
PM2.5 | 3016 | 0.83 | 1293 | 0.82 |
Air Pollutants | Increased Respiratory Deaths | Increased Cardiovascular Deaths |
---|---|---|
NO2 | 546 | 1221 |
SO2 | 1788 | 9666 |
PM10 | 10,595 | 46,954 |
PM2.5 | 8364 | 39,524 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Bai, K.; Zhou, Y.; Shi, R.; Ren, H. Estimating Ground-Level Concentrations of Multiple Air Pollutants and Their Health Impacts in the Huaihe River Basin in China. Int. J. Environ. Res. Public Health 2019, 16, 579. https://doi.org/10.3390/ijerph16040579
Zhang D, Bai K, Zhou Y, Shi R, Ren H. Estimating Ground-Level Concentrations of Multiple Air Pollutants and Their Health Impacts in the Huaihe River Basin in China. International Journal of Environmental Research and Public Health. 2019; 16(4):579. https://doi.org/10.3390/ijerph16040579
Chicago/Turabian StyleZhang, Deying, Kaixu Bai, Yunyun Zhou, Runhe Shi, and Hongyan Ren. 2019. "Estimating Ground-Level Concentrations of Multiple Air Pollutants and Their Health Impacts in the Huaihe River Basin in China" International Journal of Environmental Research and Public Health 16, no. 4: 579. https://doi.org/10.3390/ijerph16040579
APA StyleZhang, D., Bai, K., Zhou, Y., Shi, R., & Ren, H. (2019). Estimating Ground-Level Concentrations of Multiple Air Pollutants and Their Health Impacts in the Huaihe River Basin in China. International Journal of Environmental Research and Public Health, 16(4), 579. https://doi.org/10.3390/ijerph16040579