Cigarette Smoking Blunts Exercise-Induced Heart Rate Response among Young Adult Male Smokers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Testing Protocol
2.4. Heart Rate Variability (HRV)
2.5. A Maximal Multistage 20 m Shuttle Run Test (MMST)
2.6. Time-to-Exhaustion Analyses
2.7. Statistical Analyses
2.8. Institutional Review
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Electronic Cigarettes (e-Cigarettes) or Electronic Nicotine Delivery System; Tobacco Free Initiative (TFI) Programmers; Statement Revised on 30 March 2015; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/tobacco/communications/statements/eletronic_cigarettes/en/ (accessed on 27 March 2017).
- Ezzati, M.; Henley, S.J.; Thun, M.J.; Lopez, A.D. Role of smoking in global and regional cardiovascular mortality. Circulation 2005, 112, 489–497. [Google Scholar] [CrossRef] [PubMed]
- European Society of Cardiology. Position Paper on the Tobacco Product Directive. Sophia Antipolis Cedex-France. 2013. Available online: http://escardio.org.about/documents/tobacco-products-directive-posisition-paper.pdf (accessed on 27 March 2017).
- Papathanasiou, G.; Georgakopoulos, D.; Papageorgiou, E.; Zerva, E.; Michalis, L.; Kalfakakou, V.; Evangelou, A. Effects of smoking on heart at rest and during exercise, and heart rate recovery, in young adults. Hell. J. Cardiol. 2013, 54, 168–177. [Google Scholar]
- Benowitz, N.L. Cigarette smoking and cardiovascular disease: Pathophysiology and implications for treatment. Prog. Cardiovasc. Dis. 2003, 1, 91–111. [Google Scholar] [CrossRef]
- Hawari, F.I.; Obiedat, N.A.; Ayub, H.; Ghonimat, I.; Eissenberg, T.; Dawahrah, S.; Beano, H. The acute effects of water pipe smoking on lung function and exercise capacity in a pilot study of healthy participants. Inhal. Toxiol. 2013, 25, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Csiszar, A.; Podlustsky, A.; Wolin, M.S.; Losonczy, G.; Pacher, P.; Ungvari, Z. Oxidative stress and accelerated vascular aging: Implication for cigarette smoking. Front. Biosci. 2009, 14, 3128–3144. [Google Scholar] [CrossRef]
- Talukder, M.A.; Johnson, W.M.; Varadharaj, S.; Lian, J.; Kearns, P.N.; El-Mahdy, M.A. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H388–H399. [Google Scholar] [CrossRef]
- Taha, N.M.; Wahab, M.A.A.; Amin, A.S. Acute effects of cigarette smoking in habitual smokers, a focus on endothelial function. Egypt. Heart J. 2013, 65, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Hashizume, K.; Kusaka, Y.; Kawahara, K. Effect of cigarette smoking on endurance performance levels of 16-to-19-year-old males. Environ. Health Prev. Med. 1999, 4, 75–80. [Google Scholar] [CrossRef]
- Rotstein, A.; Sagiv, M. Acute effect of cigarette smoking on physiologic response to graded exercise. Int. J. Sports Med. 1986, 7, 322–324. [Google Scholar] [CrossRef]
- Etter, J.F.; Bullen, C.; Fluris, A.D.; Laugesen, M.; Eissenberg, T. Electronic nicotine delivery systems: A research agenda. Tob. Control 2011, 20, 243–248. [Google Scholar] [CrossRef]
- Flouris, A.D.; Oikonomou, D.N. Electronic cigarettes: Miracle or menace? Br. Med. J. 2010, 340, c311. [Google Scholar] [CrossRef] [PubMed]
- WHO. Electronic Nicotine Delivery Systems and Electronic Non-Nicotine Delivery Systems (ENDS/ENNDS). Tobacco Free Initiative (TFI). Statement 23 January 2017. Available online: http://www.who.int/tobacco/communications/statements/eletronic-cigarettes-january-2017/en/ (accessed on 27 March 2017).
- Cahill, K.; Stevens, S.; Parera, R.; Lancaster, T. Pharmacological interventions for smoking cessation: An overview and network meta-analysis. Cochrane Database Syst. Rev. 2013, CD009329. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Favaloro, E.J.; Meschi, T.; Mattiuzzi, C.; Borghi, L.; Cervellin, G. E-cigarettes and cardiovascular risk: Beyond science and mysticism. In Seminars in Thrombosis & Hemostasis; Thieme Medical Publisher: New York, NY, USA, 2014; Volume 40, pp. 60–65. [Google Scholar]
- Fogt, D.L.; Levi, M.A.; Rickards, C.A.; Stelly, S.P.; Cooke, W.H. Effect of acute vaporized nicotine in non tobacco users at rest and during exercise. Int. J. Exerc. Sci. 2016, 9, 607–615. [Google Scholar]
- World Health Organization. WHO Regulatory Consultation on the Safety of Electronic Nicotine Delivery Devices (ENDS); World Health Organization: Geneva, Switzerland, 2010; Available online: www.who.int/tobacco/communication/statement/eletronic_cigarettes/en (accessed on 27 March 2017).
- Farsalinos, K.E.; Romagna, G.; Tsiapras, D.; Kyrzopoulos, S.; Voudris, V. Evaluating nicotine levels selection and patterns of electronic cigarette use in a group of “vapers” who had achieved complete substitution of smoking. Subst. Abuse Res. Treat. 2013, 7, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Bianchim, M.S.; Sperandio, E.F.; Martinhão, G.S.; Matheus, A.C.; Lauria, V.T.; Da Silva, R.P.; Spadari, R.C.; Gagliardi, A.R.; Arantes, R.L.; Romiti, M.; et al. Correlation between heart rate variability and pulmonary function adjusted by confounding factors in healthy adults. Braz. J. Med. Biol. Res. 2016, 49. [Google Scholar] [CrossRef] [Green Version]
- Camm, A.J.M.M.; Malik, M.; Bigger, J.T.G.B.; Breithardt, G.; Cerutti, S.; Cohen, R.; Coumel, P.; Fallen, E.; Kennedy, H.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Paradisis, G.P.; Zacharogiannis, E.; Mandila, D.; Smirtiotou, A.; Argeitaki, P.; Cooke, C.B. Multi-stage 20-m shuttle run fitness test, maximal oxygen uptake and velocity at maximal oxygen uptake. J. Hum. Kinet. 2014, 41, 81–87. [Google Scholar] [CrossRef]
- Leger, L.A.; Lambert, J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ramsbottom, R.; Brewer, J.; Williams, C. A progressive shuttle run test to estimate maximal oxygen uptake. Br. J. Sports Med. 1988, 22, 141–144. [Google Scholar] [CrossRef]
- Grant, S.; Corbett, K.; Amjad, A.M.; Wilson, J.; Aitchison, T. A comparison of methods of predicting maximum oxygen uptake. Br. J. Sports Med. 1995, 29, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, H.; Fletcher, J.; Rosengarten, T.H.; Coote, J.H. Cardiac vagal tone, exercise performance and the effect of respiratory training. Eur. J. Appl. Physiol. 2005, 94, 681–689. [Google Scholar] [CrossRef]
- Klausen, K.; Andersen, C.; Nandrup, S. Acute effects of cigarette smoking and inhalation of carbon monoxide during maximal exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 51, 371–379. [Google Scholar] [CrossRef]
- Morton, A.R.; Holmik, E.V. The effects of cigarette smoking on maximal oxygen consumption and selected physiological responses of elite team sportsmen. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 53, 348–352. [Google Scholar] [CrossRef]
- Da Silva, V.P.; de Oliveira, N.A.; Silveira, H.; Mello, R.G.T.; Deslandes, A.C. Heart rate variability indexes as a marker of chronic adaptation in athletes: A systematic review. Ann. Noninvasive Electrocardiol. 2015, 20, 108–118. [Google Scholar] [CrossRef]
- Edvinsson, M.L.; Anderson, S.E.; Xu, C.B.; Edvinsson, L. Cigarette smoking leads to reduced relaxant responses of the cutaneous microcirlculation. Vasc. Health Risk Manag. 2008, 4, 699–704. [Google Scholar]
- Astrand, P.O.; Rodahl, K.; Dahl, H.A.; Stromme, S.B. Textbook of Work Physiology: Physiological Basis of Exercise; Human Kinetics: Champagne, IL, USA, 2003; pp. 134–176. [Google Scholar]
- Lauer, M.S. Chronotropic incompetence: Ready for prime time. J. Am. Coll. Cardiol. 2004, 44, 431–432. [Google Scholar] [CrossRef]
- Huei, M.J. The effects of smoking on exercise performance. Sports Med. 1996, 22, 355–359. [Google Scholar] [CrossRef]
- Druyan, A.; Atias, D.; Ketko, I.; Cohen-Sivan, Y.; Heled, Y. The effects of smoking and nicotine ingestion on exercise heat tolerance. J. Basic Clin. Physiol. Pharmacol. 2016, 28, 167–170. [Google Scholar] [CrossRef]
- Goerre, S.; Staehli, C.; Shaw, S.; Luscher, T.F. Effect of cigarette smoking and nicotine on plasma endothelin-1 levels. J. Cardiovasc. Pharmacol. 1995, 26 (Suppl. 3), S236–S238. [Google Scholar] [CrossRef]
Variable | Mean |
---|---|
Age (year) | 23.2 ± 1.7 |
Height (m) | 1.7 ± 0.1 |
Weight (kg) | 63.3 ± 9.3 |
Body mass index (BMI) (kg/m2) | 21.8 ± 3.0 |
Cigarette/day | 9.2 ± 1.3 |
Duration of smoking (year) | 3.5 ± 0.8 |
Variable | C | 3EC | 3TC |
---|---|---|---|
HR (bpm) | |||
Pre-smoking | 78 ± 12 | 79 ± 9 | 80 ± 11 c |
Post-smoking | 78 ± 12 | 80 ± 12 | 85 ± 11 * |
Post-exercise | 178 ± 15 b,c | 170 ± 18 b,c | 168 ± 23 b,c |
Change by exercise | +100 | +91 | +88 |
SBP (mmHg) | |||
Pre-smoking | 117 ± 10 | 119 ± 9 | 120 ± 7 |
Post-smoking | 116 ± 12 | 117 ± 11 | 121 ± 10 |
Post-exercise | 149 ± 15 b,c | 146 ± 16 b,c | 145 ± 13 b,c |
Change by exercise | +32 | +27 | +25 |
DBP (mmHg) | |||
Pre-smoking | 76 ± 8 | 78 ± 9 | 77 ± 5 |
Post-smoking | 76 ± 10 | 78 ± 9 | 83 ± 8 * |
Post-exercise | 79 ± 9 | 77 ± 10 | 77 ± 13 |
Change by Exercise | +3 | −1 | 0 |
Variable | C | 3EC | 3TC |
---|---|---|---|
Predicted VO2max (mL/kg/min) | 37.7 ± 8.4 | 37.5 ± 8.7 | 36.3 ± 8.0 |
Time to exhaustion (s) | 398.5 ± 151.3 | 399.3 ± 160.7 | 380.8 ± 149.9 |
Variables | C | 3EC | 3TC |
---|---|---|---|
SDNN (ms) | 13.3 ± 4.5 | 18.2 ± 10.4 * | 18.8 ± 12.5 * |
RMSSD (ms) | 12.8 ± 5.9 | 19.2 ± 11.9 * | 18.8 ± 12.8 * |
HR Maximum (1/min) | 190.7 ± 13.1 | 179.8 ± 20.4 | 173.2 ± 35.1 * |
HR Minimum (1/min) | 83.4 ± 12.1 | 84.8 ± 20.0 | 87.0 ± 13.0 |
HR Mean (1/min) | 151.9 ± 13.4 | 134.9 ± 27.3 * | 140.0 ± 27.4 |
Peak VLF (ms2) | 0.035 ± 0.005 | 0.035 ± 0.005 | 0.037 ± 0.005 |
Peak LF (ms2) | 0.05 ± 0.012 | 0.06 ± 0.032 | 0.06 ± 0.028 |
Peak HF (ms2) | 0.19 ± 0.044 | 0.21 ± 0.068 | 0.23 ± 0.078 |
Power LF/HF | 3.46 ± 3.3 | 2.43 ± 2.4 | 2.86 ± 2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumartiningsih, S.; Lin, H.-F.; Lin, J.-C. Cigarette Smoking Blunts Exercise-Induced Heart Rate Response among Young Adult Male Smokers. Int. J. Environ. Res. Public Health 2019, 16, 1032. https://doi.org/10.3390/ijerph16061032
Sumartiningsih S, Lin H-F, Lin J-C. Cigarette Smoking Blunts Exercise-Induced Heart Rate Response among Young Adult Male Smokers. International Journal of Environmental Research and Public Health. 2019; 16(6):1032. https://doi.org/10.3390/ijerph16061032
Chicago/Turabian StyleSumartiningsih, Sri, Hsin-Fu Lin, and Jung-Charng Lin. 2019. "Cigarette Smoking Blunts Exercise-Induced Heart Rate Response among Young Adult Male Smokers" International Journal of Environmental Research and Public Health 16, no. 6: 1032. https://doi.org/10.3390/ijerph16061032
APA StyleSumartiningsih, S., Lin, H.-F., & Lin, J.-C. (2019). Cigarette Smoking Blunts Exercise-Induced Heart Rate Response among Young Adult Male Smokers. International Journal of Environmental Research and Public Health, 16(6), 1032. https://doi.org/10.3390/ijerph16061032