Combined Toxicity of Nitro-Substituted Benzenes and Zinc to Photobacterium Phosphoreum: Evaluation and QSAR Analysis
Abstract
:1. Introduction
2. Materials and Method
2.1. Chemicals
2.2. Bioassay
2.3. Calculation of Descriptors
2.4. Statistical Analysis of QSAR Models
2.5. Evaluation Methods of Joint Toxicity
3. Results and Discussion
3.1. Single Toxicity of Nitro-Substituted Benzenes and Zn
3.2. Evaluation of Joint Toxicity of Nitro-Substituted Benzenes and Zn
3.3. QSAR Analysis of the Joint Toxicity of Nitro-Substituted Benzenes and Zn
n = 11, R2 = 0.933, SE = 0.163, F = 55.554, p < 0.001
n = 11, R2 = 0.856, SE = 0.232, F = 53.318, p < 0.001
n = 11, R2 = 0.937, SE = 0.201, F = 133.351, p < 0.001
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krzykwa, J.C.; Saeid, A.; Jeffries, M.K.S. Identifying sublethal endpoints for evaluating neurotoxic compounds utilizing the fish embryo toxicity test. Ecotoxicol. Environ. Saf. 2019, 170, 521–529. [Google Scholar] [CrossRef]
- Wang, S.; Yan, L.C.; Zheng, S.S.; Li, T.T.; Fan, L.Y.; Huang, T.; Li, C.; Zhao, Y.H. Toxicity of some prevalent organic chemicals to tadpoles and comparison with toxicity to fish based on mode of toxic action. Ecotoxicol. Environ. Saf. 2019, 167, 138–145. [Google Scholar] [CrossRef]
- Wang, X.H.; Yu, Y.; Huang, T.; Qin, W.C.; Su, L.M.; Zhao, Y.H. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level. PLoS ONE 2016, 11, e0150028. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Zhang, X.J.; Yang, Y.; Huang, T.; Li, C.; Su, L.M.; Zhao, Y.H.; Cronin, M.T.D. Development of thresholds of excess toxicity for environmental species and their application to identification of modes of acute toxic action. Sci. Total Environ. 2018, 616–617, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.M.D.; Letícia, M.R.; Faria, D.B.G.D. The intake of water containing a mix of pollutants at environmentally relevant concentrations leads to defensive response deficit in male C57BL/6J mice. Sci. Total Environ. 2018, 628–629, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Zhou, Q.X.; Luo, Y.; Yang, G.; Zhou, T. Joint action and lethal levels of toluene, ethylbenzene, and xylene on midge (Chironomus plumosus) larvae. Environ. Sci. Pollut. Res. 2013, 20, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, R.; Nendza, M.; Schüürmann, G. Mixture toxicity and its modeling by structure-activity relationships. Environ. Toxicol. Chem. 2003, 22, 1900–1915. [Google Scholar] [CrossRef]
- He, H.; Chen, G.; Yu, J.; He, J.; Huang, X.; Li, S.; Guo, Q.; Yu, T.; Li, H. Individual and joint toxicity of three chloroacetanilide herbicides to freshwater Cladoceran Daphnia carinata. Bull. Environ. Contam. Toxicol. 2013, 90, 344–350. [Google Scholar] [CrossRef]
- Küpper, H.; Andresen, E. Mechanisms of metal toxicity in plants. Metallomics 2016, 8, 269–285. [Google Scholar] [CrossRef]
- Otitoloju, A.A. Relevance of joint action toxicity evaluations in setting realistic environmental safe limits of heavy metals. J. Environ. Manag. 2003, 67, 121–128. [Google Scholar] [CrossRef]
- Shaw, J.R.; Dempsey, T.D.; Chen, C.Y.; Hamilton, J.W.; Folt, C.L. Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids. Environ. Toxicol. Chem. 2006, 25, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Cooper, N.L.; Bidwell, J.R.; Kumar, A. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicol. Environ. Saf. 2009, 72, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.J.; Liu, J.Q.; Wang, L.S.; Wang, Z.Y. The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values. Chemosphere 2016, 152, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, W.; Sierra-Alvarez, R.; Wong, S.; Abrell, L.; Mash, E.A.; Field, J.A. Evidence of anaerobic coupling reactions between reduced intermediates of 4-nitroanisole. Chemosphere 2018, 195, 372–380. [Google Scholar] [CrossRef] [PubMed]
- D’Yachkov, P.N.; Kharchevnikova, N.V.; Zholdakova, Z.I. Quantum chemical metabolism-based simulation of carcinogenic potency of benzene derivatives. Int. J. Quantum. Chem. 2010, 110, 1402–1411. [Google Scholar] [CrossRef]
- Jönsson, S.; Eriksson, L.A.; van Bavel, B. Multivariate characterisation and quantitative structure–property relationship modelling of nitro-substituted benzenes. Anal. Chim. Acta 2008, 621, 155–162. [Google Scholar]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef]
- Meng, H.; Xia, Y.; Chen, H. Bioremediation of surface water co-contaminated with zinc (II) and linear alkylbenzene sulfonates by Spirulina platensis. Phys. Chem. Earth 2012, 47–48, 152–155. [Google Scholar] [CrossRef]
- Piao, F.; Yokoyama, K.; Ma, N.; Yamauchi, T. Subacute toxic effects of zinc on various tissues and organs of rats. Toxicol. Lett. 2003, 145, 28–35. [Google Scholar] [CrossRef]
- Crémazy, A.; Brix, K.V.; Wood, C.M. Chronic Toxicity of Binary Mixtures of Six Metals (Ag, Cd, Cu, Ni, Pb, and Zn) to the Great Pond Snail Lymnaea stagnalis. Environ. Sci. Technol. 2018, 52, 5979–5988. [Google Scholar] [CrossRef]
- Obiakor, M.O.; Ezeonyejiaku, C.D. Copper–zinc coergisms and metal toxicity at predefined ratio concentrations: Predictions based on synergistic ratio model. Ecotoxicol. Environ. Saf. 2015, 117, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Wu, F.; Chen, L.; Xu, B.; Feng, C.; Bai, Y.; Liao, H.; Sun, S.; Giesy, J.P.; Guo, W. Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environ. Pollut. 2016, 219, 1069–1076. [Google Scholar] [CrossRef]
- Liu, J.; Qu, R.; Yan, L.; Wang, L.; Wang, Z. Evaluation of single and joint toxicity of perfluorooctane sulfonateand zinc to Limnodrilus hoffmeisteri: Acute toxicity, bioaccumulationand oxidative stress. J. Hazard Mater. 2016, 301, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.B.; Xu, J.X.; Chen, J.L.; Huang, L.; Zhou, S.Q.; Zhou, Y. Antioxidative responses of Pseudomonas fluorescens YZ2 to simultaneous exposure of Zn and Cefradine. Ecotoxicology 2015, 24, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yan, B.; Zhang, F. Enrichment of heavy metals in fishes of Songhua River and its pollution assessment. J. Ecol. Rural Environ. 2010, 26, 492–496. [Google Scholar]
- Li, X.R.; He, M.C.; Sun, Y.; Xia, X.H.; Yan, Y. Distribution of nitrobenzenes in the Yellow River from Xiaolangdi to Gaocun Research. Environ. Sci. 2006, 27, 513–518. [Google Scholar]
- Gao, J.; Liu, L.; Liu, X.; Zhou, H.; Wang, Z.; Huang, S. Concentration level and geographical distribution of nitrobenzene in Chinese surface waters. J. Environ. Sci. 2008, 20, 803–805. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.L.; Gao, Y.; Lin, Z.F.; Yao, Z.F.; Zhang, W.X. The joint effects on Photobacterium phosphoreum of metal oxide nanoparticles and their most likely coexisting chemicals in the environment. Aquatic Toxicol. 2014, 154, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.J.; Wang, X.H.; Liu, Z.T.; Yan, Z.G.; Wang, Z.Y. Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. J. Hazard Mater. 2013, 262, 288–296. [Google Scholar] [CrossRef]
- Su, L.M.; Zhang, X.J.; Yuan, X.; Zhao, Y.H.; Zhang, D.M.; Qin, W.C. Evaluation of joint toxicity of nitroaromatic compounds and copper to Photobacterium phosphoreum and QSAR analysis. J. Hazard Mater. 2012, 241–242, 450–455. [Google Scholar] [CrossRef]
- Su, L.M.; Zhao, Y.H.; Yuan, X.; Mu, C.F.; Wang, N.; Yan, J.C. Evaluation of combined toxicity of phenols and lead to Photobacterium phosphoreum and quantitative structure-activity relationships. Bull. Environ. Contam. Toxicol. 2010, 84, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Lu, G.H.; Su, L.M. Correlation study of toxicity of substituted phenols to river bacteria and their biodegradability in river water. Biomed. Environ. Sci. 2005, 18, 281–285. [Google Scholar] [PubMed]
- Jin, H.; Wang, C.; Shi, J.Q.; Chen, L. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis. J. Hazard Mater. 2014, 279, 156–162. [Google Scholar] [CrossRef]
- Thomulka, K.W.; Abbas, C.G.; Young, D.A.; Lange, J.H. Evaluating median effective concentrations of chemicals with bioluminescent bacteria. Bull. Environ. Contam. Toxicol. 1996, 56, 446–452. [Google Scholar] [CrossRef]
- Li, C.; Zheng, S.S.; Li, T.T.; Chen, J.W.; Zhou, J.H.; Su, L.M.; Zhang, Y.N.; Crittenden, J.C.; Zhu, S.Y.; Zhao, Y.H. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways. Water Res. 2019, 151, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wei, G.L.; Chen, J.W.; Zhao, Y.H.; Zhang, Y.N.; Su, L.M.; Qin, W.C. Aqueous OH radical reaction rate constants for organophosphorus flame retardants and plasticizers: Experimental and modeling studies. Environ. Sci. Technol. 2018, 52, 2790–2799. [Google Scholar] [CrossRef]
- Xu, S.; Nirmalakhandan, N. Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals. Water Res. 1998, 32, 2391–2399. [Google Scholar] [CrossRef]
- Marking, L.L.; Dawson, V.K. Method of assessment of toxicity or efficacy of mixtures of chemicals. US Fish Wildl. Serv. Invest. Fish Control 1975, 67, 8. [Google Scholar]
- Nirmalakhandan, N.; Xu, S.; Trevizo, C. Additivity in microbial toxicity of nonuniform mixtures of organic chemicals. Ecotoxicol. Environ. Saf. 1997, 37, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shi, J.; Xiong, Y.; Hu, J.; Lin, Z.; Qiu, Y.; Cheng, J. A QSAR-based mechanistic study on the combined toxicity of antibiotics and quorum sensing inhibitors against Escherichia coli. J. Hazard Mater. 2018, 341, 438–447. [Google Scholar] [CrossRef]
- Broderius, S.J.; Kahl, M.D.; Hoglund, M.D. Use of joint response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 1995, 14, 1591–1605. [Google Scholar] [CrossRef]
- Cedergreen, N. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 2014, 9, e96580. [Google Scholar] [CrossRef] [PubMed]
- Kepner, J. Synergy: The big unknowns of pesticide exposure. Pestic. You 2004, 23, 17–20. [Google Scholar]
- Otitoloju, A.A. Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.). Ecotoxicol. Environ. Saf. 2002, 53, 404–415. [Google Scholar] [CrossRef]
No. | Compounds | Contents | No. | Compounds | Contents |
---|---|---|---|---|---|
1 | Barm lixiviating extract | 0.5 g | 4 | Na2HPO4 | 0.5 g |
2 | Peptone | 0.5 g | 5 | KH2PO4 | 0.1 g |
3 | Glycerol | 0.3 g | 6 | NaCl | 3.0 g |
No. | Compounds | CAS * | Experimental Single Toxicity and Corresponding Confidence Interval at 95% (log1/IC50)/(mol L−1) |
---|---|---|---|
1 | nitrobenzene | 98-95-3 | 3.20 (3.14–3.25) |
2 | o-dinitrobenzene | 528-29-0 | 4.33 (4.25–4.41) |
3 | m-nitrobromobenzene | 585-79-5 | 4.09 (4.02–4.16) |
4 | p-nitrobromobenzene | 586-78-7 | 4.45 (4.40–4.48) |
5 | o-nitroaniline | 88-74-7 | 3.71 (3.64–3.78) |
6 | p-nitroaniline | 100-01-6 | 4.01 (3.98–4.04) |
7 | p-nitrobenzoic acid | 62-23-7 | 3.81 (3.69–3.89) |
8 | o-nitrophenol | 88-75-5 | 3.44 (3.37–3.52) |
9 | m-nitrophenol | 554-84-7 | 3.33 (3.30–3.36) |
10 | p-nitrophenol | 100-02-7 | 4.11 (3.99–4.23) |
11 | 2,4-dinitrophenol | 51-28-5 | 4.22 (4.17–4.28) |
12 | Zn (ZnCl2) | 7646-85-7 | 5.13 (5.06–5.21) |
Mixture | Zn (IC50) | Toxicity of Nitro-Substituted Benzenes in Mixtures and CI at 95% (log1/IC50)/(mol L−1) |
---|---|---|
Zn + nitrobenzene | 0.2 0.5 0.8 | 3.04 (2.98–3.08) 3.18 (3.13–3.24) 3.15 (3.08–3.23) |
Zn + o-dinitrobenzene | 0.2 0.5 0.8 | 4.41 (4.34–4.48) 4.67 (4.58–4.76) 5.17 (5.07–5.31) |
Zn + m-nitrobromobenzene | 0.2 0.5 0.8 | 4.08 (4.01–4.14) 4.05 (3.96–4.13) 4.20 (4.11–4.30) |
Zn + p- nitrobromobenzene | 0.2 0.5 0.8 | 4.42 (4.38–4.45) 4.30 (4.25–5.36) 4.62 (4.43–4.83) |
Zn + o-nitroaniline | 0.2 0.5 0.8 | 3.68 (3.61–3.74) 3.67 (3.62–3.71) 3.76 (3.69–3.86) |
Zn + p-nitroaniline | 0.2 0.5 0.8 | 3.97 (3.89–4.04) 3.91 (3.87–3.93) 3.89 (3.87–3.92) |
Zn + p-nitrobenzoic acid | 0.2 0.5 0.8 | 4.91 (4.80–4.99) 5.14 (5.06–5.27) 5.58 (5.46–5.73) |
Zn + o-nitrophenol | 0.2 0.5 0.8 | 3.33 (3.21–3.45) 3.82 (3.64–3.96) 4.21 (4.02–4.42) |
Zn + m-nitrophenol | 0.2 0.5 0.8 | 3.35 (3.26–3.47) 3.51 (3.41–3.62) 3.79 (3.68–3.95) |
Zn + p-nitrophenol | 0.2 0.5 0.8 | 3.98 (4.05–4.20) 4.45 (4.33–4.51) 4.68 (4.42–4.87) |
Zn + 2,4-dinitrophenol | 0.2 0.5 0.8 | 4.32 (4.19–4.47) 4.63 (4.52–4.79) 5.38 (5.16–5.54) |
Compounds | VE2_B(p) | TIC3 | Eig06_AEA(dm) | Relative Error Values | ||
---|---|---|---|---|---|---|
Er.(1) a | Er.(2) a | Er.(3) a | ||||
2,4-dinitrophenol | 0.265 | 61.487 | 1.000 | −0.024 | 0.050 | 0.007 |
p-nitrobenzoic acid | 0.249 | 59.487 | 1.000 | 0.048 | −0.054 | −0.029 |
o-nitroaniline | 0.282 | 54.000 | 0.057 | −0.037 | 0.042 | 0.062 |
o-nitrophenol | 0.284 | 54.603 | 0.203 | 0.026 | 0.042 | 0.001 |
nitrobenzene | 0.295 | 40.548 | −0.479 | 0.081 | 0.017 | 0.011 |
p-nitroaniline | 0.278 | 48.000 | 0.058 | −0.003 | −0.022 | 0.027 |
p-nitrophenol | 0.280 | 48.603 | 0.214 | −0.038 | −0.102 | −0.096 |
o-dinitrobenzene | 0.272 | 44.000 | 1.000 | 0.001 | 0.041 | 0.048 |
m-nitrophenol | 0.281 | 56.603 | −0.057 | 0.049 | 0.053 | 0.008 |
m-nitrobromobenzene | 0.275 | 51.303 | 0.181 | −0.017 | −0.022 | −0.004 |
p- nitrobromobenzene | 0.274 | 43.303 | 0.427 | −0.021 | −0.016 | −0.014 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Su, L.; Zhang, X.; Li, C.; Qin, W.; Zhang, D.; Liang, X.; Zhao, Y. Combined Toxicity of Nitro-Substituted Benzenes and Zinc to Photobacterium Phosphoreum: Evaluation and QSAR Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1041. https://doi.org/10.3390/ijerph16061041
Zhang S, Su L, Zhang X, Li C, Qin W, Zhang D, Liang X, Zhao Y. Combined Toxicity of Nitro-Substituted Benzenes and Zinc to Photobacterium Phosphoreum: Evaluation and QSAR Analysis. International Journal of Environmental Research and Public Health. 2019; 16(6):1041. https://doi.org/10.3390/ijerph16061041
Chicago/Turabian StyleZhang, Shengnan, Limin Su, Xujia Zhang, Chao Li, Weichao Qin, Dongmei Zhang, Xiaoxia Liang, and Yuanhui Zhao. 2019. "Combined Toxicity of Nitro-Substituted Benzenes and Zinc to Photobacterium Phosphoreum: Evaluation and QSAR Analysis" International Journal of Environmental Research and Public Health 16, no. 6: 1041. https://doi.org/10.3390/ijerph16061041
APA StyleZhang, S., Su, L., Zhang, X., Li, C., Qin, W., Zhang, D., Liang, X., & Zhao, Y. (2019). Combined Toxicity of Nitro-Substituted Benzenes and Zinc to Photobacterium Phosphoreum: Evaluation and QSAR Analysis. International Journal of Environmental Research and Public Health, 16(6), 1041. https://doi.org/10.3390/ijerph16061041