Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Outcome Measurement Methodology
2.3. Bacterial Isolates
2.4. Process Improvement Indicators
- Hospital admission rules for shortening the pre-operative stay and optimal patient preparation for surgery to limit emergency surgery; preparation of the surgical team, including
- diagnostics and qualification for surgery as far as possible in an outpatient procedure without prior hospitalization before surgery,
- pre-operative screening at a preoperative assessment clinic and the decolonization of methicillin-resistant Staphylococcus aureus (MRSA) in elective procedures.
- Perioperative procedures for patient preparation for surgery, including
- hair removal: cutting instead of shaving,
- bathing immediately prior to surgery,
- changing bed linens and patient’s clothing immediately before surgery.
- Work organization of the operating block, including
- preoperative checklist,
- surgical hand hygiene according to WHO guidelines,
- preparation of the operating field and surgical drape,
- application of antiseptic to the edges of the wound before sewing it.
- Patient care during the postoperative period:
- the five moments for hand hygiene,
- post-operative dressing and wound control.
- Active surveillance of all forms of HAIs:
- systematic collection, analysis, and interpretation of data for evaluation of practices,
- yearly feedback on the epidemiology and microbiology of HAIs,
- regular feedback on compliance with the procedures described above and hand hygiene.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASA score | American Society of Anesthesiologists system for assessing the fitness of patients before surgery |
BSI | bloodstream infection |
CI | confidence interval |
CRAN | craniotomy |
ECDC | European Centre for Disease Prevention and Control |
FUSN | spinal implant surgery |
HAIs | healthcare-associated infections |
ICT | Infection Control Team |
LAM | laminectomy |
OR | odds ratio |
PN | pneumonia |
SSIs | surgical site infections |
VAP | ventilator-associated pneumonia |
VP shunt | ventricular shunt implantation surgery |
References
- WHO. Guidelines on Core Components of Infection Prevention and Control Programmes at the National and Acute Health Care Facility Level. Available online: https://www.who.int/gpsc/core-components.pdf (accessed on 23 February 2019).
- European Center for Disease Prevention and Control. Healthcare-Associated Infections Surveillance Network (HAI-Net). Available online: https://ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/hai-net (accessed on 23 February 2019).
- Kołpa, M.; Wałaszek, M.; Różańska, A.; Wolak, Z.; Wójkowska-Mach, J. Hospital-Wide Surveillance of Healthcare-Associated Infections as a Source of Information about Specific Hospital Needs. A 5-Year Observation in a Multiprofile Provincial Hospital in the South of Poland. Int. J. Environ. Res. Public Health 2018, 15, 1956. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Mohapatra, S.; Rath, G.P.; Kapil, A. Active Surveillance of Health Care Associated Infections in Neurosurgical Patients. J. Clin. Diagn. Res. 2017, 11, DC01–DC04. [Google Scholar] [CrossRef] [PubMed]
- Göçmez, C.; Celik, F.; Tekin, R.; Kamaşak, K.; Turan, Y.; Palancı, Y.; Bozkurt, F.; Bozkurt, M. Evaluation of risk factors affecting hospital-acquired infections in the neurosurgery intensive care unit. Int. J. Neurosci. 2014, 124, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Dettenkofer, M.; Ebner, W.; Hans, F.J.; Forster, D.; Babikir, R.; Zentner, J.; Pelz, K.; Daschner, F.D. Nosocomial infections in a neurosurgery intensive care unit. Acta Neurochir. 1999, 141, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Wałaszek, M. The analysis of the occurrence of nosocomial infections in the neurosurgical ward in the District Hospital from 2003–2012. Przegl. Epidemiol. 2015, 69, 507–514. [Google Scholar]
- Emori, T.G.; Culver, D.H.; Horan, T.C.; Jarvis, W.R.; White, J.W.; Olson, D.R.; Banerjee, S.; Edwards, J.R.; Martone, W.J.; Gaynes, R.P.; et al. National nosocomial infections surveillance system (NNIS): Description of surveillance methods. Am. J. infect. Control 1991, 19, 19–35. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals—Protocol Version 4.3; ECDC: Stockholm, Sweden, 2012.
- European Centre for Disease Prevention and Control. European Surveillance of Healthcare Associated Infections in Intensive Care Units—HAI-Net ICU Protocol, Version 1.02; ECDC: Stockholm, Sweden, 2015. Available online: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/healthcare-associated-infections-HAI-ICU-protocol.pdf (accessed on 24 February 2019).
- Hover, A.R.; Sistrunk, W.W.; Cavagnol, R.M.; Scarrow, A.; Finley, P.J.; Kroencke, A.D.; Walker, J.L. Effectiveness and Cost of Failure Mode and Effects Analysis Methodology to Reduce Neurosurgical Site Infections. Am. J. Med. Qual. 2014, 29, 517–521. [Google Scholar] [CrossRef]
- Kim, T.; Han, J.H.; Kim, H.B.; Song, K.H.; Kim, E.S.; Kim, Y.H.; Bang, J.S.; Kim, C.Y.; Oh, C.W. Risk factors of surgical site infections after supratentorial elective surgery: A focus on the efficacy of the wound-drain-tip culture. Acta Neurochir. 2013, 155, 2165–2170. [Google Scholar] [CrossRef]
- Orsi, G.B.; Scorzolini, L.; Franchi, C.; Mondillo, V.; Rosa, G.; Venditti, M. Hospital-acquired infection surveillance in a neurosurgical intensive care unit. J. Hosp. Infect. 2006, 64, 23–29. [Google Scholar] [CrossRef]
- Lazennec, J.Y.; Fourniols, E.; Lenoir, T.; Aubry, A.; Pissonnier, M.L.; Issartel, B.; Rousseau, M.-A.; French Spine Surgery Society. Infections in the operated spine: Update on risk management and therapeutic strategies. Orthop. Traumatol. Surg. Res. 2011, 97 (Suppl. 6), 107–116. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Shaffrey, C.I.; Sansur, C.A.; Berven, S.H.; Fu, K.G.; Broadstone, P.A. Rates of infection after spine surgery based on 108,419 procedures. Spine 2011, 36, 556–563. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Surveillance of Surgical Site Infections in Europe, 2008–2009; ECDC: Stockholm, Sweden, 2012. Available online: http://www.ecdc.europa.eu/en/publications/Publications/120215_SUR_SSI_2008-2009.pdf (accessed on 11 February 2018).
- Edwards, J.R.; Peterson, K.D.; Mu, Y.; Banerjee, S.; Allen-Bridson, K.; Morrell, G.; Dudeck, M.A.; Pollock, D.A.; Horan, T.C. National Healthcare Safety Network (NHSN) report: Data summary for 2006 through 2008, issued December 2009. Am. J. Infect. Control 2009, 37, 783–805. [Google Scholar] [CrossRef] [PubMed]
- National Nosocomial Infections Surveillance (NNIS). System Report, Data Summary from January 1992 through June 2004, Issued October 2004. Available online: https://www.cdc.gov/nhsn/pdfs/datastat/nnis_2004.pdf. (accessed on 24 February 2019).
- Rechtine, G.R.; Bono, P.L.; Cahill, D.; Bolesta, M.J.; Chrin, A.M. Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J. Orthop. Trauma 2001, 15, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, T.J.; Berbari, E.F.; Huddleston, P.M.; Steckelberg, J.M.; Mandrekar, J.N.; Osmon, D.R. The management and outcome of spinal implant infections: Contemporary retrospective cohort study. Clin. Infect. Dis. 2007, 44, 913–920. [Google Scholar] [CrossRef]
- Zhan, R.; Zhu, Y.; Shen Tong, Y.; Yu, H.; Wen, L. Post-operative central nervous system infections after cranial surgery in China: Incidence, causative agents, and risk factors in 1470 patients. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 11, 123–185. [Google Scholar]
- Rosenthal, V.D.; Richtmann, R.; Singh, S.; Apisarnthanarak, A.; Kübler, A.; Viet-Hung, N.; Ramírez-Wong, F.M.; Portillo-Gallo, J.H.; Toscani, J.; Gikas, A.; et al. Surgical site infections, International Nosocomial Infection Control Consortium (INICC) report, data summary of 30 countries, 2005–2010. Infect. Control Hosp. Epidemiol. 2013, 34, 597–604. [Google Scholar] [CrossRef]
- Schimmel, J.J.; Horsting, P.P.; de Kleuver, M.; Wonders, G.; van Limbeek, J. Risk factors for deep surgical site infections after spinal fusion. Eur. Spine J. 2010, 19, 1711–1719. [Google Scholar] [CrossRef] [Green Version]
- Bekelis, K.; Coy, S.; Simmons, N. Operative Duration and Risk of Surgical Site Infection in Neurosurgery. World Neurosurg. 2016, 94, 551.e6–555.e6. [Google Scholar] [CrossRef]
- Golebiowski, A.; Drewes, C.; Gulati, S.; Jakola, A.S.; Solheim, O. Is duration of surgery a risk factor for extracranial complications and surgical site infections after intracranial tumor operations? Acta Neurochir. 2015, 157, 235–240. [Google Scholar] [CrossRef]
- Cheng, H.; Clymer, J.W.; Chen, B.P.; Sadeghirad, B.; Ferko, N.C.; Cameron, C.G.; Hinoul, P. Prolonged operative duration is associated with complications: A systematic review and meta-analysis. J. Surg. Res. 2018, 229, 134–144. [Google Scholar] [CrossRef]
- McCutcheon, B.A.; Ubl, D.S.; Babu, M.; Maloney, P.; Murphy, M.; Kerezoudis, P.; Bydon, M.; Habermann, E.B.; Parney, I. Predictors of Surgical Site Infection Following Craniotomy for Intracranial Neoplasms: An Analysis of Prospectively Collected Data in the American College of Surgeons National Surgical Quality Improvement Program Database. World Neurosurg. 2016, 88, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhu, T.; Zhang, P.; Xia, L.; Sun, C. Risk factors of neurosurgical site infection after craniotomy: A systematic review and meta-analysis. Am. J. Infect. Control 2017, 45, e123–e134. [Google Scholar] [CrossRef]
- Dubiel, G.; Rogoziński, P.; Żaloudik, E.; Bruliński, K.; Różańska, A.; Wójkowska-Mach, J. Identifying the Infection Control Areas Requiring Modifications in Thoracic Surgery Units: Results of a Two-Year Surveillance of Surgical Site Infections in Hospitals in Southern Poland. Surg. Infect. 2017, 18, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Wałaszek, M.; Różańska, A.; Bulanda, M.; Wojkowska-Mach, J. Polish Society of Hospital Infections Team. Alarming results of nosocomial bloodstream infections surveillance in Polish intensive care units. Przegl. Epidemiol. 2018, 72, 33–44. [Google Scholar] [PubMed]
- Wałaszek, M.; Różańska, A.; Wałaszek, M.Z.; Wójkowska-Mach, J.; Polish Society of Hospital Infections Team. Epidemiology of Ventilator-Associated Pneumonia, microbiological diagnostics and the length of antimicrobial treatment in the Polish Intensive Care Units in the years 2013–2015. BMC Infect. Dis. 2018, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- European Center for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2013. Available online: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf (accessed on 23 February 2019).
- Messina, G.; Rosadini, D.; Burgassi, S.; Messina, D.; Nante, N.; Tani, M.; Cevenni, G. Tanning the bugs—A pilot study of an innovative approach to stethoscope disinfection. J. Hosp. Infect. 2017, 95, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.; Song, C.; Zhang, B.; Liu, Z.; Chai, J.; Luo, Y.; Wu, H. Hospital-wide comparison of health care-associated infection among 8 intensive care units: A retrospective analysis for 2010–2015. Am. J. Infect. Control 2017, 45, e7–e13. [Google Scholar] [CrossRef]
- Pawłowska, I.; Ziółkowski, G.; Bielecki, T.; Wojkowska-Mach, J. Can surgical site infections be controlled through microbiological surveillance? A 3-year laboratory-based surveillance of an orthopaedic unit, retrospective observational study. Int. Orthop. 2019, 24. [Google Scholar] [CrossRef] [PubMed]
Code | Operative Procedure | ICD-9 |
---|---|---|
LAM | Laminectomy: exploration or decompression of spinal cord through excision or incision into vertebral structures | 03.01; 03.02; 03.09; 80.50; 80.5; 80.53; 80.54; 80.59; 84.60–84.69; 84.80–84.85. |
FUSN | Spinal implant surgery: spinal fusion, Immobilization of spinal column | 81.00–81.08 |
CRAN | Craniotomy: incision through the skull to excise, repair, or explore the brain; does not include taps or punctures | 01.12; 01.14; 01.20–01.25; 01.28; 01.29; 01.31; 01.32; 01.39; 01.41; 01.42; 01.51–01.53; 01.59; 02.11–02.14; 02.91–02.93; 07.51–07.54; 07.59; 07.61–07.65; 07.68; 07.69; 07.71; 07.72; 07.79; 38.01; 38.11; 38.31; 38.41; 38.51; 38.61; 38,81; 39.28. |
VP Shunt | VP shunt: ventricular shunt operations, including revision and removal of shunt | 02.21; 02.22; 02.31–02.35; 02.39; 02.42; 02.43; 54.95. |
Surgery Type (N = 10,332) | LAM (n = 4571) | FUSN (n = 2397) | CRAN (n = 2950) | VP Shunt (n = 414) | Incidence | Share in the Total Pool of HAIs (%) | |
---|---|---|---|---|---|---|---|
All HAIs (n = 476) | 66 | 98 | 235 | 77 | |||
HAI Incidence (%) | 1.4 | 4.1 | 8.0 | 18.6 | 4.6 | ||
Surgical site infection (n = 157) | SSI incidence (%) | 33.0 | |||||
0.6 | 2.2 | 1.9 | 5.1 | 1.52 | |||
superficial incisional (n = 56) | 11 | 21 | 22 | 2 | 0.54 | ||
deep incisional (n = 90) | 16 | 31 | 30 | 13 | 0.87 | ||
organ/space (n = 11) | 0 | 0 | 5 | 6 | 0.11 | ||
Pneumonia (PN) (n = 118) | PN incidence (%) | 24.8 | |||||
0.1 | 0.4 | 2.7 | 5.6 | 1.14 | |||
PN1 (n = 2) | 0 | 0 | 2 | 0 | 0.02 | ||
PN2 (n = 8) | 2 | 0 | 1 | 5 | 0.08 | ||
PN3 (n = 0) | 0 | 0 | 0 | 0 | 0.00 | ||
PN4 (n = 70) | 4 | 6 | 46 | 14 | 0.68 | ||
PN5 (n = 38) | 0 | 3 | 31 | 4 | 0.37 | ||
Bloodstream infections (BSI) (n = 97) | BSI incidence (%) | 20.4 | |||||
0.2 | 0.8 | 1.8 | 4.1 | 0.94 | |||
BSI: catheter related (n = 23) | 0 | 1 | 17 | 5 | 0.22 | ||
BSI: unknown origin (n = 44) | 5 | 14 | 18 | 7 | 0.43 | ||
sepsis (n = 3) | 0 | 0 | 3 | 0 | 0.03 | ||
BSI: secondary (n = 27) | 4 | 3 | 15 | 5 | 0.26 | ||
Urinary tract infection (n = 63) | UTI incidence (%) | 13.2 | |||||
0.3 | 0.3 | 0.9 | 3.1 | 0.61 | |||
microbiologically confirmed | yes (n = 54) | 8 | 6 | 27 | 13 | 0.52 | |
no (n = 9) | 6 | 2 | 1 | 0 | 0.09 | ||
Gastrointestinal (n = 33) | GI incidence (%) | 6.9 | |||||
0.2 | 0.4 | 0.4 | 0.7 | 0.32 | |||
Clostridium difficile infection (n = 9) | 2 | 1 | 4 | 2 | 0.09 | ||
Gastroenteritis (n = 24) | 6 | 8 | 9 | 1 | 0.23 | ||
Skin and soft tissue infection (n = 8) | SST incidence (%) | 1.7 | |||||
0.0 | 0.0 | 0.1 | 0.0 | 0.08 | |||
skin infection (n = 8) | 2 | 2 | 4 | 0 | 0.08 |
Surgery Type | Spinal Surgery | Brain Surgery | ||||||
---|---|---|---|---|---|---|---|---|
LAM | FUSN | CRAN | VP Shunt | |||||
Phase of the Study | Before | After | Before | After | Before | After | Before | After |
surgeries, no. | 133 | 504 | 34 | 252 | 99 | 240 | 13 | 27 |
HAI, no. | 6 | 4 | 4 | 2 | 10 | 1 | 3 | 3 |
HAI incidence (%) | 4.5 | 0.8 | 11.8 | 0.8 | 10.1 | 0.4 | 23.1 | 11.1 |
RR 95%CI, Fisher’s exact test (p) | 5.5, 1.57–19.16, p = 0.01 | 13.4, 2.53–70.51, p < 0.001 | 25.3, 2.87–170.58, p < 0.001 | 2.1, 0.43–8.24, p = 0.648 | ||||
Patient age (years) | ||||||||
Mean (SD) | 48 (13.8) | 52 (14.5) | 52 (13.1) | 51 (14.5) | 56 (16.9) | 61 (16.4) | 57 (14.7) | 54 (20.4) |
ANOVA (p) | p = 0.005 | p = 0.647 | p = 0.031 | p = 0.611 | ||||
Hospitalization duration prior to surgery (days) | ||||||||
Mean (SD) | 6 (5.041) | 3 (2.696) | 8 (6.569) | 4 (4.022) | 4 (5.9) | 3 (4.8) | 9 (9.8) | 9 (12.6) |
ANOVA (p) | p < 0.001 | p < 0.001 | p = 0.150 | p = 0.857 | ||||
Hospitalization duration (days) | ||||||||
Mean (SD) | 13 (8.3) | 9 (5.4) | 20 (21.5) | 11 (12.1) | 14 (13.8) | 13 (10.8) | 19 (14.9) | 20 (22.2) |
ANOVA (p) | p < 0.001 | p < 0.001 | p = 0.406 | p = 0.885 | ||||
Surgery duration (minutes) | ||||||||
\Mean (SD) | 127 (55.5) | 116 (55.6) | 135 (39.6) | 141 (65.7) | 110 (46.3) | 88 (56.4) | 80 (21.7) | 65 (31.1) |
ANOVA (p) | p = 0.043 | p = 0.027 | p = 0.001 | p = 0.043 | ||||
Sex | ||||||||
Men | 85 (63.9%) | 280 (55.6%) | 17 (50.0%) | 138 (54.8%) | 66 (66.7%) | 147 (61.2%) | 8 (61.5%) | 16 (59.3%) |
Women | 48 (36.1%) | 224 (44.4%) | 17 (50.0%) | 114 (45.2%) | 33 (33.3%) | 93 (38.8%) | 5 (38.5%) | 11 (40.7%) |
Fisher’s exact test (p) | p = 0.051 | p = 0.366 | p = 0.208 | p = 0.585 | ||||
Operation mode | ||||||||
Planned | 132 (99.2%) | 471 (93.5%) | 34 (100.0%) | 234 (92.9%) | 23 (23.2%) | 107 (44.6%) | 13 (100.0%) | 21 (77.8%) |
Urgent | 1 (0.8%) | 33 (6.5%) | 0 (0.0%) | 18 (7.1%) | 76 (76.8%) | 133 (55.4%) | 0 (0.0%) | 6 (22.2%) |
Fisher’s exact test (p) | p = 0.003 | p = 0.095 | p < 0.001 | p = 0.077 | ||||
Patient condition according to the ASA score | ||||||||
ASA 1–2 pts | 61 (45.9%) | 159 (31.5%) | 16 (47.1%) | 88 (34.9%) | 20 (20.2%) | 23 (9.7%) | 1 (7.7%) | 1 (3.7%) |
ASA 3–5 pts | 72 (54.1%) | 345 (68.5%) | 18 (52.9%) | 164 (65.1%) | 79 (79.8%) | 215 (90.3%) | 12 (92.3%) | 26 (96.3%) |
Fisher’s exact test (p) | p < 0.001 | p = 0.008 | p < 0.001 | p = 0.978 |
Microorganism | BSI | GI | PN | SSI | SST | UTI | Total |
---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Gram-positive cocci | |||||||
Staphylococcus aureus | 24 (24.7) | 0 (0.0%) | 13 (11.0) | 78 (49.7) | 4 (50.0) | 1 (1.6) | 120 (25.2) |
Coagulase-negative staphylococci | 28 (28.9) | 0 (0.0%) | 0 (0.0%) | 5 (3.2) | 1 (12.5) | 34 (7.1) | |
Streptococcus spp. | 0 (0.0%) | 0 (0.0%) | 5 (4.2) | 3 (1.9) | 0 (0.0%) | 9 (14.3) | 17 (3.6) |
Enterobacteriaceae | |||||||
Escherichia coli | 10 (10.3) | 0 (0.0%) | 5 (4.2) | 9 (5.7) | 0 (0.0%) | 19 (30.2) | 43 (9.0) |
Klebsiella spp. | 7 (7.2) | 0 (0.0%) | 13 (11.0) | 2 (1.3) | 0 (0.0%) | 7 (11.1) | 29 (6.1) |
Enterobacter spp. | 7 (7.2) | 0 (0.0%) | 5 (4.2) | 18 (11.5) | 1 (12.5) | 1 (1.6) | 32 (6.7) |
Proteus spp. | 2 (2.1) | 0 (0.0%) | 7 (5.9) | 0 (0.0%) | 0 (0.0%) | 5 (7.9) | 14 (2.9) |
Serratia spp. | 3 (3.1) | 0 (0.0%) | 0 (0.0%) | 2 (1.3) | 0 (0.0%) | 5 (1.1) | |
Non-fermenting Gram-negative bacteria | |||||||
Acinetobacter baumannii | 11 (11.3) | 0 (0.0%) | 26 (22.0) | 24 (15.3) | 1 (12.5) | 4 (6.3) | 66 (13.9) |
Pseudomonas aeruginosa | 0 (0.0%) | 0 (0.0%) | 6 (5.1) | 7 (4.5) | 1 (12.5) | 6 (9.5) | 20 (4.2) |
Morganella morganii | 0 (0.0%) | 0 (0.0%) | 3 (2.5) | 1 (0.6) | 0 (0.0%) | 1 (1.6) | 5 (1.1) |
Others | |||||||
Clostridium difficile | 0 (0.0%) | 9 (27.3) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 9 (1.9) |
Candida spp. | 2 (2.1) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 8 (12.7) | 10 (2.1) |
Non-microbiologically-confirmed | 3 (3.1) | 24 (72.7) | 35 (29.7) | 8 (5.1) | 0 (0.0%) | 2 (3.2) | 72 (15.1) |
Total | 97 (100) | 33 (100) | 118 (100) | 157 (100) | 8 (100) | 63 (100) | 476 (100) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołpa, M.; Wałaszek, M.; Różańska, A.; Wolak, Z.; Wójkowska-Mach, J. Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017. Int. J. Environ. Res. Public Health 2019, 16, 911. https://doi.org/10.3390/ijerph16060911
Kołpa M, Wałaszek M, Różańska A, Wolak Z, Wójkowska-Mach J. Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017. International Journal of Environmental Research and Public Health. 2019; 16(6):911. https://doi.org/10.3390/ijerph16060911
Chicago/Turabian StyleKołpa, Małgorzata, Marta Wałaszek, Anna Różańska, Zdzisław Wolak, and Jadwiga Wójkowska-Mach. 2019. "Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017" International Journal of Environmental Research and Public Health 16, no. 6: 911. https://doi.org/10.3390/ijerph16060911
APA StyleKołpa, M., Wałaszek, M., Różańska, A., Wolak, Z., & Wójkowska-Mach, J. (2019). Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017. International Journal of Environmental Research and Public Health, 16(6), 911. https://doi.org/10.3390/ijerph16060911