A Time-Based Objective Measure of Exposure to the Food Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Information Systems Data
2.2. Dependent Variable
2.3. Covariates
2.4. Exposure Measures
2.5. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forsyth, A.; Lytle, L.; Riper, D. Van Finding food: Issues and challenges in using geographic information systems to measure food access. J. Transp. Land Use 2010, 3, 43–65. [Google Scholar] [PubMed]
- Lytle, L.A. Measuring the food environment: State of the science. Am. J. Prev. Med. 2009, 36, S134–S144. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, R.A.; Reedy, J.; Morrissette, M.A.; Lytle, L.A.; Yaroch, A.L. Measures of the food environment. Am. J. Prev. Med. 2009, 36, S124–S133. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.F.; Vargas, R.B.; Ang, A.; Pebley, A.R. The neighborhood food resource environment and the health of residents with chronic conditions: The food resource environment and the health of residents. J. Gen. Intern. Med. 2008, 23, 1137–1144. [Google Scholar] [CrossRef]
- Franco, M.; Diez Roux, A.V.; Glass, T.A.; Caballero, B.; Brancati, F.L. Neighborhood characteristics and availability of healthy foods in Baltimore. Am. J. Prev. Med. 2008, 35, 561–567. [Google Scholar] [CrossRef]
- Larson, N.; Story, M. A review of environmental influences on food choices. Ann. Behav. Med. 2009, 38 (Suppl. 1), S56–S73. [Google Scholar] [CrossRef]
- Lovasi, G.S.; Hutson, M.A.; Guerra, M.; Neckerman, K.M. Built environments and obesity in disadvantaged populations. Epidemiol. Rev. 2009, 31, 7–20. [Google Scholar] [CrossRef]
- Walker, R.E.; Keane, C.R.; Burke, J.G. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Wrigley, N.; Warm, D.; Margetts, B. Deprivation, diet, and food-retail access: Findings from the Leeds “food deserts” study. Environ. Plan. A 2003, 35, 151–188. [Google Scholar] [CrossRef]
- Zenk, S.N.; Schulz, A.J.; Israel, B.A.; James, S.A.; Bao, S.; Wilson, M.L. Neighborhood racial composition, neighborhood poverty, and the spatial accessibility of supermarkets in metropolitan Detroit. Am. J. Public Health 2005, 95, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Ashe, M.; Jernigan, D.; Kline, R.; Galaz, R. Land use planning and the control of alcohol, tobacco, firearms, and fast food restaurants. Am. J. Public Health 2003, 93, 1404–1408. [Google Scholar] [CrossRef]
- Mair, J.S.; Pierce, M.W.; Teret, S.P. The Use of Zoning to Restrict Fast Food Outlets: A Potential Strategy to Combat Obesity. Available online: https://www.jhsph.edu/research/centers-and-institutes/center-for-law-and-the-publics-health/research/ZoningFastFoodOutlets.pdf (accessed on 29 March 2019).
- Larson, N.I.; Story, M.T.; Nelson, M.C. Neighborhood environments: Disparities in access to healthy foods in the U.S. Am. J. Prev. Med. 2009, 36, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lytle, L.A.; Sokol, R.L. Measures of the food environment: A systematic review of the field, 2007–2015. Heal. Place 2017, 44, 18–34. [Google Scholar] [CrossRef]
- James, P.; Berrigan, D.; Hart, J.E.; Hipp, J.A.; Hoehner, C.M.; Kerr, J.; Major, J.M.; Oka, M.; Laden, F. Effects of buffer size and shape on associations between the built environment and energy balance. Health Place 2014, 27, 162–170. [Google Scholar] [CrossRef]
- Matthews, S.A.; Yang, T.-C. Spatial polygamy and contextual exposures (SPACEs): Promoting activity space approaches in research on place and health. Am. Behav. Sci. 2013, 57, 1057–1081. [Google Scholar] [CrossRef] [PubMed]
- Diez Roux, A.V.; Mair, C. Neighborhoods and health. Ann. N. Y. Acad. Sci. 2010, 1186, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.-P. The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- Spielman, S.E.; Yoo, E. The spatial dimensions of neighborhood effects. Soc. Sci. Med. 2009, 68, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, D.K.; Panter, J.; Sahlqvist, S.; Goodman, A.; Ogilvie, D. Changing the environment to improve population health: A framework for considering exposure in natural experimental studies. J. Epidemiol. Community Health 2016, 70, 941–946. [Google Scholar] [CrossRef]
- Burgoine, T.; Monsivais, P. Characterising food environment exposure at home, at work, and along commuting journeys using data on adults in the UK. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 85. [Google Scholar] [CrossRef]
- Burgoine, T.; Forouhi, N.G.; Griffin, S.J.; Wareham, N.J.; Monsivais, P. Associations between exposure to takeaway food outlets, takeaway food consumption, and body weight in Cambridgeshire, UK: Population based, cross sectional study. BMJ 2014, 348, g1464. [Google Scholar] [CrossRef] [PubMed]
- Zenk, S.N.; Schulz, A.J.; Matthews, S.A.; Odoms-Young, A.; Wilbur, J.; Wegrzyn, L.; Gibbs, K.; Braunschweig, C.; Stokes, C. Activity space environment and dietary and physical activity behaviors: A pilot study. Health Place 2011, 17, 1150–1161. [Google Scholar] [CrossRef]
- Kestens, Y.; Lebel, A.; Chaix, B.; Clary, C.; Daniel, M.; Pampalon, R.; Theriault, M.; Subramanian, S.V.P. Association between activity space exposure to food establishments and individual risk of overweight. PLoS ONE 2012, 7, e41418. [Google Scholar] [CrossRef]
- Christian, W.J. Using geospatial technologies to explore activity-based retail food environments. Spat. Spatiotemporal. Epidemiol. 2012, 3, 287–295. [Google Scholar] [CrossRef]
- Inagami, S.; Cohen, D.A.; Brown, A.F.; Asch, S.M. Body mass index, neighborhood fast food and restaurant concentration, and car ownership. J. Urban Health 2009, 86, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Lioy, P.J.; Smith, K.R. A discussion of exposure science in the 21st century: A vision and a strategy. Environ. Health Perspect. 2013, 121, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Kestens, Y.; Perchoux, C.; Karusisi, N.; Merlo, J.; Labadi, K. An interactive mapping tool to assess individual mobility patterns in neighborhood studies. Am. J. Prev. Med. 2012, 43, 440–450. [Google Scholar] [CrossRef]
- Kerr, J.; Duncan, S.; Schipperjin, J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Schipperijn, J.; Kerr, J.; Duncan, S.; Madsen, T.; Klinker, C.D.; Troelsen, J. Dynamic accuracy of GPS receivers for use in health research: A novel method to assess GPS accuracy in real-world settings. Front. Public Heal. 2014, 2, 21. [Google Scholar] [CrossRef]
- James, P.; Jankowska, M.; Marx, C.; Hart, J.E.; Berrigan, D.; Kerr, J.; Hurvitz, P.M.; Hipp, J.A.; Laden, F. “Spatial Energetics”: Integrating data from GPS, accelerometry, and GIS to address obesity and inactivity. Am. J. Prev. Med. 2016, 51, 792–800. [Google Scholar] [CrossRef]
- Burke, J.M.; Zufall, M.J.; Ozkaynak, H. A population exposure model for particulate matter: Case study results for PM(2.5) in Philadelphia, PA. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 470–489. [Google Scholar] [CrossRef] [PubMed]
- Breen, M.S.; Long, T.C.; Schultz, B.D.; Crooks, J.; Breen, M.; Langstaff, J.E.; Isaacs, K.K.; Tan, Y.-M.; Williams, R.W.; Cao, Y.; et al. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 412–420. [Google Scholar] [CrossRef]
- Zou, B.; Wilson, J.G.; Zhan, F.B.; Zeng, Y. Air pollution exposure assessment methods utilized in epidemiological studies. J. Environ. Monit. 2009, 11, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Sadler, R.C.; Clark, A.F.; Wilk, P.; O’Connor, C.; Gilliland, J.A. Using GPS and activity tracking to reveal the influence of adolescents’ food environment exposure on junk food purchasing. Can. J. Public Heal. 2016, 107, 14. [Google Scholar] [CrossRef] [PubMed]
- Cetateanu, A.; Luca, B.-A.; Popescu, A.A.; Page, A.; Cooper, A.; Jones, A. A novel methodology for identifying environmental exposures using GPS data. Int. J. Geogr. Inf. Sci. 2016, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chaix, B.; Méline, J.; Duncan, S.; Merrien, C.; Karusisi, N.; Perchoux, C.; Lewin, A.; Labadi, K.; Kestens, Y. GPS tracking in neighborhood and health studies: A step forward for environmental exposure assessment, a step backward for causal inference? Health Place 2013, 21, 46–51. [Google Scholar] [CrossRef]
- Drewnowski, A.; Aggarwal, A.; Tang, W.; Moudon, A.V. Residential property values predict prevalent obesity but do not predict 1-year weight change. Obesity (Silver Spring) 2015, 23, 671–676. [Google Scholar] [CrossRef]
- NHTS Field Documents and Travel Survey. Available online: https://nhts.ornl.gov/2009/pub/fielddocuments.pdf (accessed on 29 March 2019).
- King County Data Center Addresses in King County. Available online: http://www5.kingcounty.gov/sdc/Metadata.aspx?Layer=address (accessed on 1 January 2016).
- Moudon, A.V.; Drewnowski, A.; Duncan, G.E.; Hurvitz, P.M.; Saelens, B.E.; Scharnhorst, E. Characterizing the food environment: Pitfalls and future directions. Public Health Nutr. 2013, 16, 1238–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levtnson, D.M.; Kumar, A. Density and the journey to work. Growth Chang. 1997, 28, 147–172. [Google Scholar] [CrossRef]
- Moudon, A.V.; Cook, A.J.; Ulmer, J.; Hurvitz, P.M.; Drewnowski, A. A neighborhood wealth metric for use in health studies. Am. J. Prev. Med. 2011, 41, 88–97. [Google Scholar] [CrossRef]
- Drewnowski, A.; Aggarwal, A.; Hurvitz, P.M.; Monsivais, P.; Moudon, A.V. Obesity and supermarket access: Proximity or price? Am. J. Public Health 2012, 102, e74–e80. [Google Scholar] [CrossRef]
- Jiao, J.; Moudon, A.V.; Kim, S.Y.; Hurvitz, P.M.; Drewnowski, A. Health implications of adults’ eating at and living near fast food or quick service restaurants. Nutr. Diabetes 2015, 5, e171. [Google Scholar] [CrossRef] [PubMed]
- King County Data Center Parcels for King County with Address, Property and Ownership Information. Available online: http://www5.kingcounty.gov/sdc/Metadata.aspx?Layer=parcel_address (accessed on 1 January 2016).
- Tsui, S.; Shalaby, A. Enhanced system for link and mode identification for personal travel surveys based on global positioning systems. Transp. Res. Rec. J. Transp. Res. Board 2006, 1972, 38–45. [Google Scholar] [CrossRef]
- PALMS Personal Activity and Location Measurement System (PALMS). Available online: http://ucsd-palms-project.wikispaces.com/PALMS+Calculation+-+Release+4+-+GPS+Processing (accessed on 3 March 2015).
- Hurvitz, P.M.; Moudon, A.V.; Kang, B.; Fesinmeyer, M.D.; Saelens, B.E. How far from home? The locations of physical activity in an urban U.S. setting. Prev. Med. (Baltim) 2014, 69, 181–186. [Google Scholar] [CrossRef]
- Blumenfeld, H.; Spreiregen, P.D. Metropolis and Beyond: Selected Essays; Wiley: New York, NY, USA, 1979; ISBN 0471042811. [Google Scholar]
- Cerin, E.; Saelens, B.E.; Sallis, J.F.; Frank, L.D. Neighborhood Environment Walkability Scale: Validity and development of a short form. Med. Sci. Sports Exerc. 2006, 38, 1682–1691. [Google Scholar] [CrossRef]
- Fraser, L.K.; Edwards, K.L.; Cade, J.; Clarke, G.P. The geography of fast food outlets: A review. Int. J. Environ. Res. Public Health 2010, 7, 2290–2308. [Google Scholar] [CrossRef]
- Lee, C.; Moudon, A.V. The 3Ds+R: Quantifying land use and urban form correlates of walking. Transp. Res. Part D Transp. Environ. 2006, 11, 204–215. [Google Scholar] [CrossRef]
- Caspi, C.E.; Sorensen, G.; Subramanian, S.V.; Kawachi, I. The local food environment and diet: A systematic review. Health Place 2012, 18, 1172–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, L.D.; Engelke, P.O.; Schmid, T.L. Health and Community Design: The Impact of the Built Environment on Physical Activity; Island Press: Washington, DC, USA, 2003; ISBN 1559639172. [Google Scholar]
- Garvey, P.M.; Thompson-Kuhn, B.; Pietrucha, M.T. Sign Visibility: Research and Traffic Safety Overview. 1996. [Google Scholar]
- Cervero, R. The Transit Metropolis: A global Inquiry; Island Press: Washington, DC, USA, 1998; ISBN 1559635916. [Google Scholar]
- Clary, C.; Matthews, S.A.; Kestens, Y. Between exposure, access and use: Reconsidering foodscape influences on dietary behaviours. Heal. Place 2017, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Townshend, T.; Lake, A. Obesogenic environments: Current evidence of the built and food environments. Perspect. Public Health 2017, 137, 38–44. [Google Scholar] [CrossRef]
- Laraia, B.A.; Leak, T.M.; Tester, J.M.; Leung, C.W. Biobehavioral factors that shape nutrition in low-income populations: A narrative review. Am. J. Prev. Med. 2017, 52, S118–S126. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.A.; Jankowska, M.M.; Meseck, K.; Godbole, S.; Natarajan, L.; Raab, F.; Demchak, B.; Patrick, K.; Kerr, J. Validity of PALMS GPS scoring of active and passive travel compared with SenseCam. Med. Sci. Sports Exerc. 2014, 47, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Chambers, T.; Pearson, A.L.; Kawachi, I.; Rzotkiewicz, Z.; Stanley, J.; Smith, M.; Barr, M.; Ni Mhurchu, C.; Signal, L. Kids in space: Measuring children’s residential neighborhoods and other destinations using activity space GPS and wearable camera data. Soc. Sci. Med. 2017, 193, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Brusilovskiy, E.; Klein, L.A.; Salzer, M.S. Using global positioning systems to study health-related mobility and participation. Soc. Sci. Med. 2016, 161, 134–142. [Google Scholar] [CrossRef]
- Oches, S. The Drive-Thru Performance Study. Available online: https://www.qsrmagazine.com/reports/drive-thru-performance-study (accessed on 29 March 2019).
- Mooney, S.J.; Sheehan, D.M.; Zulaika, G.; Rundle, A.G.; McGill, K.; Behrooz, M.R.; Lovasi, G.S. Quantifying distance overestimation from global positioning system in urban spaces. Am. J. Public Health 2016, 106, 651–653. [Google Scholar] [CrossRef] [PubMed]
Total | N | No Reported Visits | One or More Reported Visits | p-Value 1 |
---|---|---|---|---|
n (%) | n (%) | |||
412 | 263 (100) | 149 (100) | ||
Age (years) | 0.432 | |||
<45 | 157 | 96 (36.5) | 61 (40.9) | |
≥45 | 255 | 167 (63.5) | 88 (59.1) | |
Gender | 0.728 | |||
Female | 293 | 185 (70.3) | 108 (72.5) | |
Male | 119 | 78 (29.7) | 41 (27.5) | |
Race | 0.999 | |||
White non-Hispanic | 327 | 209 (79.5) | 118 (79.2) | |
Non-White | 85 | 54 (20.5) | 31 (20.8) | |
Education | 0.007 | |||
Some college or less | 157 | 87 (33.1) | 70 (47.0) | |
College graduate | 255 | 176 (66.9) | 79 (53.0) | |
Income | 0.874 | |||
<$50K | 118 | 76 (28.9) | 42 (28.2) | |
$50–100K | 151 | 94 (35.7) | 57 (38.3) | |
≥$100K | 143 | 93 (35.4) | 50 (33.6) | |
Household size | 0.044 | |||
1–2 | 200 | 138 (52.5) | 62 (41.6) | |
≥3 | 212 | 125 (47.5) | 87 (58.4) | |
Property value | 0.704 | |||
$38–227K | 136 | 90 (34.2) | 46 (30.9) | |
$227–323K | 137 | 84 (31.9) | 53 (35.6) | |
≥$323K | 139 | 89 (33.8) | 50 (33.6) | |
Number of cars in HH | 0.022 | |||
≤1 | 153 | 109 (41.4) | 44 (29.5) | |
≥2 | 259 | 154 (58.6) | 105 (70.5) | |
Commute distance | 0.005 | |||
No commute | 138 | 87 (33.1) | 51 (34.2) | |
<Median (8.4 km) | 137 | 101 (38.4) | 36 (24.2) | |
>Median (8.4 km) | 137 | 75 (28.5) | 62 (41.6) | |
Residential density | 0.001 | |||
<Median density (1892 residences) | 206 | 111 (42.2) | 95 (63.8) | |
>Median density (1892 residences) | 206 | 152 (57.8) | 54 (36.2) |
Exposure | Buffer Distance | |||
---|---|---|---|---|
21 m Mean (SD) | 100 m Mean (SD) | 500 m Mean (SD) | ½ mile Mean (SD) | |
Count of FFRs in buffer per day | 1.5 (1.1) | 8.1 (4.5) | 24.34 (13.2) | 34.1 (18.9) |
Duration of exposure 1 | 1.0 (1.8) | 17.0 (16.6) | 84.8 (56.7) | 117.7 (69.2) |
Weighted duration 1 | 1.0 (1.9) | 22.7 (22.0) | 297.1 (247.4) | 607.6 (526.9) |
Buffer Distance, Tertiles of Exposure | N | No Reported Visits (n) | One or More Reported Visits (n) | p-Value 1 |
---|---|---|---|---|
FFR count 2 | ||||
21 m | 0.934 | |||
0–0.86 | 123 | 80 (30.4) | 43 (28.9) | |
0.86–1.71 | 140 | 88 (33.5) | 52 (34.9) | |
1.71–8.00 | 149 | 95 (36.1) | 54 (36.2) | |
100 m | 0.076 | |||
0–5.82 | 136 | 95 (36.1) | 41 (27.5) | |
5.82–9.14 | 137 | 89 (33.8) | 48 (32.2) | |
9.14–27.2 | 139 | 79 (30.0) | 60 (40.3) | |
500 m | 0.380 | |||
0–17.00 | 139 | 95 (36.1) | 44 (29.5) | |
17.00–28.40 | 133 | 83 (31.6) | 50 (33.6) | |
28.40–78.60 | 140 | 85 (32.3) | 55 (36.9) | |
1/2 mile | 0.385 | |||
1 to 23.00 | 138 | 91 (34.6) | 47 (31.5) | |
23.00–40.50 | 134 | 89 (33.8) | 45 (30.2) | |
40.50–115.00 | 140 | 83 (31.6) | 57 (38.3) | |
Duration of exposure 3 | ||||
21 m | 0.009 | |||
00:00:00–00:00:09 | 136 | 99 (37.6) | 37 (24.8) | |
00:00:09–00:00:39 | 136 | 87 (33.1) | 49 (32.9) | |
00:00:39–00:12:54 | 140 | 77 (29.3) | 63 (42.3) | |
100 m | 0.001 | |||
00:00:00–00:08:58 | 136 | 100 (38.0) | 36 (24.2) | |
00:08:58–00:17:06 | 136 | 91 (34.6) | 45 (30.2) | |
00:17:06–03:10:00 | 140 | 72 (27.4) | 68 (45.6) | |
500 m | 0.188 | |||
00:00:00–00:57:06 | 136 | 92 (35.0) | 44 (29.5) | |
00:57:06–00:01:32 | 136 | 90 (34.2) | 46 (30.9) | |
00:01:32–08:20:00 | 140 | 81 (30.8) | 59 (39.6) | |
1/2 mile | 0.085 | |||
00:06:59–01:21:00 | 136 | 97 (36.9) | 39 (26.2) | |
01:21:00–02:08:00 | 136 | 82 (31.2) | 54 (36.2) | |
02:08:00–09:05:00 | 140 | 84 (31.9) | 56 (37.6) | |
Weighted duration 3 | ||||
21 m | 0.006 | |||
00:00:00–00:00:09 | 136 | 97 (36.9) | 39 (26.2) | |
00:00:09–00:00:41 | 136 | 91 (34.6) | 45 (30.2) | |
00:00:41–00:12:54 | 140 | 75 (28.5) | 65 (43.6) | |
100 m | 0.001 | |||
00:00:00–00:11:24 | 136 | 101 (38.4) | 35 (23.5) | |
00:11:24–00:23.06 | 136 | 89 (33.8) | 47 (31.5) | |
00:23:06–03:14:00 | 140 | 73 (27.8) | 67 (45.0) | |
500 m | 0.290 | |||
00:00:00–02:59:00 | 136 | 93 (35.4) | 43 (28.9) | |
02:59:00–05:02:00 | 136 | 87 (33.1) | 49 (32.9) | |
05:02:00–32:00:00 | 140 | 83 (31.6) | 57 (38.3) | |
½ mile | 0.424 | |||
00:06:59–05:49:00 | 136 | 91 (34.6) | 45 (30.2) | |
05:49:00–10:26:00 | 136 | 81 (30.8) | 55 (36.9) | |
10:26:00–73:40:00 | 140 | 91 (34.6) | 49 (32.9) |
Exposure | 21 m | 100 m | 500 m | Half Mile | ||||
---|---|---|---|---|---|---|---|---|
Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | |
FFR count | ||||||||
Tertile 1 | Ref | Ref | Ref | Ref | ||||
Tertile 2 | 1.26 | 0.73–2.18 | 1.16 | 0.66–2.04 | 1.32 | 0.76–2.3 | 1.06 | 0.6–1.86 |
Tertile 3 | 1.41 | 0.8–2.47 | 1.68 | 0.96–2.93 | 1.38 | 0.76–2.51 | 1.49 | 0.83–2.68 |
Duration | ||||||||
Tertile 1 | Ref | Ref | Ref | Ref | ||||
Tertile 2 | 2.06 * | 1.17–3.65 | 1.24 | 0.7–2.18 | 1.06 | 0.61–1.83 | 1.93 * | 1.1–3.39 |
Tertile 3 | 2.8 *** | 1.58–4.96 | 2.89 *** | 1.65–5.07 | 1.72 * | 1–2.94 | 2.16 ** | 1.22–3.83 |
Weighted duration | ||||||||
Tertile 1 | Ref | Ref | Ref | Ref | ||||
Tertile 2 | 1.62 | 0.92–2.85 | 1.4 | 0.79–2.47 | 1.15 | 0.67–1.99 | 1.25 | 0.72–2.17 |
Tertile 3 | 2.69 ** | 1.53–4.73 | 3.07 *** | 1.76–5.36 | 1.47 | 0.86–2.52 | 1.15 | 0.67–1.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scully, J.Y.; Moudon, A.V.; Hurvitz, P.M.; Aggarwal, A.; Drewnowski, A. A Time-Based Objective Measure of Exposure to the Food Environment. Int. J. Environ. Res. Public Health 2019, 16, 1180. https://doi.org/10.3390/ijerph16071180
Scully JY, Moudon AV, Hurvitz PM, Aggarwal A, Drewnowski A. A Time-Based Objective Measure of Exposure to the Food Environment. International Journal of Environmental Research and Public Health. 2019; 16(7):1180. https://doi.org/10.3390/ijerph16071180
Chicago/Turabian StyleScully, Jason Y., Anne Vernez Moudon, Philip M. Hurvitz, Anju Aggarwal, and Adam Drewnowski. 2019. "A Time-Based Objective Measure of Exposure to the Food Environment" International Journal of Environmental Research and Public Health 16, no. 7: 1180. https://doi.org/10.3390/ijerph16071180