A Land Use/Land Cover Based Green Development Study for Different Functional Regions in the Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Pre-Processing
2.3. Methods
2.3.1. Vegetation Carbon Densities for Different LULC Types
Woodland
Cultivated Land
Other Lands
2.3.2. Soil Organic Carbon Densities for Different LULC Types
2.3.3. LULC Changes and Driving Forces Analysis
2.3.4. Carbon Storage Changes Caused by LULC Changes
3. Results
3.1. Carbon Densities of Different LULC Types
3.2. Quantitative Changes in LULC in the Four Functional Regions
3.3. Spatiotemporal Changes in LULC in the Four Functional Regions
3.4. Driving Forces of LULC Changes
3.5. Effects of LULC Changes on Carbon Storage in the Four Functional Regions
4. Discussion
5. Conclusions
5.1. Conclusions
- (1)
- LULC presented a more obvious change between 2005 and 2010. The built-up land expansion was obvious in four functional regions, especially in the Yangtze River City Group. Water area in both the Coastal Economic Belt and the Jianghuai Ecological Economic Region increased obviously. Woodland area in the Huaihai Economic Region decreased between 1995 and 2015, with the greatest rate of −22.62% during the period of 2005 to 2010.
- (2)
- Between 1995 and 2015, approximately 10.26% of the entire province’s land area had its LULC types changed and expansion of built-up land and declining ecological land were the main LULC types change characteristics, which were mainly caused by socioeconomic development. Due to land use policy, the four functional regions also presented different LULC changes.
- (3)
- The total carbon storage of the entire province decreased by 714.03 × 104 t and the four regions all presented decreasing carbon storage. Cultivated land-built-up land is the main transfer type to carbon storage loss, with the decreased amount reaching 631.30 × 104 t, accounting for 88.41% of the total carbon storage loss. The decrease in carbon storage was largest for the Yangtze River City Group (387.93 × 104 t) because it presented the most obvious built-up land expansion. With much less built-up land expansion and a smaller SOCD difference between built-up land and cultivated land, the decrease in carbon storage in the Huaihai Economic Region was the least at 57.04 × 104 t.
5.2. Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Land use, land use change, and woodlandry. In Special Report of the Intergovernmental Panel on Climate Change; Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N., Verardo, D., Dokken, D., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 181–281. [Google Scholar]
- Bamminger, C.; Poll, C.; Marhan, S. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application. Glob. Chang. Biol. 2018, 24, e318–e334. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Carbon sequestration. Philosophical transactions-Royal Society. Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Scott, N.A.; Tate, K.R.; Giltrap, D.J.; Smith, C.T.; Wilde, H.R.; Newsome, P.J.F.; Davis, M.R. Monitoring land use change effects on soil carbon in New Zealand: Quantifying baseline soil carbon storage. Environ. Pollut. 2002, 116, S167–S186. [Google Scholar] [CrossRef]
- Leifeld, J. Prologue paper: Soil carbon losses from land use change and the global agricultural greenhouse gas budget. Sci. Total Environ. 2013, 46, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Wu, C.Y.; Zhao, R.Q. Spatial Simulation of Land Use based on Terrestrial Ecosystem Carbon Storage in Coastal Jiangsu, China. Sci. Rep. 2014, 4, 5667. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.N.; Feng, Z.D. Desertification and its impact on soil carbon pool in the headwaters of the Yellow River. J. Desert Res. 2008, 28, 208–211. [Google Scholar]
- Yan, Y.C.; Tang, H.P.; Chang, R.Y.; Liu, L. Effects of long-term reclamation and grazing on subsurface carbon sequestration in typical steppe of Inner Mongolia. Environ. Sci. 2008, 29, 1388–1393. [Google Scholar]
- Zhao, R.Q.; Huang, X.J.; Zhong, T.Y.; Peng, J.W. Carbon footprint of different industrial spaces based on energy consumption in China. J. Geogr. Sci. 2011, 21, 285–300. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Lai, L.; Zhang, M. Accounting of surface soil carbon storage and response to land use change based on GIS. Trans. CSAE 2011, 27, 1–6. [Google Scholar] [CrossRef]
- Jaiarree, S.; Chidthaisong, A.; Tangtham, N.; Polprasert, C.; Sarobol, E.; Tyler, S.C. Soil organic carbon loss and turnover resulting from woodland conversion to Maize fields in Eastern Thailand. Pedosphere 2011, 21, 581–590. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L. Emissions of carbon from woodlandry and land use change in tropical Asia. Glob. Chang. Biol. 1999, 5, 481–492. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mappingan urban ecosystem service: Quantifying above-ground carbon storage at a citywide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Cantarello, E.; Newton, A.C.; Hill, R.A. Potential effects of future land use change on regional carbon storage in the UK. Environ. Sci. Policy 2011, 14, 40–52. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.R.; Lai, R. Soil organic carbon and total nitrogen storage under different land uses in a semi-arid water-shed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- Lo, Y.H.; Blanco, J.A.; Canals, R.M.; Andrés, E.G.D.; Emeterio, L.S.; Imbert, J.B.; Castillo, F.J. Land use change effects on carbon and nitrogen storage in the pyrenees during the last 150 years: A modelling approach. Ecol. Model. 2015, 312, 322–334. [Google Scholar] [CrossRef]
- Yang, Y.S.; Xie, J.S.; Sheng, H.; Chen, G.S.; Li, X.; Yang, Z.J. The impact of land use/cover change on storage and quality of soil organic carbon in mid-subtropical mountainous area of southern China. J. Geogr. Sci. 2009, 19, 49–57. [Google Scholar] [CrossRef]
- Zhang, P.Y.; He, J.J.; Hong, X.; Zhang, W.; Cheng, Z.Q.; Pang, B.; Li, Y.Y.; Liu, Y. Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. J. Clean Prod. 2018, 204, 702–711. [Google Scholar] [CrossRef]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Xia, X.Q.; Yang, Z.F.; Xue, Y.; Shao, X.; Yu, T.; Hou, Q.Y. Spatial analysis of land use change effect on soil organic carbon stocks in the eastern regions of China between 1980 and 2000. Geosci. Front. 2017, 8, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Luo, G.P.; Ye, H.; Deng, X.W.; Chen, J.H. Sources and Sinks of Carbon Caused by Forest Land Use Change from 1975 to 2005 in Central Asia. J. Nat. Resour. 2015, 30, 397–408. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Zheng, Z.Q.; Zhang, M.; Liao, Q.L.; Lai, L.; Lu, J.Y. Land use change and its influence to carbon storage of terrestrial ecosystems in Jiangsu region. Resour. Sci. 2011, 33, 1932–1939. (In Chinese) [Google Scholar]
- Zhu, E.Y.; Deng, J.S.; Zhou, M.M.; Gan, M.Y.; Jiang, R.W.; Wang, K.; Shahtahmassebi, A.R. Carbon emissions induced by LULC and land-cover change from1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef]
- Pan, G.X.; Li, L.Q.; Wu, L.S.; Zhang, X.H. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 2003, 10, 79–92. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Huang, X.J.; Zhao, X.F.; Lu, R.C. Impacts of Land Use Change on the Vegetation Carbon Storage in the Region around Taihu Lake. J. Nat. Resour. 2009, 24, 1344–1353. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.S.; Zhao, D. Effects of land use and cover change on terrestrial carbon storage in urbanized areas: A study from Changzhou, China. J. Clean. Prod. 2017, 103, 651–657. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Y.F.; Qi, K.; Fan, Z.Q. The quantitative estimation of woodland carbon storage and its response to land use change in Fuzhou, China. Acta Ecol. Sin. 2016, 36, 5411–5420. [Google Scholar] [CrossRef]
- Wu, G.W.; Zhao, Y.L.; Fu, Y.H.; Ni, W.; Zhang, Y.; Yu, J.X. Impact of reclamation-driven land use change on vegetation carbon store in mining areas. Chin. J. Eco-Agric. 2015, 11, 1437–1444. [Google Scholar] [CrossRef]
- Chang, S.Z.; Wang, Z.M.; Song, K.S.; Liu, D.W.; Zhang, B.; Zhang, C.H.; Zhang, S.M. Impact of land use and land cover change on vegetation carbon storage in Sanjiang Plai. Ecol. Sci. 2010, 29, 207–214. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, Y.C.; Tian, X.; Huang, X.F. Study on spatial heterogeneity and reserve estimation of soil organic carbon in a small karst catchment. Acta Ecol. Sin. 2017, 37, 7647–7659. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, M.X.; Zhang, Y.F.; Wang, C.H.; Chen, G. Effects of land use change on storage of soil organic carbon in deep soil layers in the hilly Loess Plateauregion, China. Acta Sci. Circum. 2014, 34, 3094–3101. [Google Scholar] [CrossRef]
- Yang, Y.S.; Xie, J.S.; Sheng, H.; Chen, G.S.; Li, X. The impact of land use/cover change on soil organic carbon stocks and quality in Mid-subtropical Mountainous Area of Southern China. Acta Geogr. Sin. 2007, 62, 1123–1131. [Google Scholar]
- Zhang, G.G.; Kang, Y.M.; Han, G.D.; Mei, H.; Sakurai, K. Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agric. Scand. Sect. B Soil Plant. Sci. 2011, 61, 356–364. [Google Scholar] [CrossRef]
- Zhang, C.H.; Ju, W.M.; Wang, D.J.; Wang, X.Q.; Wang, X. Biomass carbon stocks and economic value dynamic of forests in Shandong Province from 2004 to 2013. Acta Ecol. Sin. 2018, 38, 1739–1749. [Google Scholar] [CrossRef]
- Cao, F.M.; Yan, W.D.; Tian, D.L.; Deng, X.W.; Chen, J.H. Distribution of biomass and carbon storage in different aged stands of Moso Bamboo plantations in Taojiang, Hunan. Acta Ecol. Sin. 2017, 37, 2005–2013. [Google Scholar] [CrossRef]
- Hu, Y.J.; Li, Y.; Kong, X.B.; Duan, Z.Q.; Lu, M.H. Response of agricultural land carbon storage to land use change in Beijing from 1980 to 2010. Acta Ecol. Sin. 2018, 38, 4625–4636. [Google Scholar] [CrossRef]
- Jiang, Q.O.; Deng, X.Z.; Zhan, J.Y.; Liu, X.Q. Impacts of cultivated land conversion on the vegetation carbon storage in the Huang-Huai-Hai Plain. Geogr. Res. 2008, 27, 839–846. [Google Scholar]
- Chuai, X.W.; Huang, X.J.; Lai, L.; Wang, W.J.; Peng, J.W.; Zhao, R.Q. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.J.; Chuai, X.W.; Yang, H.; Lai, L.; Tan, J.Z. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Huang, X.J.; Yang, H.; Chuai, X.W.; Zhang, M.; Zhong, T.Y.; Chen, Z.G.; Chen, Y.; Wang, W.J.; Thompson, R. Carbon Emissions from Land-Use Change and Management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2008, 28, 547–562. [Google Scholar] [CrossRef]
- Du, X.D.; Jin, X.B.; Yang, X.; Zhou, Y. Spatial pattern of land use change and its driving force in Jiangsu Province. Int. J. Environ. Res. Public Health 2014, 11, 3215–3232. [Google Scholar] [CrossRef]
- Liao, Q.L.; Zhang, X.H.; Li, Z.P.; Pan, G.X.; Smith, P.; Jin, Y.; Wu, X.M. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 2009, 15, 861–875. [Google Scholar] [CrossRef]
- Xu, X.L.; Cao, M.K.; Li, K.R. Temporal-spatial dynamics of carbon storage of woodland vegetation in China. Prog. Geogr. 2007, 26, 1–10. [Google Scholar]
- Li, K.R. Land Use Change and Net Emissions of Greenhouse Gases and Terrestrial Ecosystem Carbon Cycle; Weather Press: Beijing, China, 2002. [Google Scholar]
- Zong, S.X. A study of the biomass and energy of salt vegetation and sand vegetation alone the coast of Jiangsu Province. J. Plant Res. Environ. 1992, 1, 25–30. [Google Scholar]
- Liu, Y.H.; Ding, F.J.; Cui, Y.C.; Xie, T.; Ma, H.; Zhao, W.J. Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China. J. Beijing For. Univ. 2017, 39, 27–33. [Google Scholar]
- Zhang, C.X.; Xie, G.D.; Zhen, L.; Li, S.M.; Deng, X.Z. Estimates of variation in chinese terrestrial carbon storage under an environmental conservation policy scenario for 2000−2025. J. Resour. Ecol. 2011, 2, 315–321. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Zhao, R.Q.; Zhang, M.; Wu, C.Y. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.; Zhang, J.; Lai, M.L.; Liao, Q.L. Spatial variability of soil organic carbon and comprehensive analysis of related factors in Jiangsu Province, China. Pedosphere 2012, 22, 404–414. [Google Scholar] [CrossRef]
- Eatherall, A.; Naden, P.S.; Cooper, D.M. Simulating carbon flux to the estuary: The first step. Sci. Total Environ. 1998, 210, 519–533. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, M.L.; Zou, J.; Zhu, A.X.; Chen, X.; Mi, Y.; Wang, Y.H.; Yang, H.; Li, Y.M. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China. Sci. Total Environ. 2015, 536, 173–181. [Google Scholar] [CrossRef]
- Zhan, J.Y.; Shi, N.N.; He, S.J.; Lin, Y.Z. Factors and mechanism driving the land-use conversion in Jiangxi Province. J. Geogr. Sci. 2010, 20, 525–539. [Google Scholar] [CrossRef]
- Long, H.L.; Tang, G.P.; Li, X.B.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- He, Q.H. Land Use/Cover Change and Its Eco-Environmental Benefits in Coastal Areas of Jiangsu Province. Ph.D. Thesis, Nanjing Normal University, Nanjing, China, 2011. [Google Scholar]
- Euliss, N.H.; Gleasom, R.A.; Olness, A.; McDougal, R.L.; Murkin, H.R.; Robarts, R.D.; Bourbonniere, R.A.; Warner, B.B. North American prairie wetlands are important non-woodlanded land-based storage sites. Sci. Total Environ. 2006, 15, 179–188. [Google Scholar] [CrossRef]
- Ali, G.; Nitivattananon, V. Exercising multidisciplinary approach to assess interrelationship between energy use, carbon emission and land use change in a metropolitan city of Pakistan. Renew. Sustain. Energy Rev. 2012, 16, 775–786. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Ziaur Rahman, M. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Zhao, R.F.; Chen, Y.N.; Shi, P.J.; Zhang, L.H.; Pan, J.H.; Zhao, H.L. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang, China. Environ. Earth Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Xu, T.; Xu, Y.; Jiang, B.; Zhang, L.; Song, W.B.; Zhou, D.M. Evaluation of the ecosystem services in Caohai Wetland, Guizhou Province. Acta Ecol. Sin. 2015, 35, 4295–4303. [Google Scholar] [CrossRef]
- Sharma, B.; Rasul, G.; Chettri, N. The economic value of wetland ecosystem services: Evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosyst. Serv. 2015, 12, 84–93. [Google Scholar] [CrossRef]
- Arrouays, D.; Saby, N.; Walter, C.; Lemercier, B.; Schvartz, C. Relationships between particle-size distribution and organic carbon in French arable topsoils. Soil Use Manag. 2006, 22, 48–51. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; Helkowski, J.H.; Holloway, T.; Howard, E.A.; Kucharik, C.J.; Monfreda, C.; Patz, J.A.; Prentice, I.C.; Ramankutty, N.; Snyder, P.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; Defries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
Category | Crop Species | Hi | Cf | Carbon Storage (Tg) | Carbon Density (kg/m2) |
---|---|---|---|---|---|
Food crops | Wheat | 0.40 | 0.49 | 14.38 | 0.66 |
Rice | 0.45 | 0.41 | 17.79 | 0.78 | |
Corn | 0.40 | 0.47 | 2.96 | 0.66 | |
Sorghum | 0.35 | 0.45 | 0.00 | 0.96 | |
Millet | 0.40 | 0.45 | 0.00 | 0.16 | |
Yam | 0.70 | 0.42 | 0.20 | 0.37 | |
Soya bean | 0.34 | 0.45 | 0.64 | 0.32 | |
Others | 0.40 | 0.45 | 3.43 | 0.70 | |
Total | -- | -- | 35.98 | 0.63 | |
Cash crops | Cotton | 0.10 | 0.45 | 0.53 | 0.56 |
Peanut | 0.43 | 0.45 | 0.37 | 0.41 | |
Rapeseed | 0.25 | 0.45 | 1.91 | 0.51 | |
Sugar cane | 0.50 | 0.45 | 0.04 | 2.76 | |
Tobacco leaf | 0.60 | 0.50 | 0.00 | 0.14 | |
Others | 0.42 | 0.45 | 0.02 | 0.20 | |
Total | -- | -- | 2.85 | 0.50 | |
Other crops | Vegetable | -- | 0.50 | 25.18 | 1.76 |
Fruit | -- | 0.50 | 2.77 | 1.70 | |
Total | -- | -- | 27.95 | 1.75 |
LULC Type | Vegetation Carbon Density (kg/m2) | LULC Type | Vegetation Carbon Density (kg/m2) |
---|---|---|---|
Cultivated land | 1.13 | Water area | 0.00 |
Woodland | 1.94 | Built-up land | 0.11 |
Grassland | 0.21 | Unused land | 0.00 |
Region | Yangtze River City Group | Coastal Economic Belt | Jianghuai Ecological Economic Region | Huaihai Economic Region | |
---|---|---|---|---|---|
LULC Type | |||||
Cultivated land | 3.50 | 2.63 | 3.10 | 2.67 | |
Woodland | 3.57 | 2.44 | 2.82 | 2.87 | |
Grassland | 3.45 | 1.82 | 3.09 | 3.46 | |
Water area | 3.85 | 2.35 | 3.15 | 2.96 | |
Built-up land | 3.73 | 2.57 | 2.91 | 2.93 | |
Unused land | 3.46 | 1.80 | 2.96 | 3.41 | |
Mean | 3.59 | 2.27 | 3.00 | 3.05 |
Region | LULC Tape | Area (km2) | Change Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | ||
Yangtze River City Group | Cultivated land | −488.19 | −1035.46 | −2580.30 | −544.35 | −2.04 | −4.41 | −11.51 | −2.74 |
Woodland | −31.01 | −2.21 | −50.96 | −12.20 | −1.64 | −0.12 | −2.75 | −0.68 | |
Grassland | −3.98 | −3.87 | −19.14 | 20.80 | −2.34 | −2.34 | −11.82 | 14.58 | |
Water area | 53.99 | 225.04 | 224.51 | −97.48 | 1.67 | 6.84 | 6.39 | −2.61 | |
Built-up land | 472.90 | 816.50 | 2358.55 | 632.46 | 10.52 | 16.44 | 40.78 | 7.77 | |
Unused land | −1.91 | 0.00 | 67.33 | −1.04 | −16.69 | −0.02 | 706.86 | −1.35 | |
Coastal Economic Belt | Cultivated land | 45.83 | −48.94 | −698.14 | −2.78 | 0.24 | −0.26 | −3.70 | −0.02 |
Woodland | −1.27 | −0.18 | −27.48 | −27.02 | −0.38 | −0.05 | −8.15 | −8.73 | |
Grassland | −141.27 | −41.79 | −101.33 | −14.05 | −29.03 | −12.10 | −33.39 | −6.95 | |
Water area | 62.93 | 3.43 | 220.66 | −14.34 | 7.48 | 0.38 | 24.31 | −1.27 | |
Built-up land | 33.97 | 87.48 | 536.37 | 115.37 | 1.12 | 2.84 | 16.95 | 3.12 | |
Unused land | −0.14 | 0.00 | 69.91 | −57.23 | −100.00 | 0.00 | 0.00 | −81.85 | |
Jianghui Ecological Economic Region | Cultivated land | −159.68 | −117.52 | −1028.28 | −223.82 | −0.85 | −0.63 | −5.55 | −1.28 |
Woodland | −0.50 | 7.59 | −48.64 | −5.11 | −0.12 | 1.75 | −11.01 | −1.30 | |
Grassland | −0.31 | −1.36 | −27.74 | 3.25 | −0.19 | −0.81 | −16.60 | 2.33 | |
Water area | 109.13 | 52.57 | 150.11 | 10.29 | 2.38 | 1.12 | 3.17 | 0.21 | |
Built-up land | 52.59 | 58.72 | 945.13 | 213.69 | 1.28 | 1.41 | 22.43 | 4.14 | |
Unused land | −0.26 | 0.00 | 9.42 | 0.75 | −100.00 | 0.00 | 0.00 | 7.91 | |
Huaihai Economic Region | Cultivated land | −92.35 | 1.05 | −250.26 | −91.31 | −1.23 | 0.01 | −3.36 | −1.27 |
Woodland | −5.78 | −0.01 | −121.03 | −2.15 | −1.07 | 0.00 | −22.62 | −0.52 | |
Grassland | −0.63 | 0.00 | −20.52 | 3.17 | −1.30 | 0.00 | −42.98 | 11.64 | |
Water area | 6.07 | −0.74 | −14.94 | 0.99 | 1.21 | −0.15 | −2.94 | 0.20 | |
Built-up land | 93.88 | −0.30 | 405.49 | 86.87 | 4.92 | −0.02 | 20.25 | 3.61 | |
Unused land | 0.00 | 0.00 | 1.26 | 1.24 | 0.00 | 0.00 | 36.83 | 26.49 |
Region | 2015 | Cultivated Land | Woodland | Grassland | Water Area | Built-up Land | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|---|
1995 | |||||||||
Yangtze River City Group | Cultivated land | 19,174.32 | 43.74 | 16.20 | 602.64 | 4161.78 | 22.68 | 24,021.36 | |
Woodland | 9.72 | 1732.59 | 0.00 | 4.05 | 104.49 | 30.78 | 1881.63 | ||
Grassland | 5.67 | 1.62 | 132.84 | 16.20 | 16.20 | 0.00 | 172.53 | ||
Water area | 58.32 | 0.81 | 15.39 | 2988.90 | 136.08 | 3.24 | 3202.74 | ||
Built-up land | 82.62 | 7.29 | 0.00 | 21.06 | 4365.09 | 5.67 | 4481.73 | ||
Unused land | 0.00 | 1.62 | 0.00 | 1.62 | 0.00 | 4.05 | 7.29 | ||
Total | 19,330.65 | 1787.67 | 164.43 | 3634.47 | 8783.64 | 66.42 | 33,767.28 | ||
Coastal Economic Belt | Cultivated land | 17,814.33 | 8.10 | 9.72 | 92.34 | 937.98 | 3.24 | 18,865.71 | |
Woodland | 45.36 | 278.64 | 0.00 | 0.00 | 16.20 | 1.62 | 341.82 | ||
Grassland | 195.21 | 0.00 | 154.71 | 106.92 | 34.02 | 0.00 | 490.86 | ||
Water area | 30.78 | 0.00 | 16.20 | 766.26 | 44.55 | 9.72 | 867.51 | ||
Built-up land | 73.71 | 0.00 | 8.10 | 172.53 | 2775.06 | 0.00 | 3029.40 | ||
Unused land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Total | 18,159.39 | 286.74 | 188.73 | 1138.05 | 3807.81 | 14.58 | 23,595.30 | ||
Jianghui Ecological Economic Region | Cultivated land | 17,113.68 | 4.86 | 1.62 | 361.26 | 1315.44 | 8.91 | 18,805.77 | |
Woodland | 30.78 | 382.32 | 0.00 | 4.86 | 11.34 | 0.00 | 429.30 | ||
Grassland | 0.81 | 0.00 | 144.18 | 30.78 | 0.81 | 0.00 | 176.58 | ||
Water area | 52.65 | 0.81 | 0.00 | 4503.60 | 21.06 | 4.05 | 4582.17 | ||
Built-up land | 46.17 | 0.00 | 0.81 | 7.29 | 4035.42 | 0.81 | 4090.50 | ||
Unused land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Total | 17,244.09 | 387.99 | 146.61 | 4907.79 | 5384.07 | 13.77 | 28,084.32 | ||
Huaihai Economic Region | Cultivated land | 6980.58 | 2.43 | 1.62 | 13.77 | 553.23 | 1.62 | 7553.25 | |
Woodland | 103.68 | 388.80 | 0.00 | 0.00 | 29.16 | 0.00 | 521.64 | ||
Grassland | 14.58 | 0.00 | 31.59 | 0.00 | 6.48 | 0.00 | 52.65 | ||
Water area | 4.86 | 0.00 | 0.00 | 478.71 | 19.44 | 1.62 | 504.63 | ||
Built-up land | 12.15 | 1.62 | 0.00 | 3.24 | 1895.40 | 0.81 | 1913.22 | ||
Unused land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.24 | 3.24 | ||
Total | 7115.85 | 392.85 | 33.21 | 495.72 | 2503.71 | 7.29 | 10,548.63 |
Y1 | Y2 | Y3 | Y1 | Y2 | Y3 | ||
---|---|---|---|---|---|---|---|
X1 | –0.903 ** | 0.957 ** | 0.984 ** | X6 | –0.955 ** | -- | 0.967 ** |
X2 | -- | 0.884 ** | 0.954 ** | X7 | –0.941 ** | -- | 0.927 ** |
X3 | –0.942 ** | 0.873 ** | 0.917 ** | X8 | 0.938 ** | -- | -- |
X4 | –0.949 ** | -- | -- | X9 | -- | 0.934 ** | -- |
X5 | –0.895 ** | 0.974 ** | 0.986 ** | X10 | -- | 0.917 ** | -- |
Region | 2015 | Cultivated Land | Woodland | Grassland | Water Area | Built-up Land | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|---|
1995 | |||||||||
Yangtze River City Group | Cultivated land | 0.00 | 3.85 | −1.57 | −47.01 | −328.78 | −2.65 | −376.16 | |
Woodland | −0.86 | 0.00 | 0.00 | −0.67 | −17.45 | −6.31 | −25.29 | ||
Grassland | 0.55 | 0.30 | 0.00 | 0.31 | 0.29 | 0.00 | 1.45 | ||
Water area | 4.55 | 0.13 | −0.29 | 0.00 | −0.14 | −0.13 | 4.13 | ||
Built-up land | 6.53 | 1.22 | 0.00 | 0.02 | 0.00 | −0.22 | 7.55 | ||
Unused land | 0.00 | 0.33 | 0.00 | 0.06 | 0.00 | 0.00 | 0.40 | ||
Total | 10.77 | 5.83 | −1.86 | −47.29 | −346.07 | −9.31 | −387.93 | ||
Coastal Economic Belt | Cultivated land | 0.00 | 0.50 | −1.68 | −13.02 | −101.30 | −0.64 | −116.14 | |
Woodland | −2.81 | 0.00 | 0.00 | 0.00 | −2.75 | −0.42 | −5.98 | ||
Grassland | 33.77 | 0.00 | 0.00 | 3.42 | 2.21 | 0.00 | 39.40 | ||
Water area | 4.34 | 0.00 | −0.52 | 0.00 | 1.47 | −0.53 | 4.76 | ||
Built-up land | 7.96 | 0.00 | −0.53 | −5.69 | 0.00 | 0.00 | 1.74 | ||
Unused land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Total | 43.26 | 0.50 | −2.73 | −15.29 | −100.37 | −1.59 | −76.22 | ||
Jianghui Ecological Economic Region | Cultivated land | 0.00 | 0.26 | −0.15 | −39.02 | −159.17 | −1.13 | −199.21 | |
Woodland | −1.63 | 0.00 | 0.00 | −0.78 | −1.97 | 0.00 | −4.39 | ||
Grassland | 0.08 | 0.00 | 0.00 | −0.46 | −0.02 | 0.00 | −0.41 | ||
Water area | 5.69 | 0.13 | 0.00 | 0.00 | −0.27 | −0.08 | 5.47 | ||
Built-up land | 5.59 | 0.00 | 0.02 | 0.09 | 0.00 | 0.00 | 5.70 | ||
Unused land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Total | 9.72 | 0.39 | −0.13 | −40.17 | −161.44 | −1.21 | −192.84 | ||
Huaihai Economic Region | Cultivated land | 0.00 | 0.25 | −0.02 | −1.16 | −42.05 | −0.06 | −43.04 | |
Woodland | −10.47 | 0.00 | 0.00 | 0.00 | −5.16 | 0.00 | −15.63 | ||
Grassland | 0.19 | 0.00 | 0.00 | 0.00 | −0.41 | 0.00 | −0.22 | ||
Water area | 0.41 | 0.00 | 0.00 | 0.00 | 0.16 | 0.07 | 0.64 | ||
Built-up land | 0.92 | 0.29 | 0.00 | −0.03 | 0.00 | 0.03 | 1.21 | ||
Unused land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Total | −8.95 | 0.53 | −0.02 | −1.18 | −47.46 | 0.04 | −57.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Chuai, X.; Huang, X. A Land Use/Land Cover Based Green Development Study for Different Functional Regions in the Jiangsu Province, China. Int. J. Environ. Res. Public Health 2019, 16, 1277. https://doi.org/10.3390/ijerph16071277
Guo X, Chuai X, Huang X. A Land Use/Land Cover Based Green Development Study for Different Functional Regions in the Jiangsu Province, China. International Journal of Environmental Research and Public Health. 2019; 16(7):1277. https://doi.org/10.3390/ijerph16071277
Chicago/Turabian StyleGuo, Xiaomin, Xiaowei Chuai, and Xianjin Huang. 2019. "A Land Use/Land Cover Based Green Development Study for Different Functional Regions in the Jiangsu Province, China" International Journal of Environmental Research and Public Health 16, no. 7: 1277. https://doi.org/10.3390/ijerph16071277
APA StyleGuo, X., Chuai, X., & Huang, X. (2019). A Land Use/Land Cover Based Green Development Study for Different Functional Regions in the Jiangsu Province, China. International Journal of Environmental Research and Public Health, 16(7), 1277. https://doi.org/10.3390/ijerph16071277