Evaluation of the Submicron Particles Distribution Between Mountain and Urban Site: Contribution of the Transportation for Defining Environmental and Human Health Issues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Measurement Equipment
2.3. Dose Deposition Model
3. Results
3.1. Particle Number Concentration
3.2. Human Respiratory Doses
4. Discussion
4.1. Particle Size Distribution
- -
- Nucleation range (~3–25 nm);
- -
- Aitken nuclei range (~25–90 nm);
- -
- Accumulation mode (~90–1000 nm; this paper studied particles in the range ~90–560 nm).
- -
- Rapid cooling and dilution of gases and/or vapors produced by emissions;
- -
- Chemical reactions involving precursors already present in the atmosphere.
4.2. Dose Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN (United Nations). State of the World’s Cities 2008/2009: Harmonious Cities; UN-Habitat: Nairobi, Kenya, 2008; Available online: https://unhabitat.org/books/state-of-the-worlds-cities-20082009-harmonious-cities-2/ (accessed on 13 April 2019).
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [PubMed]
- CAFE Working Group on PM. Second Position Paper on Particulate Matter. 2004. Available online: http://ec.europa.eu/environment/archives/cafe/pdf/working_groups/2nd_position_paper_pm.pdf (accessed on 13 April 2019).
- WHO. Report on a WHO Workshop Bonn, Germany, 26–27 March 2007. Health Relevance of Particulate Matter from Various Sources; WHO Regional Office for Europe: Copenhagenm, Denmark, 2007. [Google Scholar]
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; van der Gon, H.D.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Avino, P.; Protano, C.; Vitali, M.; Manigrasso, M. Benchmark study on fine-mode aerosol in a big urban area and relevant doses deposited in the human respiratory tract. Environ. Pollut. 2016, 216, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Manigrasso, M.; Febo, A.; Guglielmi, F.; Ciambottini, V.; Avino, P. Relevance of aerosol size spectrum analysis as support to qualitative source apportionment studies. Environ. Pollut. 2012, 170, 43–51. [Google Scholar] [CrossRef]
- Martuzzi, M.; Mitis, F.; Iavarone, I.; Serinelli, M. Health Impact of PM10 and Ozone in 13 Italian Cities; WHO Regional Office for Europe Regional Publications: Copenhagen, Denmark, 2006. [Google Scholar]
- Minoura, H.; Takekawa, H. Observation of number concentration of atmospheric aerosols and analysis of nanoparticle behaviour at an urban background area in Japan. Atmos. Environ. 2005, 39, 5806–5816. [Google Scholar] [CrossRef]
- Stainer, C.O.; Khlystov, A.Y.; Pandis, S.N. Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos. Environ. 2004, 38, 3275–3284. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Karppinen, A.; Kukkonen, J.; Harkonen, J.; Aalto, P.P.; Hameri, K.; Kerminen, V.-M.; Kulmala, M. Meteorological dependance of size-fractioned number concentration of urban aerosol particles. Atmos. Environ. 2006, 40, 1427–1440. [Google Scholar] [CrossRef]
- Kumar, P.; Robins, A.; Vardoulakis, S.; Britter, R. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 2010, 44, 5035–5052. [Google Scholar] [CrossRef] [Green Version]
- Jeong, C.-H.; Greg, J.; Evans, G.J. Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci. Technol. 2009, 43, 364–373. [Google Scholar] [CrossRef]
- Manigrasso, M.; Buonanno, G.; Stabile, L.; Morawska, L.; Avino, P. Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environ. Pollut. 2015, 202, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgharian, B.; Hofmann, W.; Bergmann, R. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 2001, 34, 332–339. [Google Scholar] [CrossRef]
- ICRP. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Ann. ICRP 1994, 24, 1–3. [Google Scholar]
- Manigrasso, M.; Avino, P. Fast evolution of urban ultrafine particles: Implications for deposition doses in the human respiratory system. Atmos. Environ. 2012, 51, 116–123. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Avino, P.; Fuoco, F.C. Dimensional and chemical characterization of airborne particles in schools: Respiratory effects in children. Aerosol Air Qual. Res. 2013, 13, 887–900. [Google Scholar] [CrossRef]
- Avino, P.; Lopez, F.; Manigrasso, M. Regional deposition of submicrometer aerosol in the human respiratory system determined at 1-s time resolution of particle size distribution measurements. Aerosol Air Qual. Res. 2013, 13, 1702–1711. [Google Scholar] [CrossRef]
- Li, X.; Yan, C.; Patterson, R.F.; Zhu, Y.; Yao, X.; Zhu, Y.; Ma, S.; Qiu, X.; Zhu, T.; Zheng, M. Modeled deposition of fine particles in human airway in Beijing, China. Atmos. Environ. 2016, 124, 387–395. [Google Scholar] [CrossRef]
- De Boor, C. A Practical Guide to Splines; Springer: New York, NY, USA, 1978; pp. 1–348. [Google Scholar]
- Hu, M.; Peng, J.; Sun, K.; Yue, D.; Guo, S.; Wiedensohler, A.; Wu, Z. Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing. Environ. Sci. Technol. 2012, 46, 9941–9947. [Google Scholar] [CrossRef]
- Seinfield, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics—From Air Pollution to Climate Change, 2nd ed.; Wiley Interscience: San Francisco, CA, USA, 2006; pp. 325–360. [Google Scholar]
- Avino, P.; Casciardi, S.; Fanizza, C.; Manigrasso, M. Deep investigation of Ultrafine particles in urban air. Aerosol Air Qual. Res. 2011, 11, 654–663. [Google Scholar] [CrossRef]
- Poluzzi, V.; Ricciardelli, I.; Ferrari, S. Aerosol size distribution: Aspetti teorici e primi risultati di monitoraggi effettuati da ARPA Emilia-Romagna. In Focus Sulla Qualità Dell’aria—Qualità Ambiente Urbano; Gaudioso, D., Ed.; ISPRA: Rome, Italy, 2011; pp. 54–85. [Google Scholar]
- Marini, S.; Buonanno, G.; Stabile, L.; Avino, P. A benchmark for numerical scheme validation of airborne particle exposure in street canyons. Environ. Sci. Pollut. Res. 2015, 22, 2051–2063. [Google Scholar] [CrossRef]
- Avino, P.; Manigrasso, M. Dynamic of submicrometer particles in urban environment. Environ. Sci. Poll. Res. 2017, 24, 13908–13920. [Google Scholar] [CrossRef] [PubMed]
- Birmili, W.; Wiedensohler, A.; Heintzemberg, J.; Lehmann, K. Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology. J. Geophys. Res. 2001, 106, 32005–32018. [Google Scholar] [CrossRef] [Green Version]
- Curtius, J. Nucleation of atmospheric aerosol particles. CR Phys. 2006, 7, 1027–1045. [Google Scholar] [CrossRef]
- Hussein, T.; Hameri, K.; Aalto, P.P.; Paatero, P.; Kulmala, M. Modal structure and spatial-temporal variations of urban and suburban aerosols in Helsinki-Finland. Atmos. Environ. 2005, 39, 1655–1668. [Google Scholar] [CrossRef]
- Kulmala, M.; Vehkamaki, H.; Petaja, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.-M.; Birmili, W.; McMurry, P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- Arnold, F.; Pirjola, L.; Aufmhoff, H.; Schuck, T.; Lähde, T.; Hämeri, K. First gaseous sulfuric acid measurements in automobile exhaust: Implications for volatile nanoparticle formation. Atmos. Environ. 2006, 40, 7097–7105. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Avino, P.; Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 2017, 107, 190–195. [Google Scholar] [CrossRef]
- Vana, M.; Tamm, E.; Hõrrak, U.; Mirme, A.; Tammet, H.; Laakso, L.; Aalto, P.P.; Kulmala, M. Charging state of atmospheric nanoparticles during the nucleation burst events. Atmos. Res. 2006, 82, 536–546. [Google Scholar] [CrossRef]
- Manigrasso, M.; Vernale, C.; Avino, P. Traffic aerosol lobar doses deposited in the human respiratory system. Environ. Sci. Pollut. Res. 2017, 24, 13866–13873. [Google Scholar] [CrossRef]
- Kittelson, D. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Voigtländer, J.; Tuch, T.; Birmili, W.; Wiedensohler, A. Correlation between traffic density and particle size distribution in a street canyon and the dependence on wind direction. Atmos. Chem. Phys. 2006, 6, 4275–4286. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Beddows, D.C.S.; Dall’Osto, M. PMF analysis of wide-range particle size spectra collected on a major highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar] [CrossRef] [PubMed]
- Paasonen, P.; Peltola, M.; Kontkanen, J.; Junninen, H.; Kerminen, V.-M.; Kulmala, M. Comprehensive analysis of particle growth rates from nucleation mode to cloud condensation nuclei in boreal forest. Atmos. Chem. Phys. 2018, 18, 12085–12103. [Google Scholar] [CrossRef]
Particles | Rome | Monte Terminillo | |||
---|---|---|---|---|---|
Workday | Weekend | Workday | Weekend | ||
Total | average | 11,905 | 10,006 | 5695 | 4072 |
min–max | 3058–35,964 | 1101–241,000 | 496–25,157 | 540–43,336 | |
st. dev. 1 | 4318 | 12,373 | 1696 | 2837 | |
cv % 2 | 38.3 | 123.7 | 29.8 | 69.7 | |
95 % | 26,930 | 18,615 | 6120 | 5773 | |
UFPs | average | 10,183 | 9299 | 5271 | 3492 |
min–max | 2368–32,300 | 1031–251,438 | 467–23,382 | 493–41,990 | |
st. dev. 1 | 3810 | 12,137 | 1740 | 2550 | |
cv % 2 | 39.9 | 130.5 | 33.0 | 73.0 | |
95 % | 16,472 | 25,348 | 6590 | 5160 | |
no-UFPs | average | 1722 | 707 | 424 | 580 |
min–max | 690–3664 | 70–12,522 | 31–8940 | 47–5170 | |
st. dev. 1 | 698 | 712 | 570 | 600 | |
cv % 2 | 40.5 | 100.7 | 173.0 | 128.2 | |
95 % | 3172 | 1445 | 1500 | 1770 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manigrasso, M.; Protano, C.; Martellucci, S.; Mattei, V.; Vitali, M.; Avino, P. Evaluation of the Submicron Particles Distribution Between Mountain and Urban Site: Contribution of the Transportation for Defining Environmental and Human Health Issues. Int. J. Environ. Res. Public Health 2019, 16, 1339. https://doi.org/10.3390/ijerph16081339
Manigrasso M, Protano C, Martellucci S, Mattei V, Vitali M, Avino P. Evaluation of the Submicron Particles Distribution Between Mountain and Urban Site: Contribution of the Transportation for Defining Environmental and Human Health Issues. International Journal of Environmental Research and Public Health. 2019; 16(8):1339. https://doi.org/10.3390/ijerph16081339
Chicago/Turabian StyleManigrasso, Maurizio, Carmela Protano, Stefano Martellucci, Vincenzo Mattei, Matteo Vitali, and Pasquale Avino. 2019. "Evaluation of the Submicron Particles Distribution Between Mountain and Urban Site: Contribution of the Transportation for Defining Environmental and Human Health Issues" International Journal of Environmental Research and Public Health 16, no. 8: 1339. https://doi.org/10.3390/ijerph16081339