Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Devices
2.2. Test Method
2.3. Evaluation Method
3. Results and Discussion
3.1. PM2.5
3.2. PM10
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Honour, S.L.; Bell, J.N.B.; Ashenden, T.W.; Cape, J.N.; Power, S.A. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics. Environ. Pollut. 2009, 157, 1279–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Ministry of Environment. Annual Report of Air Quality in Korea, 2017; Ministry of Environment: Incheon, Korea, 2018; ISBN 9788965584858.
- Marshall, J.D.; Nethery, E.; Brauer, M. Within-urban variability in ambient air pollution: Comparison of estimation methods. Atmos. Environ. 2008, 42, 1359–1369. [Google Scholar] [CrossRef]
- De Nazelle, A.; Rodriguez, D.A.; Crawford-Brown, D. The built environment and health: Impacts of pedestrian-friendly designs on air pollution exposure. Sci. Total Environ. 2009, 407, 2525–2535. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Lipsky, E.M.; Saleh, R.; Robinson, A.L.; Presto, A.A. Characterizing the spatial variation of air pollutants and the contributions of high emitting vehicles in Pittsburgh, PA. Environ. Sci. Technol. 2014, 48, 14186–14194. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.O. Suitability of the ambient air quality monitoring station in Gyeongju. Korean Soc. Atmos. Environ. 2006, 10, 415–416. [Google Scholar]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. Closing the gap on lower cost air quality monitoring: Machine learning calibration models to improve low-cost sensor performance. Atmos. Meas. Tech. Discuss. 2017. under review. [Google Scholar] [CrossRef]
- Tak, H.M.; Kim, S.H.; Son, I. A study on distributions and spatial properties of geomorphological mountain area. J. Korean Geogr. Soc. 2013, 48, 1–18. [Google Scholar]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, P.; Wu, C.Y. Nanoparticles and the environment. J. Air Waste Manag. Assoc. 2005, 55, 708–746. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Möller, L. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, B.; Midgley, B. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: New York, NY, USA, 2014. [Google Scholar]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Parmita, P.; Srivastava, M.K.; Attri, S.D. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmos. Res. 2013, 125, 50–62. [Google Scholar] [CrossRef]
- Cao, J.; Chow, J.C.; Lee, F.S.; Watson, J.G. Evolution of PM2.5 measurements and standards in the US and future perspectives for China. Aerosol Air Qual. Res. 2013, 13, 1197–1211. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Y.; Bozzetti, C.; Ho, K.; Cao, J.; Han, Y.; Daellenbach, K.R.; Slowik, G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Embassy 2015. Air Quality Data. Available online: http://newdelhi.usembassy.gov/airqualitydataemb.html (accessed on 17 April 2019).
- Air Quality Sensor Performance Evaluation Center (AQ-SPEC). Available online: http://www.aqmd.gov/aq-spec/evaluations/laboratory (accessed on 17 April 2019).
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter Meas. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Petrozzi, S. Practical Instrumental Analysis: Methods, Quality Assurance and Laboratory Management; John Wiley & Sons: Singapore, 2012. [Google Scholar]
Model | GRIMM | E3 | MAXFOR | SK TechX |
---|---|---|---|---|
Abbreviation used in this work | GRIMM | 101 | 201 | 301 |
Appearance | ||||
Measurement Range | 0.25–32 µm in 31 size channels | 0–6000 µg/m3 | 0–500 µg/m3 | 0–500 µg/m3 |
Temperature range | 0–40 °C | −20–70 °C | −40–125 °C | −10–60 °C |
Humidity range | 0–95% RH (non-condensing) | 0–100% RH | 0–100% RH | 0–99% RH |
Wind direction | - | 0–360° | 0–360° | - |
Wind speed | - | 0.5–89 m/s | 0.5–89 m/s | - |
Sensor manufacturer | GRIMM | Yi Shan | Plantower | Plantower |
Devices Section | GRIMM | 101 | 201 | 301 | |
---|---|---|---|---|---|
Mean (µg/m³) | 1st Interval | 30.30 | 7.58 | 29.26 | 2.80 |
2nd Interval | 71.38 | 18.05 | 32.36 | 6.09 | |
3rd Interval | 110.16 | 26.88 | 34.92 | 7.84 | |
4th Interval | 143.94 | 33.56 | 38.62 | 7.55 | |
5th Interval | 197.43 | 45.11 | 34.18 | 10.24 | |
SD | 1st Interval | 11.28 | 9.84 | 1.59 | 8.13 |
2nd Interval | 4.44 | 4.24 | 3.60 | 9.74 | |
3rd Interval | 4.74 | 6.46 | 7.11 | 10.74 | |
4th Interval | 3.83 | 5.87 | 9.18 | 19.10 | |
5th Interval | 7.87 | 9.82 | 11.34 | 25.74 | |
Medium (µg/m³) | 1st Interval | 27.4 | 7 | 29 | 2.7 |
2nd Interval | 71.0 | 18 | 32 | 6.0 | |
3rd Interval | 110.3 | 27 | 35 | 7.8 | |
4th Interval | 144.2 | 33 | 39 | 7.5 | |
5th Interval | 197.7 | 45 | 34 | 10.1 |
Model | B | Standard Error | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|---|---|
Lower Bounding | Upper Bounding | |||||
1st Interval | (Constant) | −1.451 | 1.853 | −4.411 | 3.181 | 0.437 |
101 | 4.231 | 0.233 | 3.609 | 4.535 | 0.000 | |
(Constant) | 41.098 | 27.360 | −13.630 | 95.826 | 0.138 | |
201 | −0.364 | 0.936 | −2.237 | 1.509 | 0.699 | |
(Constant) | 11.208 | 4.717 | 1.773 | 20.644 | 0.021 | |
301 | 6.788 | 1.597 | 3.592 | 9.983 | 0.000 | |
2nd Interval | (Constant) | 49.447 | 10.326 | 28.624 | 70.271 | 0.000 |
101 | 1.212 | 0.573 | 0.056 | 2.368 | 0.040 | |
(Constant) | 92.372 | 13.315 | 65.501 | 119.243 | 0.000 | |
201 | −0.634 | 0.411 | −1.464 | 0.197 | 0.131 | |
(Constant) | 80.367 | 4.686 | 70.910 | 89.824 | 0.000 | |
301 | −1.379 | 0.755 | −2.902 | 0.143 | 0.075 | |
3rd Interval | (Constant) | 105.825 | 14.804 | 75.927 | 135.723 | 0.000 |
101 | 0.161 | 0.546 | −0.941 | 1.264 | 0.769 | |
(Constant) | 101.604 | 9.603 | 82.209 | 120.998 | 0.000 | |
201 | 0.246 | 0.275 | −0.309 | 0.802 | 0.375 | |
(Constant) | 111.945 | 6.517 | 98.785 | 125.106 | 0.000 | |
301 | −0.221 | 0.820 | −1.878 | 1.435 | 0.789 | |
4th Interval | (Constant) | 133.960 | 13.278 | 107.164 | 160.755 | 0.000 |
101 | 0.276 | 0.396 | −0.523 | 1.075 | 0.490 | |
(Constant) | 135.458 | 8.186 | 118.938 | 151.977 | 0.000 | |
201 | 0.202 | 0.213 | −0.228 | 0.632 | 0.348 | |
(Constant) | 141.921 | 3.925 | 134.000 | 149.842 | 0.000 | |
301 | 0.167 | 0.504 | −0.850 | 1.184 | 0.742 | |
5th Interval | (Constant) | 115.045 | 17.295 | 80.141 | 149.948 | 0.000 |
101 | 1.841 | 0.383 | 1.068 | 2.614 | 0.000 | |
(Constant) | 113.471 | 12.514 | 88.217 | 138.725 | 0.000 | |
201 | 2.465 | 0.364 | 1.730 | 3.199 | 0.000 | |
(Constant) | 178.141 | 7.346 | 163.316 | 192.966 | 0.000 | |
301 | 1.931 | 0.706 | 0.506 | 3.355 | 0.009 |
Model | Minimum Value | Maximum Value | Mean | Absolute Value of Mean | |
---|---|---|---|---|---|
1st Interval | 101 | −0.47 | 0.17 | −0.0669 | 0.0669 |
201 | −1.31 | 0.45 | −0.1609 | 0.1609 | |
301 | −1.10 | 0.37 | −0.0975 | 0.0975 | |
2nd Interval | 101 | −0.11 | 0.14 | −0.0006 | 0.0006 |
201 | −0.13 | 0.07 | −0.0274 | 0.0274 | |
301 | −0.14 | 0.08 | −0.0328 | 0.0328 | |
3rd Interval | 101 | −0.13 | 0.09 | −0.0029 | 0.0029 |
201 | −0.14 | 0.09 | −0.0045 | 0.0045 | |
301 | −0.14 | 0.10 | −0.0047 | 0.0047 | |
4th Interval | 101 | −0.03 | 0.08 | 0.0169 | 0.0169 |
201 | −0.03 | 0.08 | 0.0158 | 0.0158 | |
301 | −0.03 | 0.08 | 0.0178 | 0.0178 | |
5th Interval | 101 | −0.06 | 0.06 | −0.0136 | 0.0136 |
201 | −0.07 | 0.05 | −0.0065 | 0.0065 | |
301 | −0.07 | 0.06 | −0.0105 | 0.0105 |
Devices Section | GRIMM | 101 | 201 | 301 | |
---|---|---|---|---|---|
Mean (µg/m³) | 1st Interval | 68.84 | 10.19 | 35.07 | 5.03 |
2nd Interval | 187.38 | 24.87 | 39.74 | 9.31 | |
3rd Interval | 303.12 | 37.24 | 44.78 | 11.68 | |
4th Interval | 396.97 | 46.57 | 49.34 | 11.47 | |
5th Interval | 556.26 | 62.16 | 43.79 | 15.69 | |
SD | 1st Interval | 29.68 | 3.36 | 2.12 | 1.07 |
2nd Interval | 14.61 | 1.51 | 3.15 | 1.22 | |
3rd Interval | 14.53 | 2.18 | 2.91 | 1.40 | |
4th Interval | 13.07 | 1.83 | 3.64 | 1.61 | |
5th Interval | 22.10 | 2.62 | 3.23 | 2.23 | |
Medium | 1st Interval | 61 | 9 | 35 | 5 |
2nd Interval | 189 | 25 | 40 | 9 | |
3rd Interval | 302 | 38 | 45 | 12 | |
4th Interval | 399 | 46 | 50 | 12 | |
5th Interval | 559 | 63 | 44 | 16 |
Model | B | Standard Error | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|---|---|
Lower Bounding | Upper Bounding | |||||
1st Interval | (Constant) | −11.983 | 5.229 | −22.443 | −1.523 | 0.025 |
101 | 8.055 | 0.488 | 7.078 | 9.031 | 0.000 | |
(Constant) | 14.320 | 62.591 | −110.879 | 139.520 | 0.820 | |
201 | 1.583 | 1.781 | −1.979 | 5.145 | 0.377 | |
(Constant) | 1.475 | 15.922 | −30.374 | 33.323 | 0.927 | |
301 | 13.713 | 3.120 | 7.473 | 19.953 | 0.000 | |
2nd Interval | (Constant) | 127.747 | 38.773 | 49.499 | 205.995 | 0.002 |
101 | 2.453 | 1.553 | −0.680 | 5.586 | 0.122 | |
(Constant) | 243.022 | 29.453 | 183.584 | 302.460 | 0.000 | |
201 | −1.368 | 0.742 | −2.866 | 0.130 | 0.072 | |
(Constant) | 213.285 | 17.403 | 178.165 | 248.405 | 0.000 | |
301 | −2.586 | 1.831 | −6.280 | 1.109 | 0.165 | |
3rd Interval | (Constant) | 180.915 | 31.141 | 118.024 | 243.806 | 0.000 |
101 | 3.296 | 0.838 | 1.604 | 4.987 | 0.000 | |
(Constant) | 253.129 | 31.660 | 189.190 | 317.068 | 0.000 | |
201 | 1.139 | 0.704 | −0.283 | 2.561 | 0.113 | |
(Constant) | 269.541 | 18.087 | 233.013 | 306.069 | 0.000 | |
301 | 2.941 | 1.524 | −0.137 | 6.018 | 0.061 | |
4th Interval | (Constant) | 284.705 | 47.801 | 188.238 | 381.172 | 0.000 |
101 | 2.368 | 1.027 | 0.295 | 4.441 | 0.026 | |
(Constant) | 337.257 | 25.764 | 285.264 | 389.250 | 0.000 | |
201 | 1.172 | 0.523 | 0.116 | 2.227 | 0.030 | |
(Constant) | 405.137 | 13.296 | 378.306 | 431.969 | 0.000 | |
301 | −0.892 | 1.138 | −3.188 | 1.404 | 0.437 | |
5th Interval | (Constant) | 293.755 | 63.627 | 165.350 | 422.160 | 0.000 |
101 | 4.248 | 1.023 | 2.182 | 6.313 | 0.000 | |
(Constant) | 385.647 | 33.516 | 318.009 | 453.285 | 0.000 | |
201 | 3.920 | 0.762 | 2.383 | 5.458 | 0.000 | |
(Constant) | 523.669 | 20.202 | 482.901 | 564.438 | 0.000 | |
301 | 2.147 | 1.263 | −0.403 | 4.697 | 0.097 |
Model | Minimum Value | Maximum Value | Mean | Absolute Value of Mean | |
---|---|---|---|---|---|
1st Interval | 101 | −0.36 | 0.18 | −0.0977 | 0.0977 |
201 | −1.36 | 0.52 | −0.2271 | 0.2271 | |
301 | −1.08 | 0.30 | −0.2119 | 0.2119 | |
2nd Interval | 101 | −0.13 | 0.14 | −0.0317 | 0.0317 |
201 | −0.16 | 0.11 | −0.0301 | 0.0301 | |
301 | −0.15 | 0.12 | −0.0405 | 0.0405 | |
3rd Interval | 101 | −0.15 | 0.07 | −0.0091 | 0.0091 |
201 | −0.13 | 0.07 | −0.0158 | 0.0158 | |
301 | −0.11 | 0.08 | −0.0130 | 0.0130 | |
4th Interval | 101 | −0.02 | 0.06 | 0.0168 | 0.0168 |
201 | −0.03 | 0.08 | 0.0161 | 0.0161 | |
301 | −0.04 | 0.08 | 0.0175 | 0.0175 | |
5th Interval | 101 | −0.06 | 0.06 | −0.0118 | 0.0118 |
201 | −0.07 | 0.06 | −0.0084 | 0.0084 | |
301 | −0.07 | 0.07 | −0.0091 | 0.0091 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.-M.; Jeon, H.J.; Yoon, D.K.; Park, S.H.; Hong, H.J.; Choi, K.Y.; Cho, H.W.; Cheon, H.C.; Lee, C.M. Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations. Int. J. Environ. Res. Public Health 2019, 16, 1430. https://doi.org/10.3390/ijerph16081430
Cho E-M, Jeon HJ, Yoon DK, Park SH, Hong HJ, Choi KY, Cho HW, Cheon HC, Lee CM. Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations. International Journal of Environmental Research and Public Health. 2019; 16(8):1430. https://doi.org/10.3390/ijerph16081430
Chicago/Turabian StyleCho, Eun-Min, Hyung Jin Jeon, Dan Ki Yoon, Si Hyun Park, Hyung Jin Hong, Kil Yong Choi, Heun Woo Cho, Hyo Chang Cheon, and Cheol Min Lee. 2019. "Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations" International Journal of Environmental Research and Public Health 16, no. 8: 1430. https://doi.org/10.3390/ijerph16081430
APA StyleCho, E. -M., Jeon, H. J., Yoon, D. K., Park, S. H., Hong, H. J., Choi, K. Y., Cho, H. W., Cheon, H. C., & Lee, C. M. (2019). Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations. International Journal of Environmental Research and Public Health, 16(8), 1430. https://doi.org/10.3390/ijerph16081430