Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method
Abstract
:1. Introduction
2. Research Methods
2.1. Application of HWM in VSL
2.2. Unconditional Quantile Regression Model with Endogeneity
2.3. Choice of Empirical Function Form: Box-Cox Transform
3. Empirical Data Source and Processing
3.1. Manpower Utilization Survey
3.2. Source and Processing of Fatal Risk and Non-Fatal Injuries Risk Variables
3.3. Sample Processing
- based on the general life cycle of labor, those who are aged below 20 years or over 65 years were excluded;
- those who receive monthly wages were used as analysis objects;
- full-time employees were used as analysis objects, and part-time ones were excluded;
- those who are self-employed, employers, and unpaid homemakers were excluded;
- those who earn a wage below the minimum wage according to Taiwan’s official standard (with a monthly salary of less than $625.4, or an hourly rate of $3.79; the 2014 average exchange rate of NT$ dollar to US dollar: 30.38:1) were excluded; and,
- those who have missing information on monthly salary and working hours were excluded.
4. Empirical Results and Discussions
4.1. Choice of Function Form: Box-Cox Estimation Result
4.2. Estimation Result of Hedonic Wage Function
4.3. VSL Estimation under Different Income Levels
5. Conclusions
Funding
Conflicts of Interest
References
- United States Environmental Protection Agency. Valuing Mortality Risk Reductions for Policy: A Meta-Analytic Approach. 2016. Available online: https://yosemite.epa.gov/sab/sabproduct.nsf/0/0CA9E925C9A702F285257F380050C842/$File/VSL%20white%20paper_final_020516.pdf (accessed on 15 May 2018).
- Viscusi, W.K.; Aldy, J.E. The value of a statistical life: A critical review of market estimates throughout the world. J. Risk Uncertain. 2003, 27, 5–76. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Huber, J.; Bell, J. Assessing whether there is a cancer premium for the value of a statistical life. Health Econ. 2014, 23, 384–396. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, L.; Song, C.; Yin, H.; Yang, J. Spatiotemporal assessment of PM2.5-related economic losses from health impacts during 2014–2016 in China. Int. J. Environ. Res. Public Health 2018, 15, 1278. [Google Scholar] [CrossRef]
- Furuya, S.; Chimed-Ochir, O.; Takahashi, K.; David, A.; Takala, J. Global asbestos disaster. Int. J. Environ. Res. Public Health 2018, 15, 1000. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, X.; Zhang, Z. DALY-based health risk assessment of construction noise in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 1045. [Google Scholar] [CrossRef] [PubMed]
- Tekesin, C.; Ara, S. Measuring the value of mortality risk reductions in Turkey. Int. J. Environ. Res. Public Health 2014, 11, 6890–6922. [Google Scholar] [CrossRef] [PubMed]
- Hammit, J.K.; Robinson, L.A. The income elasticity of the value per statistic life: Transferring estimates between high and low income populations. J. Benefit Cost Anal. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Graham, J.D. Willingness to pay for health protection: Inadequate sensitivity to probability. J. Risk Uncertain. 1999, 8, 33–62. [Google Scholar] [CrossRef]
- Corso, P.S.; Hammitt, J.K.; Graham, J.D. Valuing mortality—Risk reduction: Using visual aids to improve validity of contingent valuation. J. Risk Uncertain. 2001, 23, 165–184. [Google Scholar] [CrossRef]
- Alberrini, A.; Cropper, M.; Krupnick, M.; Simon, N.B. Does the value of a statistical life vary with age and health status? Evidence from the US and Canada. J. Environ. Econ. Manag. 2004, 48, 769–792. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Haninger, K. Valuing fatal risks to children and adults: Effects of disease, latency, and risk aversion. J. Risk Uncertain. 2010, 40, 57–83. [Google Scholar] [CrossRef]
- Cameron, T.A.; DeShazo, J.R. Euthanizing the value of a statistic life. Rev. Environ. Econ. Policy 2010, 4, 161–178. [Google Scholar] [CrossRef]
- Cameron, T.A.; DeShazo, J.R.; Johnson, E.H. The effect of children on adult demands for health—Risk reductions. J. Health Econ. 2010, 29, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Chestnut, L.G.; Rowe, R.D.; Breffle, W.S. Economic valuation of mortality—Risk reduction: Stated preference estimates from the United States and Canada. Contemp. Econ. Policy 2012, 30, 399–416. [Google Scholar] [CrossRef]
- Cameron, T.A.; DeShazo, J.R. Demand for health risk reductions: A cross-national comparison between the U.S. and Canada. J. Risk Uncertain. 2013, 41, 245–273. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, P.; Xu, X. Estimation of social value of statistical life using willingness-to-pay method in Nanjing, China. Accid. Anal. Prev. 2016, 95, 308–316. [Google Scholar] [CrossRef]
- Evan, M.F.; Schaur, G. A quantile estimation approach to identify income and age variation in the value of a statistical life. J. Environ. Econ. Manag. 2010, 59, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Kniesner, T.J.; Viscusi, W.K.; Ziliak, J.P. Policy relevant heterogeneity in the value of statistical life: New evidence from panel data quantile regressions. J. Risk Uncertain. 2010, 40, 15–31. [Google Scholar] [CrossRef]
- Viscusi, W.K. Racial differences in labor market values of statistical life. J. Risk Uncertain. 2003, 27, 239–256. [Google Scholar] [CrossRef]
- Smith, V.K.; Evans, M.F.; Kim, H.; Taylor, D.H., Jr. Do the near-elderly value mortality risks differently? Rev. Econ. Stat. 2004, 86, 423–429. [Google Scholar] [CrossRef]
- Viscusi, W.K. The value of life: Estimates with risks by occupation and industry. Econ. Inq. 2004, 42, 29–48. [Google Scholar] [CrossRef]
- Kniesner, T.J.; Viscusi, W.K. Value of a statistical life: Relative position vs. relative age. Am. Econ. Rev. 2005, 95, 142–146. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Aldy, J.E. Labor market estimates of the senior discount for the value of statistical life. J. Environ. Econ. Manag. 2007, 53, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Aldy, J.E.; Viscusi, W.K. Adjusting the value of a statistical life for age and cohort effects. Rev. Econ. Stat. 2008, 90, 573–581. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Hersch, J. The mortality cost to smokers. J. Health Econ. 2008, 27, 943–958. [Google Scholar] [CrossRef]
- Hersch, J.H.; Viscusi, W.K. Immigrant status and the value of statistical life. J. Hum. Resour. 2010, 45, 749–771. [Google Scholar]
- Scotton, C.R.; Taylor, L.O. Valuing risk reductions: Incorporating risk heterogeneity into a revealed preference framework. Resour. Energy Econ. 2011, 33, 381–397. [Google Scholar] [CrossRef]
- Scotton, C.R. New risk rates, inter-industry differential and the magnitude of VSL estimates. J. Benefit Cost Anal. 2013, 4, 39–80. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Masterman, C.J. Income elasticities and global values of a statistical life. J. Benefit Cost Anal. 2017, 8, 226–250. [Google Scholar] [CrossRef]
- Viscusi, W.K. Policy challenges of the heterogeneity of the value of statistical life. Found. Trends Econom. 2011, 6, 99–172. [Google Scholar] [CrossRef]
- Firpo, S.; Fortin, N.M.; Lemieux, T. Unconditional quantile regressions. Econometrica 2009, 77, 953–973. [Google Scholar]
- Borah, B.J.; Basu, A. Highlighting differences between conditional and unconditional quantile regression approaches through an application to assess medication adherence. Health Econ. 2013, 22, 1052–1070. [Google Scholar] [CrossRef]
- Frölich, M.; Melly, B. Unconditional quantile treatment effects under endogeneity. J. Bus. Econ. Stat. 2013, 31, 346–357. [Google Scholar] [CrossRef]
- Powell, D. Quantile treatment effects in the presence of covariates. In Quantile Regression 2017; Bepress: Berkeley, CA, USA, 2017; Available online: http://works.bepress.com/david_powell/4/ (accessed on 25 April 2019).
- Wang, W. Estimation of Value of Statistical Life. Master’s Thesis, Department of Economics, Feng Chia University, Taichung, Taiwan, 1987. [Google Scholar]
- Hsueh, L.M.; Wang, S.W. Evaluation of Value of Statistical Life for Workers in Taiwan Area: Theory and Practice of Wage Premium of Job-Related Risk; Chung-Hua Institution for Economic Research: Taipei, Taiwan, 1987. [Google Scholar]
- Liu, J.-T.; Zhan, F.-G. Estimation of the value of statistical life of workers in Taiwan: Analysis from 1982 to 1986. Acad. Econ. Pap. 1989, 17, 55–87. [Google Scholar]
- Liu, J.T.; Hammitt, J.K.; Liou, J.L. Estimated hedonic wage function and value of life in developing country. Econ. Lett. 1997, 57, 353–358. [Google Scholar] [CrossRef]
- Liu, J.-L. The Older the Less Value? An Analysis in the Effect of Age on the Value of Life; National Central University: Taoyuan City, Taiwan, 2011. [Google Scholar]
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Kniesner, T.J.; Viscusi, W.K.; Woock, C.; Ziliak, J.P. Pinning Down the Value of Statistical Life; IZA Institute of Labor Economics: Bonn, Germany, 2007. [Google Scholar]
- Mardones, C.; Riquelme, M. Estimation of the value of statistical life in Chile and extrapolation to other Latin American countries. Lat. Am. Res. Rev. 2018, 53, 815–830. [Google Scholar] [CrossRef]
- Moore, M.J.; Viscusi, W.K. The quantity-adjusted value of life. Econ. Inq. 1988, 3, 369–388. [Google Scholar] [CrossRef]
- Directorate-General of Budget, Accounting and Statistic, Executive Yuan. Manpower Utilization Survey; Survey Research Data Archive, Academia Sinica: Taipei City, Taiwan, 2014. [Google Scholar]
- Occupational Injuries Ratio per Thousandth under Labor Insurance. Available online: https://statfy.mol.gov.tw/ (accessed on 10 May 2018).
Variable | Definition | Mean | Standard Deviation |
---|---|---|---|
hour_wage | Hourly wage rate(2014 NT$) | 220.3872 | 103.75 |
FRt | Fatalities per 1000 workers in the individual’s industry (t = 2014) | 0.0259 | 0.0407 |
FRt − 1 | Fatalities per 1000 workers in the individual’s industry (t − 1 = 2013) | 0.0123 | 0.0121 |
NFR | Injury per 1000 workers in the individual’s industry | 3.1558 | 2.4898 |
Area_1 | Dummy variable that equals 1 if individual’s location of workplace is in Taipei City | 0.0722 | 0.2589 |
Area_2 | Dummy variable that equals 1 if individual’s location of workplace is in New Taipei City | 0.1062 | 0.3081 |
Area_3 | Dummy variable that equals 1 if individual’s location of workplace is in Taichung City | 0.1256 | 0.3314 |
Area_4 | Dummy variable that equals 1 if individual’s location of workplace is in Tainan City | 0.0833 | 0.2764 |
Area_5 | Dummy variable that equals 1 if individual’s location of workplace is in Kaohsiung City | 0.1233 | 0.3288 |
Area_6 | Dummy variable that equals 1 if individual’s location of workplace is outside of the five municipalities in Taiwan | 0.4894 | 0.5000 |
familysize | Number of family members over 15 years old | 3.6228 | 1.5132 |
Age | Individual’s age in years | 39.2285 | 10.0255 |
Sex | Dummy variable indicating individual is male | 0.5528 | 0.4973 |
Exp | Total number of years worked | 8.3132 | 7.2991 |
Edu1 | Dummy variable that equals 1 if individual’s education attainment is primary school | 0.0216 | 0.1455 |
Edu2 | Dummy variable that equals 1 if individual’s education attainment is junior high school | 0.0893 | 0.2853 |
Edu3 | Dummy variable that equals 1 if individual’s education attainment is senior high school | 0.2343 | 0.4236 |
Edu4 | Dummy variable that equals 1 if individual’s education attainment is vocational high school | 0.0941 | 0.2920 |
Edu5 | Dummy variable that equals 1 if individual’s education attainment is junior college | 0.1545 | 0.3615 |
Edu6 | Dummy variable that equals 1 if individual’s education attainment is university | 0.3261 | 0.4689 |
Edu7 | Dummy variable that equals 1 if individual’s education attainment is master | 0.0730 | 0.2601 |
Edu8 | Dummy variable that equals 1 if individual’s education attainment is Ph.D | 0.0065 | 0.0806 |
Marital | Dummy variable that equals 1 if individual is single without spouse | 0.3958 | 0.4891 |
Indus_size1 | Dummy variable that equals 1 if number of employees of company is 2-9 persons | 0.1993 | 0.3995 |
Indus_size2 | Dummy variable that equals 1 if number of employees of company is 10-29 persons | 0.2028 | 0.4021 |
Indus_size3 | Dummy variable that equals 1 if number of employees of company is 30-49 persons | 0.1002 | 0.3002 |
Indus_size4 | Dummy variable that equals 1 if number of employees of company is 50-99 persons | 0.0888 | 0.2845 |
Indus_size5 | Dummy variable that equals 1 if number of employees of company is 100-199 persons | 0.0924 | 0.2896 |
Indus_size6 | Dummy variable that equals 1 if number of employees of company is 200-499 persons | 0.0541 | 0.2262 |
Indus_size7 | Dummy variable that equals 1 if number of employees of company is above 500 persons | 0.1090 | 0.3116 |
Public_sector | Dummy variable that equals 1 if individual worked in public sector | 0.1535 | 0.3605 |
Occu1 | Dummy variable that equals 1 if individual’s occupation belongs senior officials and chief executives | 0.0345 | 0.1825 |
Occu2 | Dummy variable that equals 1 if individual’s occupation belongs technicians and associate professionals | 0.2116 | 0.4085 |
Occu3 | Dummy variable that equals 1 if individual’s occupation belongs craft and related trades workers | 0.1251 | 0.3308 |
Occu4 | Dummy variable that equals 1 if individual’s occupation belongs clerical support workers | 0.1490 | 0.3561 |
Occu5 | Dummy variable that equals 1 if individual’s occupation belongs service workers and sales | 0.1095 | 0.3123 |
Occu6 | Dummy variable that equals 1 if individual’s occupation belongs elementary labourers | 0.0365 | 0.1875 |
Occu7 | Dummy variable that equals 1 if individual’s occupation belongs professionals | 0.1590 | 0.3658 |
Occu8 | Dummy variable that equals 1 if individual’s occupation belongs skilled agricultural, forestry and fishery Workers | 0.0025 | 0.0501 |
Occu9 | Dummy variable that equals 1 if individual’s occupation belongs stationary plant and machine operators | 0.1724 | 0.3777 |
Number of Observations: 3974 |
Variable | Estimated Coefficient | Standard Errors | 95% Confidence Interval | |
---|---|---|---|---|
−0.7291 *** | 822.91 | −0.7987 | −0.6596 | |
= 3343.98 *** |
Variable | Unconditional Quantile Regression | 2SLS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | ||
0.000277 *** (1.11 × 10−5) | 0.000221 *** (1.31 × 10−5) | 0.000231 *** (4.50 × 10−5) | 0.000285 *** (2.44 × 10−5) | 0.000303 *** (3.34 × 10−5) | 0.000275 *** (2.94 × 10−5) | 0.000366 *** (2.52 × 10−5) | 0.000791 *** (1.35 × 10−5) | 0.000991 *** (8.70 × 10−6) | 0.000188 *** (1.38 × 10−5) | |
0.0000001 *** (2.0 × 10−7) | 0.000001 *** (2.40 × 10−7) | 0.000001 (6.80 × 10−7) | −0.000001 (4.10 × 10−7) | −0.000002 *** (4.90 × 10−7) | −0.000002 *** (3.73 × 10−6) | −0.000003 *** (4.30 × 10−7) | −0.000008 *** (2.30 × 10−7) | −0.000012 *** (1.60 × 10−7) | −0.000001 (1.80 × 10−6) | |
Area_1 | 0.001378 *** (4.57 × 10−5) | 0.001430 *** (6.35 × 10−5) | 0.001080 *** (8.64 × 10−5) | 0.001471 *** (1.38 × 10−4) | 0.001823 *** (1.47 × 10−5) | 0.001808 *** (1.0 × 10−4) | 0.001974 *** (1.46 × 10−4) | 0.002127 *** (8.36 × 10−5) | 0.002297 *** (6.16 × 10−5) | 0.00175 *** (3.05 × 10−4) |
Area_2 | 0.000850 *** (4.92 × 10−5) | 0.000850 *** (7.0 × 10−5) | 0.000565 *** (7.13 × 10−5) | 0.000753 *** (9.50 × 10−5) | 0.000494 *** (1.26 × 10−4) | 0.000327 *** (9.59 × 10−5) | 0.000376 *** (1.39 × 10−4) | 0.000218 *** (8.31 × 10−5) | 0.000196 *** (2.46 × 10−5) | 0.00047 * (2.58 × 10−4) |
Area_3 | 0.000594 *** (4.0 × 10−5) | −0.000022 6.64 × 10−5) | −0.000248 ** (7.63 × 10−5) | −0.000287 ** (1.22 × 10−4) | −0.000272 ** (1.26 × 10−4) | −0.000277 *** (1.21 × 10−4) | −0.000119 (9.57 × 10−5) | −0.000078 (9.49 × 10−5) | 0.000207 *** (5.78 × 10−5) | −0.0000854 (2.42 × 10−4) |
Area_4 | −0.000703 ** (4.95 × 10−5) | −0.001029 *** (7.11 × 10−5) | −0.001285 *** (1.17 × 10−4) | −0.001332 *** (1.02 × 10−4) | −0.001369 *** (1.67 × 10−4) | −0.001322 *** (1.16 × 10−4) | −0.001414 *** (1.23 × 10−4) | −0.001274 *** (7.26 × 10−5) | −0.001035 *** (7.71 × 10−5) | −0.0012083 *** (2.83 × 10−4) |
Area_5 | −0.000919 *** (4.55 × 10−5) | −0.001208 *** (6.13 × 10−5) | −0.001343 *** (7.93 × 10−5) | −0.001208 *** (7.64 × 10−5) | −0.001180 *** (1.01 × 10−4) | −0.001268 *** (8.80× 10−4) | −0.001001 *** (9.40 × 10−5) | −0.000949 *** (1.05 × 10−4) | −0.000562 *** (6.27 × 10−5) | −0.00113 *** (2.42 × 10−4) |
familysize | −0.0000003 (8.63 × 10−7) | −0.000031 * (1.49 × 10−5) | −0.000076 *** (2.0 × 10−5) | −0.000118 *** (1.91 × 10−5) | −0.000149 *** (2.27 × 10−5) | −0.000136 *** (2.33 × 10−5) | −0.000150 *** (2.59 × 10−5) | −0.000193 *** (2.01 × 10−5) | −0.000115 ** (5.3 × 10−6) | −0.0001283 ** (5.10 × 10−5) |
Age | 0.000019 *** (1.55 × 10−7) | 0.0000041 (4.11 × 10−6) | 0.000026 *** (4.0 × 10−6) | 0.00004 *** (6.55 × 10−6) | 0.000066 *** (5.13 × 10−6) | 0.000070 *** (5.55 × 10−6) | 0.000097 *** (4.42 × 10−6) | 0.000107 *** (3.56 × 10−6) | 0.000126 *** (1.69 × 10−6) | 0.0000562 *** (1.19 × 10−5) |
Sex | 0.002458 *** (2.62 × 10−5) | 0.002943 *** (4.77 × 10−5) | 0.003105 *** (5.95 × 10−5) | 0.003257 *** (6.64 × 10−5) | 0.003234 *** (1.11× 10−4) | 0.003384 *** (6.93 × 10−5) | 0.003454 *** (5.92 × 10−5) | 0.003204 *** (5.70 × 10−5) | 0.003479 *** (2.84 × 10−5) | 0.0031233 *** (1.66 × 10−4) |
Exp | 0.000211 *** (1.59 × 10−7) | 0.000228 *** (3.78 × 10−6) | 0.000216 *** (5.0 × 10−6) | 0.000216 *** (5.02 × 10−6) | 0.000185 *** (5.74 × 10−6) | 0.000172 *** (4.57 × 10−6) | 0.000158 *** (5.89 × 10−6) | 0.000156 *** (3.90 × 10−6) | 0.000114 *** (2.70 × 10−6) | 0.0001884 *** (1.34 × 10−5) |
Edu1 | −0.008922 *** (1.67 × 10−4) | −0.008084 *** (3.64 × 10−4) | −0.008208 *** (4.93 × 10−4) | −0.007900 *** (6.36 × 10−4) | −0.008033 *** (7.89 × 10−4) | −0.008181 *** (9.48 × 10−4) | −0.009021 *** (4.02 × 10−4) | −0.008283 *** (3.18 × 10−4) | −0.004672 *** (2.28 × 10−4) | −0.0083917 *** (1.06 × 10−4) |
Edu2 | −0.008049 *** (1.91 × 10−4) | −0.007079 *** (2.55 × 10−4) | −0.007793 *** (4.75 × 10−4) | −0.007421 *** (6.68 × 10−4) | −0.00711 *** (7.52 × 10−4) | −0.007097 *** (8.25 × 10−4) | −0.007838 *** (4.96 × 10−4) | −0.006572 *** (2.09 × 10−4) | −0.004177 *** (1.63 × 10−4) | −0.0073933 *** (9.58 × 10−4) |
Edu3 | −0.007230 *** (1.90 × 10−4) | −0.006746 *** (2.80 × 10−4) | −0.007205 *** (4.26 × 10−5) | −0.006847 *** (6.69 × 10−4) | −0.006373 *** (6.70 × 10−4) | −0.006596 *** (8.62 × 10−4) | −0.007364 *** (4.64 × 10−4) | −0.00631 *** (2.32 × 10−4) | −0.004205 *** (1.62 × 10−4) | −0.0068345 *** (9.26 × 10−4) |
Edu4 | −0.007308 *** (1.55 × 10−4) | −0.006658 *** (3.13 × 10−4) | −0.007051 *** (4.86 × 10−4) | −0.006788 *** (6.60 × 10−4) | −0.005936 *** (7.31 × 10−4) | −0.005825 *** (8.33 × 10−4) | −0.006766 *** (4.50 × 10−4) | −0.005661 *** (2.22 × 10−4) | −0.004070 *** (1.39 × 10−4) | −0.0065956 *** (9.48 × 10−4) |
Edu5 | −0.005864 *** (1.77 × 10−4) | −0.005351 *** (2.78 × 10−4) | −0.005671 *** (4.65 × 10−5) | −0.005323 *** (6.76 × 10−4) | −0.004759 *** (6.86 × 10−4) | −0.005066 *** (8.16 × 10−4) | −0.005828 *** (4.46 × 10−4) | −0.005001 *** (2.23 × 10−4) | −0.003230 *** (1.38 × 10−4) | −0.0054207 *** (9.25 × 10−4) |
Edu6 | −0.005166 *** (1.67 × 10−4) | −0.004439 *** (3.07 × 10−4) | −0.004708 *** (4.25 × 10−4) | −0.004263 *** (6.65 × 10−4) | −0.003408 *** (6.54 × 10−4) | −0.003577 *** (8.59 × 10−4) | −0.004374 *** (4.61 × 10−4) | −0.003503 *** (2.24 × 10−4) | −0.001749 *** (1.4 × 10−4) | −0.0040912 *** (9.14 × 10−4) |
Edu7 | −0.001711 ** (1.67 × 10−4) | −0.001152 *** (3.21 × 10−4) | −0.001849 *** (4.03 × 10−4) | −0.001843 *** (6.61 × 10−4) | −0.001213 * (6.66 × 10−4) | −0.001511 * (8.33 × 10−4) | −0.002622 *** (4.65 × 10−4) | −0.001796 *** (2.62 × 10−4) | −0.000885 *** (1.65 × 10−5) | −0.001758 *** (9.40 × 10−4) |
Marital | −0.000740 *** (1.80 × 10−5) | −0.00095 *** (4.48 × 10−5) | −0.000869 *** (8.16 × 10−5) | −0.000682 *** (8.36 × 10−5) | −0.000710 *** (8.56 × 10−5) | −0.000648 *** (8.41 × 10−5) | −0.000406 *** (8.74 × 10−5) | −0.000465 *** (4.90 × 10−5) | −0.000640 *** (4.32 × 10−5) | −0.0008086 *** (1.90 × 10−4) |
Indus_size1 | −0.002298 *** (7.15 × 10−5) | −0.002277 *** (8.11 × 10−5) | −0.002528 *** (1.05 × 10−4) | −0.002371 *** (1.38 × 10−4) | −0.002165 *** (1.06 × 10−4) | −0.002036 *** (1.15 × 10−4) | −0.002392 *** (1.17 × 10−4) | −0.002416 *** (1.23 × 10−4) | −0.002612 *** (4.41 × 10−5) | −0.0021572 *** (3.08 × 10−4) |
Indus_size2 | −0.001984 *** (7.15 × 10−5) | −0.002076 *** (1.02 × 10−4) | −0.002288 *** (1.19 × 10−4) | −0.002208 *** (1.44 × 10−4) | −0.002018 *** (9.82 × 10−5) | −0.001739 *** (1.06 × 10−4) | −0.001908 *** (1.09 × 10−4) | −0.001936 *** (1.45 × 10−4) | −0.002181 *** (4.93 × 10−5) | −0.0018518 *** (2.95 × 10−4) |
Indus_size3 | −0.001353 *** (7.18 × 10−5) | −0.00166 *** (6.19 × 10−5) | −0.001971 *** (1.29 × 10−4) | −0.002033 *** (1.65 × 10−5) | −0.001785 *** (1.27 × 10−4) | −0.001756 *** (1.44 × 10−4) | −0.002119 *** (1.38 × 10−4) | −0.001731 *** (1.23 × 10−4) | −0.001518 *** (4.44 × 10−5) | −0.0015528 *** (3.38 × 10−4) |
Indus_size4 | −0.000970 *** (5.82 × 10−5) | −0.000915 *** (7.63 × 10−5) | −0.001368 *** (1.55 × 10−4) | −0.001396 *** (1.40 × 10−4) | −0.001342 *** (1.35 × 10−4) | −0.001354 *** (1.71 × 10−4) | −0.00139 *** (9.54 × 10−5) | −0.001317 *** (1.32 × 10−4) | −0.001717 *** (4.37 × 10−5) | −0.0011651 *** (3.44 × 10−4) |
Indus_size5 | −0.001345 *** (4.46 × 10−5) | −0.000763 *** (1.03 × 10−5) | −0.000832 *** (7.45 × 10−5) | −0.000776 *** (1.10 × 10−4) | −0.000476 *** (1.19 × 10−4) | −0.000787 *** (1.17 × 10−4) | −0.000621 *** (1.46 × 10−4) | −0.000737 *** (1.44 × 10−4) | −0.00070 *** (3.46 × 10−5) | −0.0006715 ** (3.38× 10−4) |
Indus_size6 | −0.000284 ** (5.35 × 10−5) | −0.000607 *** (7.39 × 10−5) | −0.000810 *** (1.32 × 10−4) | −0.000828 *** (1.60 × 10−4) | −0.000491 *** (1.52 × 10−4) | −0.000659 *** (1.57 × 10−4) | −0.000481 *** (1.61 × 10−4) | −0.000465 *** (1.63 × 10−4) | −0.000059 (8.80 × 10−5) | −0.0005252 (3.95 × 10−4) |
Public_sector | 0.001471 *** (5.69 × 10−5) | 0.002588 *** (8.02 × 10−5) | 0.002554 *** (1.41 × 10−4) | 0.002786 *** (1.28 × 10−4) | 0.002976 *** (1.39 × 10−4) | 0.002891 *** (8.36 × 10−5) | 0.002663 *** (1.37 × 10−4) | 0.0018900 *** (1.25 × 10−4) | 0.001453 *** (4.94 × 10−5) | 0.0024619 *** (3.37 × 10−4) |
Occu1 | 0.010617 *** (8.41 × 10−5) | 0.009971 *** (1.36 × 10−4) | 0.009650 *** (2.18 × 10−4) | 0.010058 *** (1.67 × 10−4) | 0.009572 *** (1.71 × 10−4) | 0.009685 *** (1.66 × 10−4) | 0.009922 *** (2.87 × 10−4) | 0.010268 *** (1.22 × 10−4) | 0.010080 *** (6.36 × 10−5) | 0.0097288 *** (4.72 × 10−4) |
Occu2 | 0.002878 *** (3.64 × 10−5) | 0.003376 *** (6.99 × 10−5) | 0.003430 *** (9.55 × 10−5) | 0.003463 *** (1.24 × 10−4) | 0.003485 *** (1.23 × 10−4) | 0.004005 *** (9.75 × 10−5) | 0.004180 *** (1.56 × 10−4) | 0.004102 *** (7.27 × 10−5) | 0.004365 *** (3.36 × 10−5) | 0.003553 *** (2.77 × 10−4) |
Occu3 | 0.001010 *** (3.29 × 10−5) | 0.001080 *** (7.19 × 10−5) | 0.000964 *** (9.73 × 10−5) | 0.000758 *** (1.22 × 10−4) | 0.001263 *** (1.25 × 10−4) | 0.001208 *** (1.20 × 10−4) | 0.001262 *** (1.45 × 10−5) | 0.001095 *** (7.09 × 10−5) | 0.001167 *** (6.59 × 10−5) | 0.0010291 *** (2.88 × 10−4) |
Occu4 | −0.000572 *** (3.18 × 10−5) | −0.000098 (9.31 × 10−5) | −0.000007 (1.22 × 10−4) | 0.000072 (1.42 × 10−4) | 0.000351 *** (1.07 × 10−4) | 0.000837 *** (1.54 × 10−4) | 0.001303 *** (1.58 × 10−4) | 0.001301 *** (1.15 × 10−4) | 0.001822 *** (3.86 × 10−5) | 0.0004284 (2.98 × 10−4) |
Occu5 | −0.001535 *** (4.32 × 10−5) | −0.000793 *** (7.92 × 10−5) | −0.001171 *** (9.15 × 10−5) | −0.001043 *** (1.44 × 10−4) | −0.001034 *** (1.38 × 10−4) | −0.000505 *** (1.08 × 10−4) | −0.000123 (1.74 × 10−4) | −0.0000037 (9.60 × 10−4) | 0.001103 *** (4.51 × 10−5) | −0.000768 ** (3.14 × 10−4) |
Occu6 | −0.002188 *** (5.77 × 10−5) | −0.002127 *** (1.15 × 10−4) | −0.002965 *** (1.09 × 10−4) | −0.003494 *** (1.62 × 10−4) | −0.003413 *** (2.843 × 10−4) | −0.003480 *** (1.51 × 10−4) | −0.003644 *** (2.78 × 10−4) | −0.002582 *** (1.48 × 10−4) | −0.002820 *** (5.61 × 10−5) | −0.002998 *** (4.47 × 10−4) |
Occu7 | 0.005651 *** (4.37 × 10−5) | 0.006392 *** (8.0 × 10−5) | 0.006097 *** (1.21 × 10−4) | 0.006086 *** (1.19 × 10−4) | 0.006157 *** (1.60 × 10−4) | 0.006487 *** (1.05 × 10−4) | 0.006232 *** (1.69 × 10−4) | 0.006525 *** (7.84 × 10−5) | 0.007295 *** (5.27 × 10−5) | 0.0062191 *** (3.15 × 10−4) |
Occu8 | −0.003012 *** (7.05 × 10−5) | −0.005679 *** (2.84 × 10−4) | −0.002506 *** (7.14 × 10−4) | −0.001279 ** (5.67 × 10−4) | −0.001911 *** (5.91 × 10−4) | −0.002600 *** (3.16 × 10−4) | −0.002705 *** (7.67 × 10−4) | −0.004767 *** (2.89 × 10−4) | −0.005625 *** (3.55 × 10−4) | −0.0030964 ** (1.53 × 10−3) |
Constant | 1.343386 *** (2.02 × 10−5) | 1.344819 *** (4.04 × 10−4) | 1.346452 *** (4.81 × 10−4) | 1.34677 *** (9.73 × 10−4) | 1.346595 *** (8.64 × 10−4) | 1.347518 *** (1.06 × 10−3) | 1.34864 *** (5.50 × 10−4) | 1.349212 *** (3.10 × 10−4) | 1.34861 *** (1.56 × 10−4) | 1.347459 *** (1.08 × 10−3) |
Obj. Value | −8.20 | −10.91 | −10.47 | −10.11 | −11.61 | −9.39 | −11.17 | −10.68 | −11.13 | −− |
Adj. R2 | −− | −− | −− | −− | −− | −− | −− | −− | −− | 0.5701 |
Model | Hourly Wage ($/h) | Monthly Wage ($/Month) | VSL (Million $) |
---|---|---|---|
UQR: 10% | 4.46 | 822.91 | 8.91 |
UQR: 20% | 4.86 | 855.83 | 7.10 |
UQR: 30% | 5.35 | 921.66 | 7.43 |
UQR: 40% | 5.76 | 987.49 | 9.17 |
UQR: 50% | 6.17 | 1086.24 | 9.74 |
UQR: 60% | 6.86 | 1168.53 | 8.86 |
UQR: 70% | 7.77 | 1316.66 | 11.78 |
UQR: 80% | 9.21 | 1579.99 | 25.46 |
UQR: 90% | 11.32 | 1974.98 | 31.90 |
2SLS | 7.25 | 1254.93 | 6.05 |
Model | VSL 20 Years Old | VSL 30 Years Old | VSL 40 Years Old | VSL 50 Years Old | VSL 60 Years Old |
---|---|---|---|---|---|
UQR: 10% | 4.54 | 6.81 | 9.08 | 11.35 | 13.62 |
UQR: 20% | 3.62 | 5.43 | 7.24 | 9.05 | 10.87 |
UQR: 30% | 3.79 | 5.68 | 7.58 | 9.47 | 11.37 |
UQR: 40% | 4.67 | 7.01 | 9.35 | 11.68 | 14.02 |
UQR: 50% | 4.96 | 7.45 | 9.93 | 12.41 | 14.89 |
UQR: 60% | 4.52 | 6.78 | 9.04 | 11.30 | 13.56 |
UQR: 70% | 6.01 | 9.01 | 12.02 | 15.02 | 18.02 |
UQR: 80% | 12.98 | 19.47 | 25.96 | 32.45 | 38.94 |
UQR: 90% | 16.26 | 24.40 | 32.53 | 40.66 | 48.79 |
2SLS | 3.09 | 4.63 | 6.17 | 7.71 | 9.26 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liou, J.-L. Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method. Int. J. Environ. Res. Public Health 2019, 16, 1620. https://doi.org/10.3390/ijerph16091620
Liou J-L. Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method. International Journal of Environmental Research and Public Health. 2019; 16(9):1620. https://doi.org/10.3390/ijerph16091620
Chicago/Turabian StyleLiou, Je-Liang. 2019. "Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method" International Journal of Environmental Research and Public Health 16, no. 9: 1620. https://doi.org/10.3390/ijerph16091620
APA StyleLiou, J.-L. (2019). Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method. International Journal of Environmental Research and Public Health, 16(9), 1620. https://doi.org/10.3390/ijerph16091620