A Study of Frailty, Mortality, and Health Depreciation Factors in Older Adults
Abstract
:1. Introduction
2. Theoretical Foundation and Empirical Model
SR = g(EXP) g′ > 0 g″ < 0
3. Empirical Results Analysis
3.1. Construction of the FR Index
3.2. Sample Distribution in Terms of FR and DR
3.3. Difference Analysis of Older Adults’ FR and HD
3.4. Difference Analysis of Mortality and Health Depreciation in Older Adults
3.5. Parameter Estimation for the Recursive Probit Regression Model
- The regression equations for individual estimations of FR and MR contain 555 and 1164 valid samples, respectively (left column of Table 5). By contrast, because the independent variable FR involves missing values, the two regression equations for simultaneous estimation both contain 555 valid samples (right column). The results of Table 5 show that HD in older adults significantly affect their FR and MR.
- To compare whether frailty regression and mortality regression should be estimated individually or simultaneously, we use the likelihood ratio test to examine whether the two regression equations are independent from each other. The χ2(1) of the likelihood ratio test is 13.983, rejecting that the two regression equations are independent. This implies that recursive simultaneous equations, instead of individual estimation, should be adopted. Additionally, in the individual estimation, the regression coefficient of FR on DR is 0.252, which is considerably smaller than that in simultaneous estimations (1.967). In other words, individual estimation may underestimate the effect of FR on DR.
- The regression analysis on FR in the panel A of Table 5 shows that TOT_11, DM, Hyper, CTD, and PUD significantly increase FR. By contrast, Alb, TOT_5, and being male significantly reduce FR.
- The regression analysis on MR in panel B of Table 5 shows that HD significantly increases MR through the recursive effect of FR. Moreover, creatinine (Cr), myocardial infarction (MI), and malignant tumors (M_tumor) directly and significantly increase MR.
4. Conclusions and Suggestions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Lee, W.F. Technical Efficiency of District Hospitals in Taiwan: Nonparametric Data Envelopment Analysis. Taipei Econ. Inq. 2004, 40, 61–95. [Google Scholar]
- Cheng, S.H.; Chiang, T.L. The Effect of Universal Health Insurance on Health Care Utilization in Taiwan. J. Am. Med. Assoc. 1997, 278, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.R.; Lin, C.F.; Yu, H.K. The Determinants of Health Care Expenditures in Taiwan. J. Soc. Sci. Philos. 1998, 10, 1–32. [Google Scholar]
- Folland, S.; Goodman, A.C.; Stano, M. The Econ. of Health and Health Care; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Grossman, M.; Kaestner, R. Effects of Education on Health. In The Soc. Benef. of Educ.; Behrman, J., Stacey, N., Eds.; The University of Michigan Press: Ann Arbor, MI, USA, 1997; pp. 69–123. [Google Scholar]
- Grossman, M. The Human Capital Model of the Demand for Health. The Hum. Cap.l Mod. of the Demand for Health; NBER: Cambridge, MA, USA, 1999. [Google Scholar]
- Knox, K.J.; Blankmeyer, E.C.; Stutzman, J.R. Relative economic efficiency in Texas nursing facilities: A profit function analysis. J. Econ. Financ. 1999, 23, 199–213. [Google Scholar] [CrossRef]
- Knox, K.J.; Blankmeyer, E.C.; Stutzman, J. Organizational efficiency and quality in Texas nursing facilities. Health Care Manag. Sci. 2003, 6, 175–188. [Google Scholar] [CrossRef]
- Knox, K.J.; Blankmeyer, E.C.; Stutzman, J.R. Comparative Performance and Quality among Nonprofit Nursing Facilities in Texas. Nonprofit Volunt. Sect. Q. 2006, 35, 631–667. [Google Scholar] [CrossRef]
- Chen, C.S.; Liu, T.C.; Lin, H.C.; Tian, W.H. The Effect of Taiwan’s National Health Insurance on infants’ preventive care use and inpatient care use. Health Policy 2007, 80, 432–443. [Google Scholar] [CrossRef]
- Lin, Y.R.; Chen, C.S.; Liu, T.C.; Lin, H.C. Taiwan’s National Health Insurance System and the Application of Preventive Care: The Case of Papsmear Testing. Public Health 2008, 122, 857–861. [Google Scholar] [CrossRef]
- Liu, T.-C.; Chen, C.-S.; Lin, H.-C. Does Elective Caesarean Section Increase Utilization of Postpartum Maternal Medical Care? Med. Care 2008, 46, 440–443. [Google Scholar] [CrossRef]
- Pel-Littel, R.E.; Schuurmans, M.J.; Emmelot-Vonk, M.H.; Verhaar, H.J.J. Frailty: Defining and measuring of a concept. J. Nutr. Health Aging 2009, 13, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.-H.; Chen, C.-S.; Liu, T.-C. The demand for preventive care services and its relationship with inpatient services. Health Policy 2010, 94, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.K.; Kuo, H.K. Frailty. J. Long-Term Care 2006, 10, 203–206. [Google Scholar]
- Lu, B.L.; Chang, S.L.; Chen, C.Y.; Wu, C.H.; Chang, C.I.; Chen, C.Y. Frailty Status and Associated Factors in Outpatient Older People with Chronic Disease. Taiwan Geriatr. Gerontol. 2010, 5, 36–49. [Google Scholar]
- Wu, P.Y.; Hou, M.T.; Chang, C.L.; Chang, C.S.; Chen, C.Y.; Yang, Y.C.; Chang, C.M.; Wu, C.H. Prevalence and Associated Risk Factors of Frailty in Elderly Male Rural Dwellers in Southern Taiwan. Taiwan Geriatr. Gerontol. 2011, 6, 161–175. [Google Scholar]
- Ke, L.-S. Frailty in the elderly: A concept analysis. Hu Li Za Zhi 2013, 60, 105–110. [Google Scholar]
- Tseng, M.Y.; Tu, S.Y.; Lin, C.C.; Hsu, S.M. A Study on the Frailty Status among Elderly in a Long-Term Care Facility. J. Meiho Univ. 2015, 34, 1–16. [Google Scholar]
- Chen, C.Y. Research and Application of Geriatric Frailty in Taiwan. J. Long-Term Care 2015, 19, 137–147. [Google Scholar]
- Rockwood, K.; Fox, R.A.; Stolee, P.; Robertson, D.; Beattie, B.L. Frailty in elderly people: An evolving concept. Can. Med. Assoc. J. 1994, 150, 489–495. [Google Scholar]
- Rockwood, K.; Stadnyk, K.; Macknight, C.; McDowell, I.; Hébert, R.; Hogan, D.B. A brief clinical instrument to classify frailty in elderly people. Lancet 1999, 353, 205–206. [Google Scholar] [CrossRef]
- Fried, L.P.; Ferrucci, L.; Darer, J.; Williamson, J.D.; Anderson, G. Untangling the concepts of disability, frailty, and comorbidity: Implications for improved targeting and care. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2004, 59, M255–M263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuurmans, H.; Steverink, N.; Lindenberg, S.; Frieswijk, N.; Slaets, J.P. Old or Frail: What Tells Us More? J. Gerontol. Ser. A Biol. Sci. Med Sci. 2004, 59, M962–M965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, K.; Song, X.; Macknight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. Can. Med. Assoc. J. 2005, 173, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacciatore, F.; Abete, P.; Mazzella, F.; Viati, L.; Della Morte, D.; D’Ambrosio, D.; Gargiulo, G.; Testa, G.; De Santis, D.; Galizia, G.; et al. Frailty predicts long-term mortality in elderly subjects with chronic heart failure. Eur. J. Clin. Investig. 2005, 35, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.O.; Avant, K.C. Strategies for Theory Construction in Nursing, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Van Iersel, M.B.; Rikkert, M.G.M.O. Frailty criteria give heterogeneous results when applied in clinical practice. J. Am. Geriatr. Soc. 2006, 54, 728–729. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Wu, S.-C.; Chen, L.-J.; Lue, B.-H. The prevalence of subjective frailty and factors associated with frailty in Taiwan. Arch. Gerontol. Geriatr. 2010, 50, S43–S47. [Google Scholar] [CrossRef]
- Lundin, H.; Sääf, M.; Strender, L.-E.; Mollasaraie, H.A.; Salminen, H. Mini nutritional assessment and 10-year mortality in free-living elderly women: A prospective cohort study with 10-year follow-up. Eur. J. Clin. Nutr. 2012, 66, 1050–1053. [Google Scholar] [CrossRef]
- An, M.S.; Kim, S.A.; Lee, J.-H.; Choi, S.-W.; Shin, M.-H. Glycated Hemoglobin and All-Cause Mortality in Korean Type 2 Diabetes. Chonnam Med. J. 2017, 53, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Osborn, K. Cumulative Illness Rating Scale (CIRS) can be Used to Predict Hospital Outcomes in Older Adults. J. Geriatr. Med. Gerontol. 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.C.; Sun, J.; Qureshi, A.R.; Dai, L.; Snaedal, S.; Barany, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P. The higher mortality associated with low serum albumin is dependent on systemic inflammation in end-stage kidney disease. PLoS ONE 2018, 13, e0190410. [Google Scholar] [CrossRef]
- Van Rijn, M.; Suijker, J.J.; Bol, W.; Hoff, E.; Ter Riet, G.; De Rooij, S.E.; Van Charante, E.P.M.; Buurman, B.M. Comprehensive geriatric assessment: Recognition of identified geriatric conditions by community-dwelling older persons. Age Ageing 2016, 45, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, J.; Phillips, G.; Radotra, I.; Smailes, S.; Dziewulski, P.; Zhang, J.; Martin, N. Frailty: An independent predictor of burns mortality following in-patient admission. Burns 2018, 44, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
Male | Female | |
---|---|---|
Weight Loss | Larger than 5 kg lost unintentionally in prior year | |
15 Foot Walk Time | Taking 7 s or more to walk a distance of 6 m | |
Grip Strength | grip strength ≤ 24 Kg | grip strength ≤ 18 Kg |
Physical Activity (MLTA) | <383 kcal/week | <270 kcal/week |
Kcals per week expended are calculated as follows: 1. walking (MET 2.5 kcal/kg.hr) 2.5′ × weight × time (hours) per day × 7 = a 2. fast walking, climbing stairs (MET 4.5 kcal/kg.hr) 4.5 × weight × time (hours) per day × 7 = b 3. jogging, swimming (MET 6.5 kcal/kg.hr) 6.5 × weight × time (hours)per day × 7 = c 4. almost none (MET 0.5 kcal/kg.hr) 0.5 × weight × time (hours)per day × 7 = d Total energy expenditure per week is adding up a, b, c and d. | ||
Low Energy/Exhaustion | The question asked is “How often in the last week did you feel this way?” Using the CES–D * Depression Scale, the following two statements: (a) I felt that everything I did was an effort; (b) I could not get going. 0 = rarely or none of the time (<1 day); 1 = some or a little of the time (1–2 days); 2 = a moderate amount of the time (3–4 days); 3 = most of the time. (>4 days) Subjects answering “2” or “3” to either of these questions are categorized as frail by the exhaustion criterion. |
Relative Health (%) | Frailty (%) | Total | |
---|---|---|---|
Survival | 830 (70.88) | 341 (29.12) | 1171 (100.00) |
Mortality | 45 (58.44) | 32 (41.56) | 77 (100.00) |
Total | 875 (70.11) | 373 (29.89) | 1248 (100.00) |
Variable | Relative Health | Frailty | Number of Samples | Difference Test | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Panel A: HD (Interval Variables) | ||||||
Albumin (Alb) | 3.741 | ±0.701 | 3.554 | ±0.713 | 925 | −3.763 *** |
Fasting glucose (F_Glu) | 108.782 | ±29.613 | 113.905 | ±32.997 | 849 | 2.129 **a |
Creatinine (Cr) | 1.334 | ±1.168 | 1.418 | ±1.280 | 1164 | 1.069 a |
Glomerular filtration rate (eGFR) | 70.495 | ±34.542 | 68.540 | ±34.504 | 1160 | −0.892 |
Hemoglobin (HgB) | 12.328 | ±2.044 | 11.863 | ±1.973 | 1135 | −3.592 *** |
Mini nutritional assessment (TOT_5) | 1.695 | ±0.551 | 1.399 | ±0.679 | 1242 | −6.930 ***a |
Modified cumulative illness rating scale―geriatric version (TOT_8) | 6.981 | ±4.001 | 7.255 | ±3.737 | 1228 | 1.119 |
Age-adjusted Charlson comorbidity index (TOT_11) | 1.237 | ±1.176 | 1.649 | ±1.554 | 984 | 4.255 ***a |
Panel B: HD (Dummy Variables) | ||||||
Diabetes (DM) | 0.362 | ±0.481 | 0.485 | ±0.500 | 1248 | 4.059 *** |
Hypertension (HT) | 0.721 | ±0.449 | 0.812 | ±0.391 | 1248 | 3.397 *** |
Hyperlipidemia (Hyper) | 0.267 | ±0.443 | 0.359 | ±0.480 | 1248 | 3.255 *** |
Myocardial infarction (MI) | 0.088 | ±0.283 | 0.105 | ±0.306 | 1248 | 0.922 |
Congestive heart failure (CHF) | 0.168 | ±0.374 | 0.212 | ±0.409 | 1248 | 1.838 * |
Peripheral artery disease (PAD) | 0.075 | ±0.264 | 0.091 | ±0.288 | 1248 | 0.936 |
Cerebrovascular disease (CVAD) | 0.179 | ±0.384 | 0.231 | ±0.422 | 1248 | 2.087 ** |
Dementia | 0.265 | ±0.442 | 0.316 | ±0.466 | 1248 | 1.843 * |
Chronic obstructive pulmonary disease (COPD) | 0.353 | ±0.478 | 0.383 | ±0.487 | 1248 | 1.017 |
Connective tissue disease (CTD) | 0.072 | ±0.259 | 0.113 | ±0.317 | 1248 | 2.364 ** |
Peptic ulcer disease (PUD) | 0.232 | ±0.422 | 0.284 | ±0.452 | 1248 | 1.954 * |
Chronic kidney disease (CKD) | 0.386 | ±0.487 | 0.504 | ±0.507 | 1248 | 3.854 *** |
Hemiparesis (Hemi) | 0.023 | ±0.150 | 0.040 | ±0.197 | 1248 | 1.699 * |
Malignant tumor (M_tumor) | 0.039 | ±0.193 | 0.027 | ±0.162 | 1248 | 1.056 |
Moderate-to-severe liver disease (L_disease) | 0.138 | ±0.345 | 0.177 | ±0.382 | 1248 | 1.751 * |
Panel C: Control Variable | ||||||
Sex (Sex) | 0.864 | ±0.343 | 0.697 | ±0.460 | 1248 | 6.937 *** |
Variable | Survival | Mortality (MR) | Number of Samples | Difference Test | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Panel A: HD (Interval Variables) | ||||||
Albumin(Alb) | 3.727 | ±0.672 | 3.119 | ±0.903 | 925 | −7.073 *** |
Fasting glucose (F_Glu) | 110.601 | ±31.313 | 106.241 | ±24.403 | 849 | −1.286 a |
Creatinine (Cr) | 1.332 | ±1.635 | 1.749 | ±1.635 | 1164 | 2.195 **a |
Glomerular filtration rate (eGFR) | 70.186 | ±33.520 | 65.724 | ±46.531 | 1160 | −0.826 a |
Hemoglobin (HgB) | 12.384 | ±1.978 | 10.778 | ±2.274 | 1135 | −6.346 *** |
Mini nutritional assessment (TOT_5) | 1.612 | ±0.591 | 1.303 | ±0.749 | 1242 | −81.205 ***a |
Modified cumulative illness rating scale―geriatric version (TOT_8) | 7.082 | ±3.912 | 6.770 | ±4.110 | 1228 | −0.663 |
Age-adjusted Charlson comorbidity index (TOT_11) | 1.342 | ±1.297 | 1.826 | ±1.653 | 984 | 2.377 **a |
Panel B: HD (Dummy Variables) | ||||||
Diabetes (DM) | 0.396 | ±0.489 | 0.442 | ±0.450 | 1248 | 0.786 |
Hypertension (HT) | 0.741 | ±0.438 | 0.857 | ±0.352 | 1248 | 2.269 ** |
Hyperlipidemia (Hyper) | 0.289 | ±0.453 | 0.390 | ±0.491 | 1248 | 1.881 * |
Myocardial infarction (MI) | 0.086 | ±0.280 | 0.208 | ±0.408 | 1248 | 3.581 *** |
Congestive heart failure (CHF) | 0.175 | ±0.380 | 0.273 | ±0.448 | 1248 | 2.155 ** |
Peripheral artery disease (PAD) | 0.079 | ±0.269 | 0.104 | ±0.307 | 1248 | 0.792 |
Cerebrovascular disease (CVAD) | 0.190 | ±0.392 | 0.273 | ±0.448 | 1248 | 1.784 * |
Dementia | 0.281 | ±0.450 | 0.273 | ±0.448 | 1248 | 0.155 |
Chronic obstructive pulmonary disease (COPD) | 0.358 | ±0.480 | 0.429 | ±0.498 | 1248 | 1.251 |
Connective tissue disease (CTD) | 0.085 | ±0.280 | 0.065 | ±0.248 | 1248 | 0.626 |
Peptic ulcer disease (PUD) | 0.239 | ±0.427 | 0.377 | ±0.488 | 1248 | 2.707 *** |
Chronic kidney disease (CKD) | 0.413 | ±0.493 | 0.545 | ±0.501 | 1248 | 2.273 ** |
Hemiparesis (Hemi) | 0.026 | ±0.150 | 0.065 | ±0.248 | 1248 | 2.023 ** |
Leukemia | 0.008 | ±0.087 | 0.013 | ±0.114 | 1248 | 0.504 |
Malignant tumor (M_tumor) | 0.030 | ±0.170 | 0.117 | ±0.323 | 1248 | 4.007 *** |
Panel C: Control Variable | ||||||
Sex (Sex) | 0.816 | ±0.388 | 0.792 | ±0.408 | 1248 | 0.487 |
Panel A: FR Regression Model | |||
---|---|---|---|
Variable | Expected Direction | Individual Estimation | Simultaneous Estimation |
Albumin(Alb) | − | −0.029 (−0.30) | −0.114 ** (−1.84) |
Fasting glucose (F_Glu) | − | −0.000 (−0.11) | −0.002 (−0.99) |
Hemoglobin (HgB) | − | −0.014 (−0.43) | −0.014 (−0.61) |
Mini nutritional assessment (TOT_5) | − | −0.202 ** (−2.12) | −0.157 ** (−2.20) |
Age-adjusted Charlson comorbidity index (TOT_11) | + | 0.060 * (1.40) | 0.075 *** (2.71) |
Diabetes (DM) | + | 0.296 ** (2.29) | 0.188 ** (2.07) |
Hypertension (HT) | + | 0.002 (0.01) | 0.091 (0.86) |
Hyperlipidemia (Hyper) | + | 0.232 ** (1.92) | 0.236 *** (3.29) |
Congestive heart failure (CHF) | + | 0.090 (0.65) | −0.020 (−0.19) |
Cerebrovascular disease (CVAD) | − | −0.011 (−0.08) | 0.068 (0.80) |
Dementia | + | 0.204 * (1.71) | 0.023 (0.26) |
Connective tissue disease (CTD) | + | 0.355 ** (2.06) | 0.213 * (1.59) |
Peptic ulcer disease (PUD) | + | 0.036 (0.29) | 0.121 * (1.61) |
Chronic kidney disease (CKD) | + | 0.036 (0.28) | −0.014 (−0.18) |
Hemiparesis (Hemi) | + | 0.255 (0.90) | −0.090 (−0.31) |
Moderate-to-severe liver disease (L_disease) | + | 0.098 (0.70) | 0.065 (0.72) |
Sex | − | −0.442 *** (−3.16) | −0.372 *** (−3.80) |
Constant | 0.023 (0.05) | 0.448 (1.25) | |
Number of samples | 555 | 555 | |
Likelihood ratio test | χ2(17) = 54.10 *** | NA | |
Panel B: MR Regression Model | |||
Frailty FR | + | 0.252 ** (2.09) 0.079 ** (2.05) 0.462 *** (2.85) 0.753 *** (3.36) | 1.967 *** (17.59) |
Creatinine (Cr) | + | 0.048 ** (1.93) | |
Myocardial infarction (MI) | + | 0.421 *** (3.71) | |
Malignant tumor (M_tumor) | + | 0.569 *** (3.19) | |
Constant | ? | −1.820 *** (−18.76) | −1.867 *** (−17.11) |
Number of samples | 1164 | 555 | |
Likelihood ratio test | χ2(4) = 27.76 *** | χ2(21) = 465.83 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-R.; Kao, E.H.-C.; Weng, S.-C.; Rouyer, E. A Study of Frailty, Mortality, and Health Depreciation Factors in Older Adults. Int. J. Environ. Res. Public Health 2020, 17, 211. https://doi.org/10.3390/ijerph17010211
Lin J-R, Kao EH-C, Weng S-C, Rouyer E. A Study of Frailty, Mortality, and Health Depreciation Factors in Older Adults. International Journal of Environmental Research and Public Health. 2020; 17(1):211. https://doi.org/10.3390/ijerph17010211
Chicago/Turabian StyleLin, Jwu-Rong, Erin Hui-Chuan Kao, Shuo-Chun Weng, and Ellen Rouyer. 2020. "A Study of Frailty, Mortality, and Health Depreciation Factors in Older Adults" International Journal of Environmental Research and Public Health 17, no. 1: 211. https://doi.org/10.3390/ijerph17010211
APA StyleLin, J. -R., Kao, E. H. -C., Weng, S. -C., & Rouyer, E. (2020). A Study of Frailty, Mortality, and Health Depreciation Factors in Older Adults. International Journal of Environmental Research and Public Health, 17(1), 211. https://doi.org/10.3390/ijerph17010211