Simple Prediction of Metabolic Equivalents of Daily Activities Using Heart Rate Monitor without Calibration of Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Model Development
2.4. Validation Test and Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Coefficients of Independent Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arena, R.; McNeil, A.; Sagner, M.; Hills, A. The Current Global State of Key Lifestyle Characteristics: Health and Economic Implications. Prog. Cardiovasc. Dis. 2017, 59, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J. Physical activity in the prevention of the most frequent chronic diseases: An analysis of the recent evidence. Asian Pac. J. Cancer Prev. 2007, 8, 325–338. [Google Scholar] [PubMed]
- Levine, J.A. Nonexercise activity thermogenesis—Liberating the life-force. J. Intern. Med. 2007, 262, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K. Assessment of physical activity: A critical appraisal. Eur. J. Appl. Physiol. 2009, 105, 823–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hikihara, Y.; Tanaka, S.; Ohkawara, K.; Ishikawa-Takata, K.; Tabata, I. Validation and comparison of 3 accelerometers for measuring physical activity intensity during nonlocomotive activities and locomotive movements. J. Phys. Act. Health 2012, 9, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Berggren, G.; Hohwu, C.E. Heart rate and body temperature as indices of metabolic rate during work. Arbeitsphysiologie 1950, 14, 255–260. [Google Scholar] [CrossRef]
- Spurr, G.B.; Prentice, A.M.; Murgatroyd, P.R.; Goldberg, G.R.; Reina, J.C.; Christman, N.T. Energy expenditure from minute-by-minute heart-rate recording: Comparison with indirect calorimetry. Am. J. Clin. Nutr. 1988, 48, 552–559. [Google Scholar] [CrossRef]
- Dauncey, M.; James, W. Assessment of the heart-rate method for determining energy expenditure in man, using a whole-body calorimeter. Br. J. Nutr. 1979, 42, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hiilloskorpi, H.; Fogelholm, M.; Laukkanen, R.; Pasanen, M.; Oja, P.; Mänttäri, A.; Natri, A. Factors affecting the relation between heart rate and energy expenditure during exercise. Int. J. Sports Med. 1999, 20, 438–443. [Google Scholar] [CrossRef]
- Keytel, L.R.; Goedecke, J.H.; Noakes, T.D.; Hiiloskorpi, H.; Laukkanen, R.; van der Merwe, L.; Lambert, E.V. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J. Sports Sci. 2005, 23, 289–297. [Google Scholar] [CrossRef]
- Charlot, K.; Cornolo, J.; Borne, R.; Brugniaux, J.V.; Richalet, J.P.; Chapelot, D.; Pichon, A. Improvement of energy expenditure prediction from heart rate during running. Physiol. Meas. 2014, 35, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Booyens, J.; Hervey, G. The pulse rate as a means of measuring metabolic rate in man. Can. J. Biochem. Physiol. 1960, 38, 1301–1309. [Google Scholar] [CrossRef]
- Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of mental stress on heart rate and heart rate variability. IFMBE Proc. 2008, 22, 1366–1369. [Google Scholar]
- Hiilloskorpi, H.K.; Pasanen, M.E.; Fogelholm, M.G.; Laukkanen, R.M.; Mänttäri, A.T. Use of heart rate to predict energy expenditure from low to high activity levels. Int. J. Sports Med. 2003, 24, 332–336. [Google Scholar] [PubMed]
- Strath, S.J.; Swartz, A.M.; Bassett, J.D.; O’Brien, W.L.; King, G.A.; Ainsworth, B.E. Evaluation of heart rate as a method for assessing moderate intensity physical activity. Med. Sci. Sports Exerc. 2000, 32, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Ko, S.; Kojaku, S. Resting heart rate, heart rate reserve, and metabolic syndrome in professional firefighters: A cross-sectional study. Am. J. Ind. Med. 2017, 60, 900–910. [Google Scholar] [CrossRef]
- Cooper, K.; Pollock, M.; Martin, R.; White, S.R.; Linnerud, A.C.; Jackson, A. Physical fitness levels vs selected coronary risk factors. JAMA 1976, 236, 166–169. [Google Scholar] [CrossRef]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Izumi, S.; Nagayoshi, S.; Kawaguchi, H.; Yoshimoto, M.; Shiga, T.; Ando, T.; Nakae, S.; Usui, C.; Aoyama, T.; et al. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices. Biomed. Eng. Online 2018, 17, 100. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.; Selvaraj, N.; Ferdosi, N.; Narasimhan, R. Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; IEEE: New York, NY, USA, 2013; pp. 6115–6118. [Google Scholar] [CrossRef]
- Porges, S.; Byrne, E. Research methods for measurement of heart rate and respiration. Biol. Psychol. 1992, 34, 93–130. [Google Scholar] [CrossRef]
- Mulder, L. Measurement and analysis methods of heart rate and respiration for use in applied environments. Biol. Psychol. 1992, 34, 205–236. [Google Scholar] [CrossRef]
- Weir, J.B.d.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Rennie, K.L.; Hennings, S.J.; Mitchell, J.; Wareham, N.J. Estimating energy expenditure by heart-rate monitoring without individual calibration. Med. Sci. Sports Exerc. 2001, 33, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Karhunen, L.; Franssila-Kallunki, A.; Rissanen, A.; Kervinen, K.; Kesäniemi, Y.A.; Uusitupa, M. Determinants of resting energy expenditure in obese non-diabetic caucasian women. Int. J. Obes. 1997, 21, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Petrov, B.N., Csádki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Daoud, J. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Black, A.; Coward, W.; Cole, T.; Prentice, A.M. Human energy expenditure in affluent societies: An analysis of 574 doubly-labelled water measurements. Eur. J. Clin. Nutr. 1996, 50, 72–92. [Google Scholar]
- Crouter, S.; Churilla, J.; Bassett, D. Accuracy of the Actiheart for the assessment of energy expenditure in adults. Eur. J. Clin. Nutr. 2008, 62, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Alhassan, S.; Lyden, K.; Howe, C.; Keadle, S.K.; Nwaokelemeh, O.; Freedson, P.S. Accuracy of accelerometer regression models in predicting energy expenditure and METs in children and youth. Pediatr. Exerc. Sci. 2012, 24, 519–536. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.L.; Carstensen, B.; Helge, J.W.; Johansen, N.B.; Gram, B.; Christiansen, J.S.; Brage, S.; Lauritzen, T.; Jørgensen, M.E.; Aadahl, M.; et al. Combined heart rate- and accelerometer-assessed physical activity energy expenditure and associations with glucose homeostasis markers in a population at high risk of developing diabetes: The addition-PRO study. Diabetes Care 2013, 36, 3062–3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Kwak, K.C.; Kim, Y.T. Estimation of energy expenditure using a patch-type sensor module with an incremental radial basis function neural network. Sensors 2016, 16, 1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br. J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Strath, S.J.; Bassett, D.R., Jr.; Swartz, A.M.; Thompson, D.L. Simultaneous heart rate-motion sensor technique to estimate energy expenditure. Med. Sci. Sports Exerc. 2001, 33, 2118–2123. [Google Scholar] [CrossRef]
Measurement Parameter | Unit | Method |
---|---|---|
Resting HR | bpm | Seated state for 7 min and averaged per minute |
Predicted HRmax | bpm | 208 − 0.7 × age |
%HRR | bpm | (HR activity − resting HR)/(predicted HRmax − resting HR) × 100 |
METs | - | EE of activity/EE of rest in the sitting position |
Classification | Activities | N | Minutes of Activity (Minutes of Measurement) | METs | %HRR |
---|---|---|---|---|---|
Exercise | radio calisthenics | 25 | 8 (3.0) | 3.1 ± 0.4 | 21.6 ± 5.3 |
walking (55 m/min) | 33 | 5 (2.0) | 3.3 ± 0.5 | 21.8 ± 8.0 | |
walking (70 m/min) | 29 | 5 (2.0) | 3.7 ± 0.5 | 26.0 ± 8.0 | |
walking (100 m/min) | 30 | 5 (2.0) | 5.1 ± 0.9 | 36.5 ± 10.8 | |
jogging (130 m/min) | 21 | 4 (1.0) | 9.5 ± 1.5 | 73.4 ± 12.6 | |
Household work and daily activities | operating a mobile phone | 36 | 7 (5.0) | 1.1 ± 0.1 | 1.1 ± 3.7 |
PC work | 38 | 7 (5.0) | 1.1 ± 0.1 | 2.3 ± 3.4 | |
document arrangement while sitting | 39 | 5 (3.0) | 1.5 ± 0.3 | 6.5 ± 3.4 | |
stretch exercising | 30 | 12 (5.0) | 2.1 ± 0.3 | 8.0 ± 4.5 | |
document arrangement while standing | 40 | 5 (3.0) | 2.1 ± 0.4 | 10.2 ± 4.6 | |
washing dishes | 37 | 5 (3.0) | 2.1 ± 0.4 | 11.7 ± 5.5 | |
hanging and bringing in clothes | 38 | 5 (2.0) | 2.4 ± 0.4 | 14.5 ± 5.7 | |
repeated sitting and standing | 38 | 4 (2.0) | 2.5 ± 0.3 | 12.9 ± 5.1 | |
wiping tables | 39 | 5 (2.0) | 2.6 ± 0.5 | 15.0 ± 5.8 | |
descending stairs | 36 | 5 (1.5) | 2.7 ± 0.4 | 17.8 ± 6.3 | |
vacuuming the room | 35 | 3 (2.0) | 2.9 ± 0.6 | 17.7 ± 6.4 | |
moving load (5 kg bag of rice) | 37 | 5 (2.0) | 3.7 ± 0.6 | 25.4 ± 8.2 | |
walking with load (5 kg for 55 m/min) | 33 | 5 (2.0) | 4.0 ± 0.5 | 29.7 ± 8.3 | |
walking with load (3 kg for 70 m/min) | 29 | 5 (2.0) | 4.2 ± 0.6 | 30.1 ± 9.5 | |
ascending stairs | 30 | 5 (1.0) | 7.4 ± 0.9 | 54.0 ± 7.7 |
Age Groups (Yr) | N | Age (Years) | Height (cm) | Weight (kg) | BMI (kg/m2) | Resting HR in the Sitting Position (bpm) |
---|---|---|---|---|---|---|
Male | 20 | 39.5 ± 10.6 | 171.2 ± 5.4 | 68.7 ± 12.3 | 23.3 ± 3.4 | 67.7 ± 6.6 |
20–29 | 6 | 26.2 ± 3.1 | 169.0 ± 7.2 | 66.3 ± 10.6 | 23.1 ± 2.0 | 67.0 ± 5.9 |
30–39 | 3 | 37.3 ± 2.1 | 171.2 ± 3.8 | 65.1 ±18.6 | 22.1 ± 5.3 | 61.4 ± 5.4 |
40–49 | 6 | 43.2 ± 3.9 | 173.1 ± 6.2 | 73.1 ± 12.1 | 24.4 ± 3.6 | 72.8 ± 6.1 |
50–59 | 5 | 52.2 ± 1.8 | 171.5 ± 2.3 | 68.4 ± 13.1 | 23.2 ± 3.9 | 67.3 ± 5.9 |
Female | 20 | 38.0 ± 11.7 | 159.2 ± 7.1 | 55.9 ± 12.3 | 22.0 ± 4.2 | 67.3 ± 10.3 |
20–29 | 5 | 23.0 ± 2.3 | 157.3 ± 4.5 | 49.1 ± 5.1 | 19.8 ± 1.5 | 64.0 ± 12.8 |
30–39 | 5 | 33.0 ± 3.5 | 165.3 ± 10.6 | 62.2 ± 14.1 | 22.7 ± 4.3 | 70.8 ± 5.8 |
40–49 | 5 | 43.0 ± 4.2 | 155.9 ± 5.7 | 52.8 ± 17.1 | 21.6 ± 6.4 | 66.8 ± 13.7 |
50–59 | 5 | 52.8 ± 1.3 | 158.1 ± 2.2 | 59.4 ± 8.0 | 23.8 ± 3.2 | 67.6 ± 12.1 |
Independent Variables | Intercept | HR | Resting HR | r | R2 | SEE *1 (MET) | |
---|---|---|---|---|---|---|---|
HR | Unstandardized β Standard error p | −4.030 0.175 <0.001 | 0.080 0.002 <0.001 | 0.852 | 0.725 | 0.983 | |
Standardized β | 0.852 | ||||||
HR, Resting HR | Unstandardized β Standard error p | 0.679 0.206 0.001 | 0.095 0.001 <0.001 | −0.089 0.003 <0.001 | 0.934 | 0.873 | 0.669 |
Standardized β | 1.009 | −0.415 |
Independent Variables | Intercept | %HRR | Resting HR | Sex (M = 1, F = 0) | Height | r | R2 | SEE *1 (MET) | |
---|---|---|---|---|---|---|---|---|---|
%HRR | Unstandardized β Standard error p | 1.053 0.039 <0.001 | 0.105 0.001 <0.001 | 0.938 | 0.880 | 0.648 | |||
Standardized β | 0.938 | ||||||||
%HRR, Resting HR | Unstandardized β Standard error p | 2.123 0.192 <0.001 | 0.105 0.001 <0.001 | −0.016 0.003 <0.001 | 0.941 | 0.886 | 0.634 | ||
Standardized β | 0.942 | −0.074 | |||||||
%HRR, Resting HR, Sex | Unstandardized β Standard error p | 2.046 0.192 <0.001 | 0.106 0.001 <0.001 | −0.016 0.003 <0.001 | 0.184 0.048 <0.001 | 0.942 | 0.888 | 0.628 | |
Standardized β | 0.944 | −0.075 | 0.049 | ||||||
%HRR, Resting HR, Height | Unstandardized β Standard error p | −0.176 0.494 0.721 | 0.106 0.001 <0.001 | −0.017 0.003 <0.001 | 0.014 0.003 <0.001 | 0.943 | 0.890 | 0.623 | |
Standardized β | 0.944 | −0.078 | 0.065 |
Variables in Equation | %HRR | %HRR +Resting HR | %HRR + RestingHR + Sex | %HRR + RestingHR + Height |
---|---|---|---|---|
Activities | MPE (%) | MPE (%) | MPE (%) | MPE (%) |
operating a mobile phone | 1.9 ± 32.2 | 0.9 ± 34.5 | 0.4 ± 36.9 | 0.2 ± 36.2 |
PC work | 13.7 * ± 30.2 | 12.6 * ± 32.5 | 12.7 * ± 33.7 | 12.0 * ± 33.3 |
document arrangement while sitting | 17.1 ** ± 25.6 | 17.3 ** ± 28.1 | 16.9 ** ± 29.8 | 16.6 ** ± 29.6 |
stretch exercising | −7.6 ± 23.4 | −7.7 ± 24.0 | −8.4 ± 24.9 | −8.3 ± 24.4 |
document arrangement while standing | 2.0 ± 18.7 | 2.3 ± 19.7 | 2.1 ± 20.4 | 1.6 ± 20.3 |
washing dishes | 8.9 ± 24.2 | 8.6 ± 22.2 | 8.3 ± 22.5 | 8.2 ± 22.4 |
repeated sitting and standing | −2.1 ± 19.9 | −2.9 ± 19.5 | −3.1 ± 19.8 | −3.4 ± 20.4 |
hanging and bringing in clothes | 6.5 ± 22.4 | 6.2 ± 21.6 | 6.1 ± 21.9 | 5.9 ± 23.2 |
wiping tables | 3.3 ± 19.7 | 3.5 ± 19.9 | 3.3 ± 20.5 | 2.9 ± 19.9 |
descending stairs | 8.2 ± 25.6 | 8.1 ± 24.8 | 8.0 ± 24.9 | 7.8 ± 24.9 |
vacuuming the room | 1.4 ± 22.0 | 1.1 ± 21.4 | 1.2 ± 22.8 | 0.8 ± 22.7 |
radio calisthenics | 9.4 ± 20.7 | 9.5 ± 20.9 | 9.8 ± 20.9 | 10.0 ± 21.0 |
walking (55 m/min) | −0.8 ± 16.9 | −0.4 ± 17.3 | −0.7 ± 17.2 | −0.7 ± 17.4 |
walking (70 m/min) | 0.9 ± 17.7 | 1.3 ± 17.6 | 1.0 ± 17.3 | 1.0 ± 17.4 |
walking (100 m/min) | −4.9 ± 12.2 | −4.7 ± 12.3 | −4.6 ± 11.9 | −4.6 ± 11.9 |
moving load (5 kg bag of rice) | 0.8 ± 17.9 | 0.7 ± 17.2 | 0.6 ± 17.3 | 0.7 ± 17.5 |
walking with load (3 kg for 70 m/min) | −0.6 ± 18.0 | −0.3 ± 18.2 | −0.5 ± 17.6 | −0.4 ± 17.5 |
walking with load (5 kg for 55 m/min) | 3.4 ± 17.0 | 3.9 ± 17.2 | 3.8 ± 17.0 | 3.8 ± 16.7 |
ascending stairs | −8.5 ** ± 12.3 | −8.2 ** ± 11.9 | −8.0 ** ± 11.6 | −8.0 ** ± 11.7 |
jogging (130 m/min) | −6.3 ± 15.3 | −6.0 ± 15.3 | −5.9 ± 15.1 | −6.0 ± 14.9 |
Total activities | 2.8 ± 22.3 | 2.8 ± 22.6 | 2.6 ± 23.2 | 2.4 ± 23.1 |
Variables in Equation | %HRR | %HRR + Resting HR | %HRR + RestingHR +Sex | %HRR + RestingHR +Height |
---|---|---|---|---|
Activities | RMSE | RMSE | RMSE | RMSE |
operating a mobile phone | 0.36 | 0.39 | 0.42 | 0.41 |
PC work | 0.38 | 0.40 | 0.41 | 0.40 |
document arrangement while sitting | 0.44 | 0.46 | 0.48 | 0.47 |
stretch exercising | 0.49 | 0.51 | 0.53 | 0.53 |
document arrangement while standing | 0.39 | 0.40 | 0.42 | 0.41 |
washing dishes | 0.52 | 0.48 | 0.49 | 0.49 |
repeated sitting and standing | 0.46 | 0.45 | 0.46 | 0.47 |
hanging and bringing in clothes | 0.54 | 0.52 | 0.53 | 0.55 |
wiping tables | 0.51 | 0.51 | 0.52 | 0.50 |
descending stairs | 0.66 | 0.64 | 0.65 | 0.64 |
vacuuming the room | 0.59 | 0.56 | 0.59 | 0.58 |
radio calisthenics | 0.66 | 0.66 | 0.67 | 0.67 |
walking (55 m/min) | 0.56 | 0.57 | 0.57 | 0.57 |
walking (70 m/min) | 0.64 | 0.63 | 0.62 | 0.63 |
walking (100 m/min) | 0.67 | 0.66 | 0.65 | 0.64 |
moving load (5 kg bag of rice) | 0.69 | 0.65 | 0.65 | 0.65 |
walking with load (3 kg for 70 m/min) | 0.76 | 0.76 | 0.74 | 0.73 |
walking with load (5 kg for 55 m/min) | 0.71 | 0.72 | 0.71 | 0.70 |
ascending stairs | 1.20 | 1.16 | 1.14 | 1.14 |
jogging (130 m/min) | 1.67 | 1.65 | 1.63 | 1.62 |
Total activities | 0.66 | 0.66 | 0.66 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, Y.; Ando, T.J.; Nakae, S.; Usui, C.; Aoyama, T.; Nakanishi, M.; Nagayoshi, S.; Fujiwara, Y.; Tanaka, S. Simple Prediction of Metabolic Equivalents of Daily Activities Using Heart Rate Monitor without Calibration of Individuals. Int. J. Environ. Res. Public Health 2020, 17, 216. https://doi.org/10.3390/ijerph17010216
Caballero Y, Ando TJ, Nakae S, Usui C, Aoyama T, Nakanishi M, Nagayoshi S, Fujiwara Y, Tanaka S. Simple Prediction of Metabolic Equivalents of Daily Activities Using Heart Rate Monitor without Calibration of Individuals. International Journal of Environmental Research and Public Health. 2020; 17(1):216. https://doi.org/10.3390/ijerph17010216
Chicago/Turabian StyleCaballero, Yuko, Takafumi J. Ando, Satoshi Nakae, Chiyoko Usui, Tomoko Aoyama, Motofumi Nakanishi, Sho Nagayoshi, Yoko Fujiwara, and Shigeho Tanaka. 2020. "Simple Prediction of Metabolic Equivalents of Daily Activities Using Heart Rate Monitor without Calibration of Individuals" International Journal of Environmental Research and Public Health 17, no. 1: 216. https://doi.org/10.3390/ijerph17010216
APA StyleCaballero, Y., Ando, T. J., Nakae, S., Usui, C., Aoyama, T., Nakanishi, M., Nagayoshi, S., Fujiwara, Y., & Tanaka, S. (2020). Simple Prediction of Metabolic Equivalents of Daily Activities Using Heart Rate Monitor without Calibration of Individuals. International Journal of Environmental Research and Public Health, 17(1), 216. https://doi.org/10.3390/ijerph17010216