Predictors of Gestational Weight Gain in a Low-Income Hispanic Population: Sociodemographic Characteristics, Health Behaviors, and Psychosocial Stressors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Gestational Weight Gain
2.3. Predictors of Gestational Weight Gain
2.4. Sociodemographic Characteristics
2.5. Health Behaviors
2.6. Psychosocial Stressors
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deputy, N.P.; Sharma, A.J.; Kim, S.Y.; Hinkle, S.N. Prevalence and characteristics associated with gestational weight gain adequacy. Obs. Gynecol. 2015, 125, 773–781. [Google Scholar] [CrossRef]
- IOM; NRC. Weight Gain During Pregnancy:Reexamining the Guidelines; The National Academies Press: Washington, DC, USA, 2009.
- Kominiarek, M.A.; Peaceman, A.M. Gestational weight gain. Am. J. Obstet. Gynecol. 2017, 217, 642–651. [Google Scholar] [CrossRef]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L.; et al. Association of Gestational Weight Gain With Maternal and Infant Outcomes: A Systematic Review and Meta-analysis. Jama 2017, 317, 2207–2225. [Google Scholar] [CrossRef]
- Voerman, E.; Santos, S.; Inskip, H.; Amiano, P.; Barros, H.; Charles, M.A.; Chatzi, L.; Chrousos, G.P.; Corpeleijn, E.; Crozier, S.; et al. Association of Gestational Weight Gain With Adverse Maternal and Infant Outcomes. Jama 2019, 321, 1702–1715. [Google Scholar]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity Among Adults and Youth: United States, 2015–2016. NCHS Data Brief 2017, 288, 1–8. [Google Scholar]
- Caughey, A.B.; Cheng, Y.W.; Stotland, N.E.; Washington, A.E.; Escobar, G.J. Maternal and paternal race/ethnicity are both associated with gestational diabetes. Am. J. Obstet. Gynecol. 2010, 202, 616. [Google Scholar] [CrossRef]
- Bryant, A.S.; Worjoloh, A.; Caughey, A.B.; Washington, A.E. Racial/ethnic disparities in obstetric outcomes and care: Prevalence and determinants. Am. J. Obstet. Gynecol. 2010, 202, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.S.; Mendelsohn, A.L.; Gross, M.B.; Scheinmann, R.; Messito, M.J. Randomized Controlled Trial of a Primary Care-Based Child Obesity Prevention Intervention on Infant Feeding Practices. J. Pediatr. 2016, 174, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Block, G.; Wakimoto, P.; Jensen, C.; Mandel, S.; Green, R.R. Validation of a food frequency questionnaire for Hispanics. Prev. Chronic Dis. 2006, 3, A77. [Google Scholar]
- USDA. Dietary Guidelines for Americans 2015–2020, 8th ed.; 2015. Available online: https://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 15 November 2019).
- CDC. A Data Users Guide to the BRFSS Physical Activity Questions; CDC: Atlanta, GA, USA, 2011.
- ACOG. Committee Opinion No. 650: Physical Activity and Exercise During Pregnancy and the Postpartum Period. Obstet. Gynecol. 2015, 126, e135–e142. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Bickel, G.; Nord, M.; Price, C.; Hamilton, W.; Cook, J. Guide to Measuring Household Food Security, Revised 2000; US Department of Agriculture: Alexandria, VA, USA, 2000.
- Baehr, A.; Pena, J.C.; Hu, D.J. Racial and Ethnic Disparities in Adverse Drug Events: A Systematic Review of the Literature. J. Racial Ethn. Health Disparities 2015, 2, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Shulman, H.B.; Gilbert, B.C.; Msphbrenda, C.G.; Lansky, A. The Pregnancy Risk Assessment Monitoring System (PRAMS): Current methods and evaluation of 2001 response rates. Public Health Rep. (Washington, DC: 1974) 2006, 121, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Truong, Y.N.; Yee, L.M.; Caughey, A.B.; Cheng, Y.W. Weight gain in pregnancy: Does the Institute of Medicine have it right? Am. J. Obstet. Gynecol. 2015, 212, 362.e1-8. [Google Scholar] [CrossRef]
- Wright, C.S.; Weiner, M.; Localio, R.; Song, L.; Chen, P.; Rubin, D. Misreport of gestational weight gain (GWG) in birth certificate data. Matern. Child Health J. 2012, 16, 197–202. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Abrams, B.; Bertolet, M.; Gernand, A.D.; Parisi, S.M.; Himes, K.P.; Lash, T.L. Validity of birth certificate-derived maternal weight data. Paediatr. Perinat. Epidemiol. 2014, 28, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, P.L.; De Oliveira, L.C.; Brito Ados, S.; Kac, G. Determinant factors of insufficient and excessive gestational weight gain and maternal-child adverse outcomes. Nutr. (Burbank Los Angeles Cty. Calif.) 2010, 26, 617–623. [Google Scholar] [CrossRef]
- Chasan-Taber, L.; Schmidt, M.D.; Pekow, P.; Sternfeld, B.; Solomon, C.G.; Markenson, G. Predictors of excessive and inadequate gestational weight gain in Hispanic women. Obes. (Silver SpringMd) 2008, 16, 1657–1666. [Google Scholar] [CrossRef]
- Tovar, A.; Chasan-Taber, L.; Bermudez, O.I.; Hyatt, R.R.; Must, A. Knowledge, attitudes, and beliefs regarding weight gain during pregnancy among Hispanic women. Matern. Child Health J. 2010, 14, 938–949. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, G.E.; Teeters, L.; Schlundt, D.; Bonnet, K.; Heerman, W.J. Maternal conception of gestational weight gain among Latinas: A qualitative study. Health Psychol. 2018, 37, 132–138. [Google Scholar] [CrossRef]
- Jun, S.; Thuppal, S.V. Poor Dietary Guidelines Compliance among Low-Income Women Eligible for Supplemental Nutrition Assistance Program-Education (SNAP-Ed). Nutrients 2018, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Streuling, I.; Beyerlein, A.; Rosenfeld, E.; Schukat, B.; von Kries, R. Weight gain and dietary intake during pregnancy in industrialized countries—A systematic review of observational studies. J. Perinat. Med. 2011, 39, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Nicklas, T.A.; Myers, L.; Reger, C.; Beech, B.; Berenson, G.S. Impact of breakfast consumption on nutritional adequacy of the diets of young adults in Bogalusa, Louisiana: Ethnic and gender contrasts. J. Am. Diet. Assoc. 1998, 98, 1432–1438. [Google Scholar] [CrossRef]
- Deshmukh-Taskar, P.R.; Radcliffe, J.D.; Liu, Y.; Nicklas, T.A. Do breakfast skipping and breakfast type affect energy intake, nutrient intake, nutrient adequacy, and diet quality in young adults? NHANES 1999–2002. J. Am. Coll. Nutr. 2010, 29, 407–418. [Google Scholar] [CrossRef]
- Deshmukh-Taskar, P.; Nicklas, T.A.; Radcliffe, J.D.; O'Neil, C.E.; Liu, Y. The relationship of breakfast skipping and type of breakfast consumed with overweight/obesity, abdominal obesity, other cardiometabolic risk factors and the metabolic syndrome in young adults. The National Health and Nutrition Examination Survey (NHANES): 1999–2006. Public Health Nutr. 2013, 16, 2073–2082. [Google Scholar]
- Muktabhant, B.; Lawrie, T.A.; Lumbiganon, P.; Laopaiboon, M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst. Rev. 2015, 6, CD007145. [Google Scholar] [CrossRef]
- Chasan-Taber, L.; Silveira, M.; Lynch, K.E.; Pekow, P.; Solomon, C.G.; Markenson, G. Physical activity and gestational weight gain in Hispanic women. Obes. (Silver SpringMd) 2014, 22, 909–918. [Google Scholar] [CrossRef]
- Herring, S.J.; Nelson, D.B.; Davey, A.; Klotz, A.A.; Oken, E.; Foster, G.D. Determinants of excessive gestational weight gain in urban, low-income women. Women’s Health Issues 2012, 22, e439–e446. [Google Scholar] [CrossRef] [Green Version]
- Kubo, A.; Ferrara, A.; Brown, S.D.; Ehrlich, S.F.; Tsai, A.L.; Quesenberry, C.P., Jr.; Crites, Y.; Hedderson, M.M. Perceived psychosocial stress and gestational weight gain among women with gestational diabetes. PLoS ONE 2017, 12, e0174290. [Google Scholar] [CrossRef]
- Woody, C.A.; Ferrari, A.J.; Siskind, D.J.; Whiteford, H.A.; Harris, M.G. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J. Affect. Disord. 2017, 219, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Gavin, N.I.; Gaynes, B.N.; Lohr, K.N.; Meltzer-Brody, S.; Gartlehner, G.; Swinson, T. Perinatal depression: A systematic review of prevalence and incidence. Obs. Gynecol. 2005, 106, 1071–1083. [Google Scholar] [CrossRef]
- Lavizzo-Mourey, R. Use financial incentives to reduce racial and ethnic disparities in healthcare. Mod. Healthc. 2015, 45, 25. [Google Scholar]
- ACOG. Committee Opinion No. 729: Importance of Social Determinants of Health and Cultural Awareness in the Delivery of Reproductive Health Care. Obs. Gynecol. 2018, 131, e43–e48. [Google Scholar] [CrossRef]
Pre-Pregnancy BMI | IOM GWG Recommendations (kg) | Starting Early Obesity Prevention Study | |
---|---|---|---|
Mean GWG (kg ± SD) | Range (kg) | ||
Normal 18.5–24.9 kg/m2 | 11.3–15.9 | 11.1 ± 4.8 | −3.5–32.4 |
Overweight 25–29.9 kg/m2 | 6.8–11.3 | 10.3 ± 5.4 | −0.4–31.5 |
Obese ≥30.0 kg/m2 | 5.0–9.1 | 8.1 ± 5.4 | −3.8–25.5 |
Characteristic | All Women | Inadequate GWG (n = 194) | Adequate GWG (n = 182) | Excessive GWG (n = 143) |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Sociodemographic Characteristics | ||||
Prepregnancy BMI | ||||
Normal | 176 (35) | 100 (57) | 52 (30) | 24 (14) *** |
Overweight | 172 (34) | 45 (26) | 67 (39) | 60 (35) |
Obese | 160 (32) | 45 (28) | 58 (36) | 57 (36) |
Age (years) | ||||
<25 | 178 (35) | 74 (42) | 59 (33) | 45 (25) |
25 < 30 | 142 (28) | 50 (35) | 47 (33) | 45 (32) |
30 < 35 | 105 (21) | 40 (38) | 36 (34) | 29 (28) |
≥35 | 83 (16) | 26 (31) | 35 (42) | 22 (27) |
Primary language Spanish | ||||
No | 97 (19) | 42 (43) | 25 (26) | 30 (31) |
Yes | 411 (81) | 148 (36) | 152 (37) | 111 (27) |
Country of Birth | ||||
United States | 98 (19) | 42 (43) | 26 (27) | 30 (31) |
Mexico | 243 (48) | 93 (38) | 86 (35) | 64 (26) |
Other Latin Countries | 167 (33) | 55 (33) | 65 (39) | 47 (28) |
Years living in United States | ||||
≤5 | 106 (21) | 36 (34) | 40 (38) | 30 (28) |
>5–10 | 134 (26) | 48 (36) | 55 (41) | 31 (23) |
>10–20 | 144 (28) | 56 (39) | 45 (31) | 43 (30) |
>20 years or U.S. born | 124 (24) | 50 (40) | 37 (30) | 37 (30) |
Nulliparous | ||||
No | 320 (63) | 126 (39) | 109 (34) | 85 (27) |
Yes | 188 (37) | 64 (34) | 68 (36) | 56 (30) |
Married/Living with partner | ||||
No | 141 (28) | 54 (38) | 48 (34) | 39 (28) |
Yes | 367 (72) | 136 (37) | 129 (35) | 102 (28) |
Currently employed | ||||
No | 377 (74) | 146 (39) | 129 (34) | 102 (27) |
Yes | 131 (26) | 44 (34) | 48 (37) | 39 (30) |
Received WIC | ||||
No | 64 (13) | 28 (44) | 17 (27) | 19 (27) |
Yes | 444 (87) | 162 (36) | 160 (36) | 122 (27) |
Received SNAP | ||||
No | 325 (64) | 119 (36) | 113 (35) | 93 (29) |
Yes | 183 (36) | 71 (39) | 64 (35) | 48 (26) |
Health Behaviors | ||||
Dairy, ≥3 servings/day | ||||
No | 388 (76) | 145 (37) | 131 (34) | 112 (29) |
Yes | 120 (24) | 45 (38) | 46 (38) | 29 (24) |
Vegetables, ≥2.5 servings/day | ||||
No | 454 (89) | 171 (38) | 159 (35) | 124 (27) |
Yes | 54 (11) | 35 (19) | 33 (18) | 17 (31) |
Whole Fruit, ≥2 servings/day | ||||
No | 436 (86) | 167 (38) | 151 (35) | 118 (27) |
Yes | 72 (14) | 23 (32) | 26 (36) | 23 (32) |
Whole Grains, ≥3 servings/day | ||||
No | 485 (95) | 187 (39) | 165 (34) | 133 (27) * |
Yes | 23 (5) | 3 (13) | 12 (52) | 8 (35) |
Refined Grains, ≤3 servings/day | ||||
No | 346 (68) | 131 (38) | 125 (36) | 90 (26) |
Yes | 162 (32) | 59 (36) | 52 (32) | 51 (31) |
Protein, ≥5.5 servings/day | ||||
No | 366 (72) | 131 (36) | 130 (36) | 105 (29) |
Yes | 142 (28) | 59 (42) | 47 (33) | 36 (25) |
Eats breakfast every day | ||||
No | 94 (19) | 42 (45) | 24 (25) | 28 (30) |
Yes | 414 (81) | 148 (36) | 153 (37) | 113 (27) |
Met physical activity recommendations prior to pregnancy | ||||
No | 230 (45) | 86 (37) | 82 (36) | 62 (27) |
Yes | 278 (55) | 104 (37) | 95 (34) | 79 (28) |
Met physical activity recommendations during pregnancy | ||||
No | 344 (68) | 128 (37) | 117 (34) | 99 (29) |
Yes | 164 (32) | 62 (38) | 60 (37) | 42 (26) |
≥3 h screen time/day | ||||
No | 340 (67) | 135 (40) | 118 (35) | 87 (26) |
Yes | 168 (33) | 55 (33) | 59 (35) | 54 (32) |
Psychosocial Stressors | ||||
Depressive symptoms | ||||
No | 342 (67) | 123 (36) | 118 (35) | 101 (30) |
Yes | 166 (33) | 67 (40) | 59 (36) | 40 (24) |
Financial Difficulties | ||||
No | 372 (73) | 137 (37) | 132 (35) | 103 (28) |
Yes | 136 (27) | 53 (39) | 45 (33) | 38 (28) |
Housing Disrepair | ||||
No | 333 (66) | 123 (37) | 111 (33) | 100 (30) |
Yes | 175 (34) | 67 (38) | 67 (38) | 41 (23) |
Food Insecurity | ||||
No | 350 (69) | 127 (36) | 125 (36) | 98 (28) |
Yes | 158 (31) | 63 (40) | 52 (33) | 43 (27) |
Neighborhood Stress | ||||
No | 465 (92) | 172 (37) | 164 (35) | 129 (28) |
Yes | 43 (8) | 18 (40) | 13 (31) | 12 (29) |
Characteristic | Inadequate GWG | Excessive GWG | Total GWG | |||
---|---|---|---|---|---|---|
RRR | 95% CI | RRR | 95% CI | kg | 95% CI | |
Sociodemographic Characteristics | ||||||
Pre-pregnancy BMI | ||||||
Normal Weight | Ref | Ref | Ref | |||
Overweight | 0.35 | 0.21, 0.58 *** | 1.94 | 1.07, 3.52 * | −0.82 | −1.93, 0.28 |
Obese | 0.40 | 0.24, 0.67 ** | 2.13 | 1.16, 3.90 * | −3.02 | −4.14, −1.90 *** |
Age (years) | ||||||
<25 | Ref | Ref | Ref | |||
25 < 30 | 0.89 | 0.53, 1.51 | 1.23 | 0.70, 2.16 | 0.27 | −0.88, 1.42 |
30 < 35 | 0.98 | 0.55, 1.74 | 1.00 | 0.53, 1.89 | −0.49 | −1.76, 0.78 |
≥35 | 0.65 | 0.35, 1.20 | 0.80 | 0.41, 1.54 | −0.84 | −2.20, 0.52 |
Primary language Spanish | 0.58 | 0.34, 1.00 * | 0.62 | 0.34, 1.11 | −0.33 | −1.48, 0.82 |
Country of Birth | ||||||
United States | Ref | Ref | Ref | |||
Mexico | 0.65 | 0.37, 1.16 | 0.66 | 0.36, 1.23 | −0.96 | −2.17, 0.26 |
Other Latin Countries | 0.49 | 0.27, 0.91 * | 0.65 | 0.34, 1.26 | 0.01 | −1.29, 1.30 |
Years Living in U.S. | ||||||
>20 years or U.S. born | Ref | Ref | Ref | |||
≤5 | 0.60 | 0.32, 1.12 | 0.79 | 0.40, 1.54 | 0.47 | −0.89, 1.83 |
>5–10 | 0.61 | 0.34, 1.09 | 0.58 | 0.31, 1.11 | −0.67 | −1.95, 0.60 |
>10–20 | 0.92 | 0.51, 1.65 | 0.97 | 0.52, 1.80 | −0.65 | −1.89, 0.60 |
Nulliparous | 0.73 | 0.47, 1.12 | 1.12 | 0.70, 1.78 | 1.23 | 0.28, 2.18 ** |
Married/Living with partner | 0.95 | 0.60, 1.51 | 0.97 | 0.59, 1.59 | −0.56 | −1.57, 0.45 |
Currently Employed | 0.83 | 0.52, 1.34 | 1.01 | 0.61, 1.66 | 0.06 | −0.97, 1.10 |
WIC | 0.64 | 0.34, 1.22 | 0.66 | 0.33, 1.34 | 0.50 | −0.86, 1.87 |
SNAP | 1.10 | 0.71, 1.68 | 0.90 | 0.56, 1.43 | −0.17 | −1.11, 0.77 |
Health Behaviors | ||||||
Dairy, ≥3 servings/day | 0.85 | 0.53, 1.38 | 0.75 | 0.44, 1.27 | −0.73 | −1.79, 0.33 |
Vegetables, ≥2.5 servings/day | 0.98 | 0.49, 1.94 | 1.20 | 0.59, 2.43 | 0.07 | −1.40, 1.53 |
Whole Fruit, ≥2 servings/day | 0.74 | 0.40, 1.36 | 1.19 | 0.64, 2.20 | 0.19 | −1.11, 1.50 |
Refined Grains, ≤3 servings/day | 1.11 | 0.71, 1.74 | 1.35 | 0.84, 2.16 | 0.55 | −0.42, 1.52 |
Protein, ≥5.5 servings/day | 1.21 | 0.76, 1.91 | 0.96 | 0.58, 1.59 | −0.41 | −1.42, 0.59 |
Eats breakfast every day | 0.49 | 0.28, 0.86 * | 0.66 | 0.36, 1.22 | 0.06 | −1.12, 1.23 |
Met PA Recommendations prior to pregnancy | 1.02 | 0.68, 1.55 | 1.11 | 0.71, 1.74 | −0.13 | −1.04, 0.78 |
Met PA Recommendations during pregnancy | 1.00 | 0.64, 1.55 | 0.80 | 0.49, 1.29 | −0.97 | −1.94, −0.01 * |
≥3 h screen time/day | 0.80 | 0.51, 1.25 | 1.25 | 0.79, 1.99 | 1.04 | 0.08, 2.00 * |
Psychosocial Stressors | ||||||
Depressive symptoms | 1.06 | 0.69, 1.63 | 0.80 | 0.50, 1.30 | −0.60 | −1.57, 0.36 |
Financial Difficulties | 1.17 | 0.73, 1.87 | 1.07 | 0.65, 1.77 | 0.01 | −1.00, 1.03 |
Housing Disrepair | 0.90 | 0.59, 1.37 | 0.67 | 0.42, 1.08 | −0.84 | −1.78, 0.11 |
Food Insecurity | 1.18 | 0.76, 1.84 | 1.06 | 0.65, 1.72 | 0.24 | −0.73, 1.22 |
Neighborhood Stress | 1.30 | 0.61, 2.74 | 1.18 | 0.52, 2.68 | −0.22 | −1.85, 1.40 |
Characteristic | Inadequate GWG | Excessive GWG | Total GWG (kg) | |||
---|---|---|---|---|---|---|
aRRR | 95% CI | aRRR | 95% CI | kg | 95% CI | |
Pre-pregnancy BMI | ||||||
Normal Weight | Ref | Ref | Ref | |||
Overweight | 0.34 | 0.20, 0.57 *** | 1.88 | 1.04, 3.40 * | −0.66 | −1.75, 0.44 |
Obese | 0.36 | 0.22, 0.62 *** | 1.98 | 1.08, 3.62 * | −2.63 | −3.76, −1.49 ** |
Primary language Spanish | 0.77 | 0.35, 1.69 | 0.57 | 0.24, 1.35 | ||
Country of Birth | ||||||
United States | Ref | Ref | ||||
Mexico | 1.01 | 0.46, 2.24 | 1.04 | 0.43, 2.47 | ||
Other Latin Countries | 0.73 | 0.32, 1.67 | 1.06 | 0.44, 2.59 | ||
Nulliparous | 1.34 | 0.38, 2.29 * | ||||
Eats breakfast every day | 0.47 | 0.26, 0.83 * | 0.65 | 0.35, 1.18 | ||
Met physical activity recommendations during pregnancy | −1.00 | −1.99, −0.03 * | ||||
Engaged in ≥3 h screen time/day | 0.98 | 0.02, 1.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolin, C.D.; Gross, R.S.; Deierlein, A.L.; Berube, L.T.; Katzow, M.; Yaghoubian, Y.; Brubaker, S.G.; Messito, M.J. Predictors of Gestational Weight Gain in a Low-Income Hispanic Population: Sociodemographic Characteristics, Health Behaviors, and Psychosocial Stressors. Int. J. Environ. Res. Public Health 2020, 17, 352. https://doi.org/10.3390/ijerph17010352
Dolin CD, Gross RS, Deierlein AL, Berube LT, Katzow M, Yaghoubian Y, Brubaker SG, Messito MJ. Predictors of Gestational Weight Gain in a Low-Income Hispanic Population: Sociodemographic Characteristics, Health Behaviors, and Psychosocial Stressors. International Journal of Environmental Research and Public Health. 2020; 17(1):352. https://doi.org/10.3390/ijerph17010352
Chicago/Turabian StyleDolin, Cara D., Rachel S. Gross, Andrea L. Deierlein, Lauren T. Berube, Michelle Katzow, Yasaman Yaghoubian, Sara G. Brubaker, and Mary Jo Messito. 2020. "Predictors of Gestational Weight Gain in a Low-Income Hispanic Population: Sociodemographic Characteristics, Health Behaviors, and Psychosocial Stressors" International Journal of Environmental Research and Public Health 17, no. 1: 352. https://doi.org/10.3390/ijerph17010352
APA StyleDolin, C. D., Gross, R. S., Deierlein, A. L., Berube, L. T., Katzow, M., Yaghoubian, Y., Brubaker, S. G., & Messito, M. J. (2020). Predictors of Gestational Weight Gain in a Low-Income Hispanic Population: Sociodemographic Characteristics, Health Behaviors, and Psychosocial Stressors. International Journal of Environmental Research and Public Health, 17(1), 352. https://doi.org/10.3390/ijerph17010352