Diagnostic Accuracy of Body Mass Index in Defining Childhood Obesity: Analysis of Cross-Sectional Data from Ghanaian Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.2.1. Anthropometry
2.2.2. Total Body Water for Percent Body Fat Estimation
2.2.3. Ethical Considerations
2.2.4. Statistical Analysis
3. Results
3.1. Descriptive Characteristics and Obesity Prevalence of Children
3.2. Diagnostic Accuracy and Performance of BMI Criteria for Defining Obesity
3.3. Empirical Cut-Point Estimation for Defining Obesity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reilly, J.J. Health consequences of obesity. Arch. Dis. Child. 2003, 88, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.J.; Kelly, J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: Systematic review. Int. J. Obes. 2011, 35, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.C.K. A Hattori chart analysis of body mass index in infants and children. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 325–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 812. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, R.; Ogden, C.L.; Guo, S.; Grummer-Strawn, L.; Flegal, K.; Al, E. 2000 CDC Growth Charts for the United States: Methods and development. In Vital Health Statistics; Series 11; Number 246; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, May 2002; pp. 1–190. [Google Scholar]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goran, M.I. Measurement Issues Related to Studies of Childhood Obesity: Assessment of Body Composition, Body Fat Distribution, Physical Activity, and Food Intake. Pediatrics 1998, 101, 505–518. [Google Scholar] [PubMed]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Chumlea, W.C. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthuri, S.K.; Francis, C.E.; Wachira, L.J.M.; LeBlanc, A.G.; Sampson, M.; Onywera, V.O.; Tremblay, M.S. Evidence of an Overweight/Obesity Transition among School-Aged Children and Youth in Sub-Saharan Africa: A Systematic Review. PLoS ONE 2014, 9, e92846. [Google Scholar] [CrossRef] [Green Version]
- Craig, E.; Reilly, J.; Bland, R. Body fatness or anthropometry for assessment of unhealthy weight status? Comparison between methods in South African children and adolescents. Public Health Nutr. 2013, 16, 2005–2013. [Google Scholar] [CrossRef] [Green Version]
- Diouf, A.; Adom, T.; Aouidet, A.; El Hamdouchi, A.; Joonas, N.I.; Loechl, C.U.; Leyna, G.H.; Mbithe, D.; Moleah, T.; Monyeki, A.; et al. Body mass index vs deuterium dilution method for establishing childhood obesity prevalence, Ghana, Kenya, Mauritius, Morocco, Namibia, Senegal, Tunisia and United Republic of Tanzania. Bull. World Health Organ. 2018, 96, 772–781. [Google Scholar] [CrossRef]
- Adom, T.; De Villiers, A.; Puoane, T.; Kengne, A.P. Prevalence and correlates of overweight and obesity among school children in an urban district in Ghana. BMC Obes. 2019, 6, 14. [Google Scholar] [CrossRef]
- IAEA. Introduction to body composition assessment using the deuterium dilution technique with analysis of saliva samples by Fourier transform infrared spectrometry. IAEA Hum. Health Ser. 2010, 12, 96. [Google Scholar]
- IAEA. Assessment of body composition and total energy expenditure in humans using stable isotope technique. IAEA Hum. Health Ser. 2009, 3, 133. [Google Scholar]
- Williams, D.P.; Going, S.B.; Lohman, T.G.; Harsha, D.W.; Srinivasan, S.R.; Webber, L.S.; Berenson, G.S. Body Fatness and Risk for Elevated Blood-Pressure, Total Cholesterol, and Serum-Lipoprotein Ratios in Children and Adolescents. Am. J. Public Health 1992, 82, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Neovius, M.G.; Linné, Y.M.; Barkeling, B.S.; Rossner, S.O. Sensitivity and specificity of classification systems for fatness in adolescents. Am. J. Clin. Nutr. 2004, 80, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Deurenberg-Yap, M.; Niti, M.; Foo, L.L.; Ng, S.A.; Loke, K.Y. Diagnostic accuracy of anthropometric indices for obesity screening among asian adolescents. Ann. Acad. Med. Singap. 2009, 38, 3–8. [Google Scholar]
- Hudda, M.T.; Nightingale, C.M.; Donin, A.S.; Fewtrell, M.S.; Haroun, D.; Lum, S.; Williams, J.E.; Owen, C.G.; Rudnicka, A.R.; Wells, J.C.; et al. Body mass index adjustments to increase the validity of body fatness assessment in UK Black African and South Asian children. Int. J. Obes. 2017, 41, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, C.M.; Rudnicka, A.R.; Owen, C.G.; Cook, D.G.; Whincup, P.H. Patterns of body size and adiposity among UK children of South Asian, black African-Caribbean and white European origin: Child Heart And health Study in England (CHASE Study). Int. J. Epidemiol. 2011, 40, 33–44. [Google Scholar] [CrossRef]
- Liu, A.; Byrne, N.M.; Kagawa, M.; Ma, G.; Poh, B.K.; Ismail, M.N.; Kijboonchoo, K.; Nasreddine, L.; Trinidad, T.P.; Hills, A.P. Ethnic differences in the relationship between body mass index and percentage body fat among Asian children from different backgrounds. Br. J. Nutr. 2011, 106, 1390–1397. [Google Scholar] [CrossRef] [Green Version]
- Reilly, J.J.; Dorosty, A.R.; Emmett, P.M.; Avon Longitudinal Study of Pregnancy and Childhood Study Team. Identication of the obese child: Adequacy of the body mass index for clinical practice and epidemiology. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Bedogni, G.; Iughetti, L.; Ferrari, M.; Malavolti, M.; Poli, M.; Bernasconi, S.; Battistini, N. Sensitivity and specificity of body mass index and skinfold thicknesses in detecting excess adiposity in children aged 8–12 years. Ann. Hum. Biol. 2003, 30, 132–139. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Gubeli, C.; Puntener, C.; Molinari, L.; Hess, S.Y.; Hurrell, R.F. Detection of overweight and obesity in a national sample of 6–12-y-old Swiss children: Accuracy and validity of reference values for body mass index from the US Centers for Disease Control and Prevention anf the International Obesity Task Force. Am. J. Clin. Nutr. 2004, 79, 838–843. [Google Scholar] [CrossRef]
- Gläßer, N.; Zellner, K.; Kromeyer-Hauschild, K. Validity of body mass index and waist circumference to detect excess fat mass in children aged 7–14 years. Eur. J. Clin. Nutr. 2011, 65, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: A systematic review and meta-analysis. Pediatr. Obes. 2015, 10, 234–244. [Google Scholar]
- Nichols, S.D.; Cadogan, F. BMI-based obesity cutoffs and excess adiposity in a Caribbean adolescent population of African origin. Eur. J. Clin. Nutr. 2009, 63, 253–258. [Google Scholar] [CrossRef]
- Reilly, J.J. Diagnostic accuracy of the BMI for age in paediatrics. Int. J. Obes. 2006, 30, 595–597. [Google Scholar] [CrossRef] [Green Version]
- da Silva, K.S.; da Silva Lopes, A.; da Silva, F.M. Sensitivity and specificity of different classification criteria for overweight in schoolchildren from João Pessoa, Paraíba, Brazil. Rev. Nutr. 2010, 23, 27–35. [Google Scholar]
- Dencker, M.; Thorsson, O.; Lindén, C.; Wollmer, P.; Andersen, L.B.; Karlsson, M.K. BMI and objectively measured body fat and body fat distribution in prepubertal children. Clin. Physiol. Funct. Imaging 2007, 27, 12–16. [Google Scholar] [CrossRef]
- Gómez-Campos, R.; David Langer, R.; de Fátima Guimarães, R.; Contiero San Martini, M.; Cossio-Bolaños, M.; de Arruda, M.; Guerra-Júnior, G.; Moreira Gonçalves, E. Accuracy of body mass index cutoffs for classifying obesity in Chilean children and adolescents. Int. J. Environ. Res. Public Health 2016, 13, 472. [Google Scholar] [CrossRef] [Green Version]
- Mehdad, S.; Hamrani, A.; El Kari, K.; El Hamdouchi, A.; Barakat, A.; El Mzibri, M.; Mokhtar, N.; Aguenaou, H. Body mass index, waist circumference, body fat, fasting blood glucose in a sample of Moroccan adolescents aged 11–17 years. J. Nutr. Metab. 2012, 510458. [Google Scholar] [CrossRef]
- Bila, W.C.; De Freitas, A.E.; Galdino, A.S.; Ferriolli, E.; Pfrimer, K.; Lamounier, J.A. Deuterium oxide dilution and body composition in overweight and obese schoolchildren aged 6–9 years. J. Pediatr. 2016, 92, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickramasinghe, V.P.; Cleghorn, G.J.; Edmiston, K.A.; Murphy, A.J.; Abbott, R.A.; Davies, P.S.W. Validity of BMI as a measure of obesity in Australian white Caucasian and Australian Sri Lankan children. Ann. Hum. Biol. 2005, 32, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Korenfeld, Y.; Boarin, S.; Korinek, J.; Jensen, M.D.; Parati, G.; Lopez-Jimenez, F. Normal weight obesity: A risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J. 2010, 31, 737–746. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Public health Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Public Health 2004, 363, 157–163. [Google Scholar]
Variables | Overall (N = 183) | Boys (N = 72) | Girls (N = 111) | p-Value |
---|---|---|---|---|
Median age (y) | 10 (9, 10) | 10.0 (9, 10) | 10.0 (9, 10) | |
Median Weight (kg) | 30.7 (27.2, 37.5) | 29.9 (27.5, 34.9) | 31.3 (27.1, 39.1) | 0.339 |
Mean height (cm) | 139.5 ± 8.2 | 138 ± 7.2 | 140.1 ± 8.81 | 0.232 |
Median BMI (kg/m2) | 15.7 (14.8, 18.0) | 15.5 (14.8, 17.1) | 16.0 (14.5, 18.7) | 0.617 |
Median BMI z-score | −0.40 (−1.09, 0.63) | −0.51 (−1.08, 0.19) | −0.22 (−1.16, 0.68) | 0.387 |
Median body fat (%) | 19.3 (14.1, 26.1) | 14.7 (11.6, 21.1) | 21.3 (16.7, 27.4) | <0.0001 |
WHO % (n) | 11.5 (21) | 13.9 (10.0) | 9.9 (11) | 0.409 |
CDC, % (n) | 10.4 (18) | 11.1 (8) | 9.0 (10) | 0.641 |
IOTF, % (n) | 8.2 (15) | 8.3 (6) | 8.1 (9) | 0.957 |
D2O, % (n) | 17.5 (32) | 16.7 (12) | 18.0 (20) | 0.814 |
Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | |
---|---|---|---|---|
Overall | ||||
WHO | 59.4 (40.6–76.3) | 98.7 (95.3–99.8) | 90.5 (69.6–98.8) | 91.9 (86.7–95.7) |
CDC | 53.1 (34.7–70.9) | 99.3 (96.4–99.9) | 94.4 (72.7–99.9) | 90.9 (72.7–99.9) |
IOTF | 46.9 (29.1–65.3) | 100.0 (97.6–100.0) | 100.0 (80.5–100.0) | 89.9 (84.3–94.0) |
Boys | ||||
WHO | 75.0 (42.8–94.5) | 98.3 (91.1–99.9) | 90.0 (55.5–99.8) | 95.1 (86.5–99.0) |
CDC | 66.7 (34.9–90.1) | 100.0 (94.0–100.0) | 100.0 (63.1–100.0) | 93.8 (84.8–98.3) |
IOTF | 50.0 (21.1–78.9) | 100.0 (94.0–100.0) | 100.0 (54.1–100.0) | 90.9 (81.3–96.6) |
Girls | ||||
WHO | 50.0 (27.2–72.8) | 98.9 (94.0–99.9) | 90.9 (58.7–99.8) | 90.0 (82.4–95.1) |
CDC | 45.0 (23.1–68.5) | 98.9 (94.0–99.9) | 90.0 (55.5–99.8) | 89.1 (81.3–94.4) |
IOTF | 45.0 (23.1–68.5) | 100.0 (96.0–100.0) | 100.0 (66.4–100.0) | 89.2 (81.5–94.4) |
Cut-off | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | AUC (95% CI) | |
---|---|---|---|---|---|---|
WHO BMI-for-age z-score | ||||||
Overall | 0.68 | 93.8 (79.2–99.2) | 92.7 (87.3–96.3) | 73.2 (57.1–85.8) | 98.6 (95.0–99.8) | 0.932 (0.885–0.980) |
Boys | 0.86 | 91.6 (61.5–99.8) | 96.7 (88.5–99.6) | 84.6 (54.5–98.1) | 98.3 (90.9–99.6) | 0.942 (0.857–1.000) |
Girls | 0.68 | 95.0 (75.1–99.9) | 90.1 (82.1–95.4) | 67.9 (47.6–84.1) | 98.8 (93.5–99.7) | 0.926 (0.868–0.983) |
CDC BMI-for-age percentiles | ||||||
Overall | 69.5 | 90.6 (75.0–98.0) | 90.1 (84.1–94.3) | 65.9 (50.1–79.5) | 97.8 (93.8–99.5) | 0.903 (0.847–0.960) |
Boys | 87.5 | 83.3 (51.6–97.9) | 91.7 (81.6–97.2) | 66.7 (38.4–88.2) | 96.5 (87.9–99.6) | 0.875 (0.759–0.991) |
Girls | 69.5 | 95.0 (75.1–99.9) | 89.0 (80.7–94.6) | 65.5 (45.7–82.1) | 98.8 (93.4–99.9) | 0.920 (0.813–0.979) |
IOTF BMI-for-age z-score | ||||||
Overall | 0.50 | 50.0 (31.9–68.1) | 100.0 (97.6–100.0) | 100.0 (79.4–100.0) | 90.4 (84.9–94.4) | 0.750 (0.660–0.840) |
Boys | 0.50 | 58.3 (27.7–84.8) | 100.0 (94.0–100.0) | 100.0 (59.0–100.0) | 92.3 (82.5–97.5) | 0.792 (0.646–0.937) |
Girls | 0.50 | 45.0 (21.1–68.5) | 100.0 (96.0–100.0) | 100.0 (66.4–100.0) | 89.2 (81.5–94.5) | 0.725 (0.613–0.837) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adom, T.; Kengne, A.P.; De Villiers, A.; Boatin, R.; Puoane, T. Diagnostic Accuracy of Body Mass Index in Defining Childhood Obesity: Analysis of Cross-Sectional Data from Ghanaian Children. Int. J. Environ. Res. Public Health 2020, 17, 36. https://doi.org/10.3390/ijerph17010036
Adom T, Kengne AP, De Villiers A, Boatin R, Puoane T. Diagnostic Accuracy of Body Mass Index in Defining Childhood Obesity: Analysis of Cross-Sectional Data from Ghanaian Children. International Journal of Environmental Research and Public Health. 2020; 17(1):36. https://doi.org/10.3390/ijerph17010036
Chicago/Turabian StyleAdom, Theodosia, André Pascal Kengne, Anniza De Villiers, Rose Boatin, and Thandi Puoane. 2020. "Diagnostic Accuracy of Body Mass Index in Defining Childhood Obesity: Analysis of Cross-Sectional Data from Ghanaian Children" International Journal of Environmental Research and Public Health 17, no. 1: 36. https://doi.org/10.3390/ijerph17010036